疲劳与断裂作业
断裂与疲劳阶段性作业4

断裂与疲劳阶段性作业4判断题1. 最大拉应力理论实际上是在以裂纹尖端为圆心的同心圆上比较周向应力得出的准则。
(5分)正确错误参考答案:正确解题思路:2. 对于延性较好的材料,裂纹萌生后有相当长的一段扩展阶段,也应当计入裂纹萌生寿命。
(5分)正确错误参考答案:错误解题思路:3. 积分和线弹性断裂力学中的应力场强度因子一样,反映了裂纹顶端的某种力学特性或应力应变场强度。
(6分)正确错误参考答案:正确解题思路:4. 积分的守恒性即积分的数值与积分回路无关。
(6分)正确错误参考答案:正确解题思路:5. 对于高、中强钢等脆性材料,从裂纹萌生到扩展至小尺寸圆截面试件断裂的时间很短,但对整个寿命的影响很大。
(5分)正确错误参考答案:错误解题思路:6. 积分同时在分析过程中不能避开裂纹顶端这个难以直接严密分析的区域。
(6分)正确错误参考答案:错误解题思路:7. 复合型裂纹失稳条件也比较复杂,但其裂纹按裂纹原方向开裂和扩展。
(5分)正确错误参考答案:错误解题思路:8. 在同种材料中,两种不同应力条件下其滑移系是不同。
(5分)正确错误参考答案:错误解题思路:9. 积分参量可应用于三维非线性弹性体。
(6分)正确错误参考答案:正确解题思路:10. 能量平衡断裂理论只能处理裂纹平面与施加拉力方向垂直并沿原来平面扩展的问题。
(6分)正确错误参考答案:正确解题思路:填空题11. 在复合型裂纹问题中,需要主要研究以下两个问题:开裂角度问题和___(1)___ 问题。
(5分)(1).参考答案:断裂判据12. 在研究材料的疲劳现象时,除了疲劳断口分析外,人们还注意到在疲劳过程中材料的_ __(2)___ 及材料的性能也会发生许多变化。
(5分)(1).参考答案:组织结构13. 若在同一台试验机上可以进行拉伸、压缩、弯曲、剪切等多种试验,则称为___(3)__ _ 。
(5分)(1).参考答案:万能试验机14. 液压油的回路分高压回路、低压回路和___(4)___ 三部分。
华中科大疲劳断裂课后习题答案全解全析

结果。最后的断裂,标志着疲劳过程的终结。
1-2 答:典型的疲劳破坏断口的特征:有裂纹源、疲劳裂纹扩展区和最后断裂区三部分;裂纹扩展 区断面较光滑,通常有“海带条带”和/或腐蚀痕迹;裂纹源通常在高应力局部或材料缺陷处; 无明显的塑性变形。但是静载破坏的断口是:粗糙、新鲜、无表面磨蚀及腐蚀痕迹。
疲劳与断裂课后习题全解
习题和答案
第一章
1-1 答:根据 ASTM E206—72 中所作的定义有:在某点或者某些点承受扰动应力,且在足够多的循 环扰动作用之后形成裂纹或完全断裂的材料中所发生的局部的、永久结构变化的发展过程,称 为疲劳。
根据上述定义,疲劳具有下述特征: 1) 只有在承受扰动应力作用的条件下,疲劳才会发生。 2) 疲劳破坏起源于高应力或者高应变的局部。静载下的破坏,取决于结构整体;疲劳破坏
0
0.06
0.10
0.20
0.39
0.52
0.62
将以上数据在坐标纸中标出数据点,并作出 Goodman 曲线。
2-6 解: Miner 理论:构件在应力水平 Si 下作用 ni 次循环下的损伤为 Di=ni/Ni。若在 k 个应力水平
