1298056827240625006—平面电磁波

合集下载

《光波导理论教学课件》2.2平面电磁波

《光波导理论教学课件》2.2平面电磁波
《光波导理论教学课件》2.2平面电磁波
目录
平面电磁波的基本概念 光波导中平面电磁波的传播 平面电磁波在光波导中的模态 光波导中平面电磁波的耦合与散射 平面电磁波在光波导中的非线性效应
01
CHAPTER
平面电磁波的基本概念
平面电磁波是指电磁场振幅在空间保持不变,且以波阵面形式传播的电磁波。
定义
具有振幅、频率和相位等特性,且在传播过程中保持恒定的振幅和相位关系。
无线通信
雷达通过发射平面电磁波并接收目标反射回来的信号,实现对目标的位置和速度进行探测。
雷达探测
光学仪器中,如显微镜、望远镜等,利用平面电磁波的干涉、衍射等现象实现对物体的高精度测量。
光学仪器
平面电磁波的应用场景
02
CHAPTER
光波导中平面电磁波的传播
光波导是一种能够引导光波在其中传播的结构,通过光波导的引导作用,平面电磁波可以在其中传播并保持稳定。
分类
常见的光波导类型包括折射率引导型、干涉型、散射型等,每种类型的光波导都有其独特的传播特性。
特性差异
不同类型的光波导在传输效率、模式稳定性、光谱响应等方面存在差异,需要根据实际需求选择合适的光波导类型。
03
边界条件
光波导的边界条件决定了平面电磁波在波导端面和侧壁的反射和透射行为,进而影响光的传输特性和模式特性。
特性
定义与特性
在无障碍物的空间中,平面电磁波以球面波的形式向四面八方传播。
自由空间传播
导引传播
反射与折射
在导引介质(如波导)中,平面电磁波沿着特定的方向传播,受到导引介质的约束。
当平面电磁波遇到不同介质的分界面时,会发生反射和折射现象,遵循斯涅尔定律。
03
02

电磁场与波6平面电磁波

电磁场与波6平面电磁波
结果
通过实验测量得到平面电磁波的传播 特性,包括波长、振幅、相位等参数 。
分析
对实验结果进行统计分析,研究平面 电磁波在不同介质中的传播规律,以 及影响因素。
实验结论与展望
结论
通过实验研究,验证了平面电磁波在特定条件下的传播特性,为电磁波的应用提供了理论支持。
展望
未来可以进一步研究平面电磁波在复杂环境下的传播特性,以及与其他电磁波的相互作用,为电磁波 的应用提供更深入的理论依据。
垂直偏振
电场矢量在垂直于传播方向的平面上呈现为垂直方向的振 动。
水平偏振
电场矢量在垂直于传播方向的平面上呈现为水平方向的振 动。
45度偏振
电场矢量在垂直于传播方向的平面上呈现为与水平方向成 45度角的振动。
02
平面电磁波的基本性 质
波动方程
波动方程是描述电磁波传播的偏微分 方程,其形式为▽²E + k²E = 0,其中 E是电场强度,k是波数,▽²表示拉普 拉斯算子。
04
平面电磁波的应用
无线通信
无线通信是平面电磁波最重要的应用之 一。通过无线电波的传输,人们可以实 现远距离的通信和信息传递。无线通信 技术广泛应用于移动电话、无线局域网、
广播和电视等领域。
无线通信系统通常包括发射器和接收器 无线通信技术的发展对于现代社会的信 两部分。发射器将信息转换为电磁波信 息化和全球化起到了重要的推动作用。 号并发送出去,而接收器则负责接收这 它使得人们可以随时随地地获取和传递
卫星通信
卫星通信是利用人造卫星作为中继站,实现地球上不同地点 之间的无线通信。卫星通信系统通过发射和接收无线电波信 号,实现语音、数据和视频等多种信息的传输。
卫星通信具有覆盖范围广、不受地形限制、传输距离远等优 点,因此在国际通信、电视广播、远程教育等领域得到广泛 应用。同时,卫星通信也是现代军事指挥、控制和通信系统 的重要组成部分。