Si 作用下,各经受 ni 次循环,则可定义其总损伤为:
∑ ∑ k
C = (0.9Su )11.8 ×103 = (0.9 × 430)11.8 ×103 = 3.4276 ×1033
代入(2)式,得:
lg S = 2.84 − 0.08lg N
航空器材料的疲劳与断裂行为研究

航空器材料的疲劳与断裂行为研究在航空领域,航空器的安全运行至关重要。
而航空器材料的疲劳与断裂行为是影响其安全性和可靠性的关键因素之一。
为了确保乘客的生命安全以及航空器的正常运行,深入研究航空器材料的疲劳与断裂行为显得尤为重要。
航空器在飞行过程中会经历各种复杂的力学环境,如振动、冲击、高低温变化等。
这些因素会导致材料内部产生微小的损伤和缺陷,随着时间的推移,这些损伤逐渐累积,最终可能引发材料的疲劳失效和断裂。
航空器材料通常包括高强度铝合金、钛合金、复合材料等。
这些材料在具备高强度和轻质特性的同时,也具有各自独特的疲劳与断裂行为。
高强度铝合金是航空器制造中广泛使用的材料之一。
它具有良好的加工性能和较高的强度,但在长期的循环载荷作用下,容易出现疲劳裂纹的萌生和扩展。
铝合金的疲劳裂纹通常起始于材料表面的微观缺陷,如划痕、腐蚀坑等。
这些缺陷会导致局部应力集中,从而引发裂纹的产生。
随着裂纹的不断扩展,材料的承载能力逐渐下降,最终导致构件失效。
钛合金具有优异的耐腐蚀性和高温性能,在航空发动机等高温部件中得到了广泛应用。
然而,钛合金的疲劳性能相对较差,其疲劳裂纹扩展速率较快。
这主要是由于钛合金的微观组织和晶体结构对疲劳裂纹的扩展阻力较小。
此外,钛合金在高温环境下还容易发生蠕变和氧化,进一步降低了其疲劳寿命。
复合材料,如碳纤维增强复合材料和玻璃纤维增强复合材料,由于其高比强度和比刚度,在现代航空器中的应用越来越广泛。
复合材料的疲劳行为与传统金属材料有很大的不同。
其疲劳损伤主要表现为纤维与基体的界面脱粘、分层和纤维断裂等。
复合材料的疲劳寿命通常受到纤维取向、铺层方式和制造工艺等因素的影响。
影响航空器材料疲劳与断裂行为的因素众多。
首先是载荷特性,包括载荷的大小、频率、波形等。
高载荷和高频率的循环载荷会加速材料的疲劳损伤。
其次是环境因素,如湿度、温度、腐蚀介质等。
在潮湿和腐蚀环境中,材料的疲劳性能会显著下降。
此外,材料的微观组织和缺陷分布也对疲劳与断裂行为有着重要影响。
高等钢结构--疲劳与断裂

高等钢结构--疲劳与断裂《高等钢结构原理》断裂与疲劳部分学生作业系(所):建筑工程系学号:1432055姓名:焦联洪培养层次:专业硕士2014年11月6日1、防止焊接钢结构脆性断裂的基本措施影响钢材脆断的直接因素有裂纹尺寸、作用应力和材料韧性。
提高钢材脆性断裂的基本措施有:①保证施工质量、加强质量检验和施焊工艺管理,避免施焊过程中产生的咬边、裂纹、夹杂和气泡等。
②焊缝不宜过分集中,施焊时不宜过强约束,避免产生过大残余应力,同时应注意焊缝过于集中和避免截面突然变化。
特别是低温下作用的静力荷载发生的脆断,常与残余应力有关。
③进行合理细部构件设计,避免应力集中。
应力集中处会产生同号应力场,使钢材变脆。
尽量避免采用厚钢板,厚钢板比薄钢板较易脆断,对钢材的韧性也有降低。
④选择合理的钢材,钢材化学成分与钢材抗脆断能力有关,含碳量高的钢材,抗脆断能力有所下降,同时控制钢材中硫和磷的含量,硫使钢材热断,磷使钢材冷断,对于在低温下作用的钢结构,应选择抗低温冲击韧性好的材料。
⑤加载速率越高,钢材的脆断转变温度提高,对于同一韧性的材料,设计动力荷载时允许最低的使用温度比静力荷载高的多,所以根据钢材不同的工作加载速率应选择不同韧性的钢材。
⑥设计结构时选择优良的结构形式,有助于减少断裂的不良后果。
2、解释应力幅是评价焊接钢结构疲劳强度的一个指标对于非焊接结构,通常用应力循环特征(应力比)min max/σσρ=来评价钢结构的疲劳强度。
但是对于焊接钢结构疲劳强度起控制作用的是应力幅σ?,而几乎与最大应力max σ、最小应力min σ及应力比这些参量无关。
这是因为:焊接及其随后的冷却,构成不均匀热循环过程,使焊接结构内部产生自相平衡的残余应力,在焊接附近出现局部的残余拉应力高峰,横截面其余部分则形成残余压应力与之平衡。
焊接残余拉应力最高峰值往往可达到钢材的屈服强度,名义上的应力循环特征(应力比)min max /σσρ=并不代表疲劳裂缝出现的应力状态。
金属材料的断裂与疲劳行为

金属材料的断裂与疲劳行为金属材料广泛应用于建筑、机械、汽车、电器、军事等领域,但其在使用过程中也面临着断裂与疲劳等问题。
断裂是指物体在外力作用下破裂成两个或多个部分,而疲劳是指物体在周期性应力作用下逐渐发生疲劳损伤并最终破坏。
在研究金属材料断裂与疲劳行为的同时,我们也要探讨如何通过改进设计和工艺来提高其抗断裂和抗疲劳性能。
断裂断裂是指材料在受力过程中发生破裂的现象。
材料的断裂可以分为韧性断裂和脆性断裂两种类型。
韧性断裂指的是材料在受力作用下发生微观变形,延缓了破裂的发生,而脆性断裂则是指材料在受力作用下迅速发生破裂,一般是由应力集中引起的。
在实际应用中,我们通常希望材料尽可能表现出高韧性和低脆性,因为韧性可以提高材料的承载能力和耐冲击性,而脆性会使材料易于破裂,降低使用寿命。
材料的韧性和脆性取决于其性质和结构。
例如,金属材料中晶粒细小、含有均匀分布的非金属夹杂物和微观缺陷的材料通常具有较高的韧性,因为这些组织结构可以分散应力并吸收能量,从而延缓破裂的发生。
相反,晶粒较大、夹杂物和缺陷较少的材料容易发生脆性断裂。
因此,在设计金属材料时,应考虑其结构和制造工艺,以获得较高的韧性并降低脆性风险。
疲劳疲劳是指材料在周期性应力作用下引起的逐渐损伤和破坏。
在工程材料的应用中,材料通常处于受到低于断裂应力的周期性荷载状态,例如机械振动、交通运输、电气连接、水力和风力等方面。
虽然单次载荷下材料不会达到破裂点,但反复受力会使得材料在不可见的基础上逐渐发生塑性变形、裂纹扩展、断裂等现象。
如果没有及时发现并采取措施,这些微小的损伤将最终导致材料失效。
疲劳失效的过程可以分为初期损伤、稳态扩展和灾难性破坏三个阶段。
其中,初期损伤指的是裂纹的形成;稳态扩展指的是裂纹随着荷载变化不断扩展;灾难性破坏则是裂纹扩展至材料的疲劳强度下限,导致材料失效。
在材料的疲劳过程中,不同材料和不同应力状态都会导致不同的裂纹生长速率,因此需要根据材料的特性确定疲劳极限和安全寿命。
结构疲劳与断裂作业