平面电磁波知识点

平面电磁波知识点

平面电磁波知识点电磁波是一种在空间中传播的波动现象,它由电场和磁场相互作用而产生。

平面电磁波作为电磁波的一种形式,具有特定的特性和应用。

本文将介绍平面电磁波的基本知识点,包括定义、特性、产生和传播、应用等内容。

一、平面电磁波的定义平面电磁波是指电场和磁场在空间中沿着一定方向传播的电磁波。

它的波动方向垂直于电场和磁场的传播方向,且电场和磁场的变化情况具有一定的关系。

平面电磁波包含了无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等多个频段。

二、平面电磁波的特性1. 频率和波长:平面电磁波的频率和波长间存在确定的关系,即波长等于光速除以频率。

波长越短,频率越高,能量越大。

不同频段的电磁波对应着不同的波长和频率范围。

2. 周期和振幅:平面电磁波的周期指一个完整波形所经历的时间,振幅指波峰或波谷与波中心的距离。

波形的周期和振幅决定了平面电磁波的能量和强度。

3. 速度:平面电磁波在真空中的传播速度是一个恒定值,即真空中的光速。

它的数值约为299,792,458米每秒,通常记作c。

不同介质中的传播速度与光速有关,由该介质的折射率决定。

4. 方向性:平面电磁波的传播方向是垂直于电场和磁场方向的。

电场和磁场的方向彼此垂直,并且与传播方向形成右手定则。

三、平面电磁波的产生和传播1. 产生:平面电磁波可以通过加速带电粒子、振动电荷或电流等方式产生。

当带电粒子或电流经过加速、振动时,会产生电场和磁场的变化,从而产生平面电磁波。

2. 传播:平面电磁波的传播遵循麦克斯韦方程组。

根据这些方程,平面电磁波在真空中以光速传播,不受介质的影响。

当平面电磁波遇到介质时,会发生折射、反射或透射等现象,具体情况取决于介质的性质。

四、平面电磁波的应用1. 通信:平面电磁波广泛应用于无线通信领域。

不同频段的电磁波用于无线电、电视、手机、卫星通信等通信系统,实现声音、图像和数据的传输。

2. 医学:平面电磁波在医学诊断、治疗和影像技术中起到重要作用。

平面电磁波

平面电磁波

E E xm e j x e x E ym e
H 1

j y
e y e z

(6-20a) (6-20b) (6-20c)
其中
~ j

ez E
(6-20d) 称为传播常数(propagation constant), 和 都是复数。式(6-20)说明,在损耗媒质中传播的 平面波,电场、磁场和传播方向三者相互垂直,成 右手螺旋关系,仍是TEM波。
H

1

ez E
1

E e
yБайду номын сангаас
x
Exe y
Ey Ex Hy Hx
r 120 r
(6-9)
式(6-8)和(6-6)说明:
均匀平面波的电场、磁场和传播方向 e z 三者彼此正 交,符合右手螺旋关系。既然电场强度和电磁强度 之间有式(6-8)的简单关系,所以讨论均匀平面波 问题时,只需讨论其电场(或磁场)即可。 6.1.2 均匀平面波的传播特性 在理想介质中传播的均匀平面波有以下传播特性: (1)电场强度E、电磁强度H、传播方向 e z 三者 相互垂直,成右手螺旋关系,传播方向上无电磁场 分量,称为横电磁波(Transverse ElectroMagnetic wave),记为TEM波。 (2)E、H处处同相,两者复振幅之比为媒质的波 阻抗 ,是实数,见式(6-9)。




(6-13) (5)电磁场中电场能量密度、磁场能量密度的瞬时 值是 1 2 2
we ( z, t ) 2
E x ( z, t ) E y ( z, t )
2 2 1 1 E x ( z, t ) E y ( z, t ) 2 2 wm ( z , t ) H x ( z , t ) H y ( z , t ) we ( z , t ) 2 2 /

平面电磁波的性质要点

平面电磁波的性质要点
§1.3 平面电磁波的性质
平面电磁波是一般电磁波的基本成分。本节将应用电磁理论讨论光频范围的 电磁波即光波的一些基本性质。
1.3.1 电磁波的横波性质
① 从偏振和双折射现象解释 ② 从麦克斯韦电磁理论证明
E 0 B 0 E B t B E t
波印廷矢量S的大小表示电磁波传递的能流密度,方向代表能量流动 的方向和电磁波的传播方向。(在均匀介质中即为波矢k的方向) 2. 光强 I
定义:能流密度S在探测器可分辨的时间间隔内的时间平均值,或在探测器的响 应时间间隔 内,流过与k垂直的单位面积的能量流的时间平均值,即称为电磁 波的强度。对于光波,即为光强。
② 光波的分类(按矢量性)
自然光 偏振光
部分偏振光 各种光波电矢量振动示意图(时间平均意义上的)
1.3.3 电场波与磁场波的关系
由于 : k E k B k E 且 k k E B 1 c B B n
电场的作用大于磁场的作用(讨论光与物质相互作用时) 带电粒子受到的电场力:
I S
1



0
Sdt
( J / s m 2 )或(W / m 2 )
例:计算线偏振平面波的光强
已知:
k // z 轴,电矢量E的振动方向// x 轴,则B的振动方向// y 轴
E Ex i E0 x cos(kz t 0 )i
电场E的波函数:
磁场B的波函数: B By j B0 y cos(kz t 0 ) j Ex j
I A' I A cos L I cos A A L与I , 有关系
入射光波 接收面

《平面电磁波》PPT课件

《平面电磁波》PPT课件

w E
1

B
2
2. 电磁场的能流密度 平面电磁波的能流密度
2 S EH E n E E n 1 S wn vwn wv
v为电磁波在介质中的相速。 由于能量密度和能流密度是场强的二次式,不能 把场强的复数表示直接代入。
计算和S的瞬时值时,应把实数表示代入,得
E ( x, t ) E0 e
i kx t
其中x表示坐标原点到某等相位面的距离 ,kx即为
传播这一距离所对应的相位差。
对于任意方向传播的平面波
令 k 表示一个矢量,其大小
为 k ,方向沿平面波的传播
方向。则任意一点 P 与原点
之间的相位差应为kx’,即
kx kx cos k x
真空中
值如图所示.随着时间的推移,整个波形向x轴方 向的移动速度为
vc
r r
四、电磁波的能量和能流
1. 电磁场的能量密度
1 1 2 1 2 w E D H B E B 2 2
对于平面电磁波情形
E
2
1