结构疲劳与断裂作业结构疲劳与断裂作业专业:结构工程姓名:高培文学号: S2******* 授课教师:雷宏刚疲劳与断裂是引起结构与构件失效的主要原因,由疲劳与断裂引发的众多灾难性事故给人类造成了难以估量的损失。
统计资料表明,80-90%的焊接结构断裂事故是由疲劳失效引起的,由于焊接接头的焊趾处的应力集中和残余拉伸应力作用,焊接接头疲劳强度大幅度地低于基本金属的疲劳强度。
虽然结构按疲劳规范设计,仍然发生一些整体结构的过早疲劳失效,造成巨大的经济损失,甚至是人身伤亡事故。
一、疲劳破坏疲劳破坏就是材料或构件在交变应力或应变作用下,在某点或某些点产生永久性损伤,经一定循环次数后产生裂纹,并使裂纹扩展直至完全断裂或突然发生完全断裂的过程。
构件因发生疲劳破坏而丧失正常工作性能的现象称为疲劳失效。
试件抵抗疲劳失效的能力称为材料疲劳强度;构件抵抗疲劳失效的能力称为结构疲劳强度。
疲劳寿命,即材料或构件疲劳失效时所经受的规定应力或应变的循环次数。
疲劳断裂过程大致可分为四个阶段:裂纹成核阶段、微观裂纹扩展阶段、宏观裂纹扩展阶段、最后断裂阶段。
1、裂纹成核阶段受有交变载荷的构件如果是无裂纹或者是无其它缺陷的光滑零部件,在交变应力作用下,虽然名义应力不超过材料的屈服极限,但由于材料组织性能不均匀,在构件的表面局部区域仍然能产生滑移。
用力学原理来解释,因为构件表面是平面应力状态,容易产生滑移,但看不到塑性变形特征。
由于多次反复的循环滑移过程,便产生金属挤出和挤入的滑移带,由此形成微裂纹的核。
2、微观裂纹扩展阶段一旦裂纹成核,微裂纹就沿着滑移面扩展,扩展方向是与主应力轴成45°。
此阶段扩展深入表面很浅,大约十几微米,而且不是单一的裂纹,是许多沿滑移带的裂纹,这个过程为裂纹扩展的第一阶段。
3、宏观裂纹扩展阶段这一阶段是从微观裂纹直接过渡过来的宏观阶段,裂纹扩展速率增加,扩展方向与拉应力垂直,且为单一裂纹扩展。
一般认为裂纹长度a在0.1mm4、瞬时断裂阶段当裂纹扩展到足够大即达到临界尺寸ac时,便会产生失稳扩展而很快断裂。
材料疲劳与断裂行为的研究与预测

材料疲劳与断裂行为的研究与预测材料工程领域的一个重要课题是材料的疲劳与断裂行为的研究与预测。
对于工程材料来说,疲劳与断裂是不可忽视的问题,因为它们直接关系到材料的可靠性和寿命。
疲劳是材料在外力作用下,反复加载和卸载的过程中逐渐发展出的内部损伤和裂纹扩展现象。
中频低周疲劳与高频高周疲劳是两类常见的疲劳模式。
对于这两类疲劳现象的研究,科学家们提出了一系列预测疲劳寿命的方法。
其中,最为常用的方法是基于S-N曲线(即应力-寿命曲线)的预测模型。
这个模型是通过在不同应力水平下对试样进行断裂寿命测试,然后根据实验结果得到的应力和寿命之间的关系曲线。
通过这种方式,我们可以直接估计在给定应力下材料的疲劳寿命。
然而,这个方法并不适用于所有材料,因为材料的疲劳断裂行为往往是复杂的。
除了基于S-N曲线的模型,还有一些新兴的方法被引入到材料疲劳与断裂行为的研究中。
例如,微型断裂力学模型是一种利用断裂力学理论来研究材料断裂行为的方法。
通过对材料内部微观结构和裂纹扩展过程的分析,可以得到材料的疲劳寿命预测。
另一个研究材料疲劳与断裂行为的方法是应用计算机仿真技术。
通过建立模型并进行数值模拟,可以研究材料在疲劳加载下的应力分布、裂纹扩展等重要参数,并预测材料疲劳寿命。