2
B
2
所以平面电磁波中,电场能量和磁场能量相等, 有
it
, g (t ) g 0e
it i
是f(t)和 g(t)的相位差. fg对一周期的平均值为
fg 2

2

0
dtf0 cos t g 0 cost
1 1 f 0 g 0 cos Re f * g 2 2 式中f *表示f的复共轭,Re表示实数部分。由此,
所以,一般情况下的平面表示式为
E(x, t ) E0ei k x t

平面电磁波PPT课件

平面电磁波PPT课件

波的基本方程是
t
麦克斯韦方程组
D
研究在没有电荷电 流分布的自由空间
H
t
J
(或均匀介质)中 D
的电磁场运动形
式.
B 0
6
第6页/共50页
在自由空间中, 电场和磁场互相 激发,电磁场的 运动规律是齐次 的麦克斯韦方程 组(=0, J=0情 形)
E B t
H D t
D 0
B 0
v c rr
42
第42页/共50页
4.电磁波的能量和能流
电磁场的能量密度
w
1 2
E
D
H
B
1 2
Байду номын сангаасE 2
1
B2
43
第43页/共50页
在平面电 磁波情形
E 2 1 B2
平面电磁波中 电场能量和磁 场能量相等, 有
w E 2 1 B2
44
第44页/共50页
平面电磁波的能流密度
S E H E n E E2n
27
第27页/共50页
以上为了运算方便采用了复数形 式,对于实际存在的场强应理解 为只取上式的实数部分,即
Ex, t E0 coskx t
28
第28页/共50页
相位因子cos(kx-t)的意义
在时刻t=0,相位因子是 coskx,x=0的平 面处于波峰.
在另一时刻 t,相因子变为cos(kx-t)波峰 移至kx- t处,即移至x=t/k的平面上
B
k
E
n E
k
38
第38页/共50页
n为传播方向的单位矢量.由上式得 k ·B=0,因此磁场波动也是横波.E、 B和k是三个互相正交的矢量.E和B 同相,振幅比为

平面电磁波

平面电磁波

第六章 平面电磁波主要内容平面电磁波的基本特性 9学时1. 理想介质中的均匀平面波 2. 损耗媒质中的均匀平面波 3. 均匀平面波的极化 4. 均匀平面波对平面边界的垂直入射 5. 均匀平面波对平面边界的斜入射 6. 各向异性媒质中的均匀平面波1-1206.1 理想介质中的均匀平面波理想介质是指电导率 σ = 0 ,ε 、 μ 为实常 数的媒质,σ → ∞ 的媒质称为理想导体。

σ 介于两者之间的媒质称为有损耗媒质或导电媒质。

平面波是指波前面,即等相位面或者波前阵是平面的波。

均匀平面波是指波前面上场量振 幅处处相等的波。

本节介绍最简单的情况,即介绍无源、均 匀(homogeneous)(媒质参数与位置无关)、 线性(linear)(媒质参数与场强大小无关)、 各向同性(isotropic)(媒质参数与场强方向无 关)的无限大理想介质中的时谐平面波。

4-120对应的磁场为∇ × E = −μ ∂H其通解为∂t∂Ex = −μ ∂H y∂z∂tHy=β ωμ⎡⎣ Ex+cos(ωt−βz)−E− xcos(ωt+βz)⎤⎦=H+ ycos(ωt−βz)+H− ycos(ωt+βz)则Ex=E+ xcos(ωt−βz)+Ex−cos(ωt+βz)Hy=H+ ycos(ωt−βz)+H− ycos(ωt+βz)注意到 E 和 H 的相位相同!定义:波阻抗 η7-120=E+ xH+ y=−E− xH− y=μ = 120π εμr εr平面电磁波z 电磁波:变化的电磁场脱离场源后在空间的传播z 平面电磁波:等相位面为平面构成的电磁波 z 均匀平面电磁波:等相位面上E、H 处处相等的电磁波 z 若电磁波沿 x 轴方向传播,则H=H(x,t),E=E(x,t) z 平面电磁波知识结构框图2-120x方向传播的一组均匀平面波6.1.1 波动方程的解假设电磁场沿着 Z 轴方向传播,且电场仅有指向 X 轴 的方向分量,则磁场必只有 Y 方向的分量,即:E = exEx (z,t) H = ey H y ( z, t)波动方程∇2E − με∂E 2 ∂t 2=0∇2Ex− με∂Ex2 ∂t 2=0则5-120∂2Ex ∂z 2−1 v2∂E2 x∂t 2=01其中: v = μ ε考察电场的一个分量 ,瞬时值表达式为:Ex (z,t) = Ex+ cos(ωt − β z +ϕx ) 其中 ωt 为时间相位 , β z 为空间相位 ,ϕ x 是初始相位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档