这是一种十分有前景的方法,因为它不仅可以避免实验操作的复杂性,还可以提供更多的信息来深入研究材料的疲劳行为。
除了疲劳现象,材料的断裂行为也是一个重要的研究方向。
断裂是材料在外力作用下发生失效的过程,它是材料工程中最为关键的问题之一。
为了预测材料的断裂行为,科学家们引入了断裂力学理论。
这个理论通过分析应力、应力强度因子、应变能等参数,来研究材料断裂的机理和过程。
通过断裂力学理论的应用,我们可以预测材料在不同应力水平下的断裂行为。
除了断裂力学理论,还有其他一些方法用于研究材料的断裂行为。
例如,断裂表征方法可以通过对断口形貌的观察和分析,来研究材料的断裂机制和失效模式。
材料的疲劳和断裂行为

材料的疲劳和断裂行为疲劳和断裂是材料工程中的重要研究领域。
疲劳是指材料在经历了重复加载或应力变化后,由于内部微观缺陷逐渐积累,最终导致材料的失效。
而断裂则是指材料在承受高应力或者外力集中作用下发生裂纹扩展的现象。
本文将深入探讨材料的疲劳和断裂行为,并分析其机理和影响因素。
一、疲劳行为材料的疲劳行为广泛存在于我们生活和工作的各个领域。
例如,金属材料在机械工程中的零部件、桥梁结构和飞机构件等地方,由于长期受到复杂的力学载荷,易出现疲劳失效。
疲劳失效不仅会给工程的安全性和可靠性带来威胁,也会增加维修和更换的成本。
1. 疲劳断裂机理在受疲劳加载作用下,材料内部的微观缺陷会逐渐积累导致裂纹的形成和扩展。
这些微观缺陷包括晶界、夹杂物、夹层、腐蚀坑等。
当应力斑马纹通过这些缺陷时,会导致位错的生成和扩展,从而引起材料的疲劳断裂。
2. 疲劳寿命与应力幅关系材料的疲劳寿命与应力幅之间存在一定的关系。
应力幅越大,疲劳寿命越短;应力幅越小,疲劳寿命越长。
这是由于应力幅增加会导致材料内部位错、裂纹等缺陷的生成和扩展速度增加,从而缩短了材料的使用寿命。
3. 影响疲劳行为的因素除了应力幅外,疲劳行为还受到多种因素的影响。
其中包括材料的力学性能、表面质量、温度、湿度、载荷频率、环境介质等。
材料的力学性能如强度、韧性、硬度等,对材料的疲劳行为具有重要影响。
同时,表面质量的好坏、温度和湿度的变化也会引起材料内部微观缺陷的形成和扩展。
二、断裂行为除了疲劳行为外,材料的断裂行为也是值得重视的。
断裂指的是材料在受到高应力或者外力集中作用下发生裂纹扩展的现象。
在工程实践中,为了减缓断裂失效对工程结构和设备造成的危害,需要对材料的断裂行为进行深入研究。
1. 断裂机理材料的断裂机理可以分为静态断裂和动态裂纹扩展两个阶段。
静态断裂是指在裂纹形成之前,材料的应力集中到达临界值,导致断裂开始。
而动态裂纹扩展则是指裂纹在外力作用下迅速扩展,直到材料完全失效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在船舶与海洋工程领域,目前国内对疲劳问题的机理研究几乎处于停滞状态,本文考虑了提出考虑腐蚀缺陷的冰区平台动态疲劳可靠性模型,并基于Bayes 理论研究检测与维修对平台动态疲劳可靠性更新。
以疲劳寿命为控制量,确定基于断裂力学方法的冰区平台动态疲劳可靠性功能函数;分析腐蚀对平台动态疲劳可靠性的影响,建立考虑疲劳与腐蚀交互作用的冰区平台动态可靠性模型;基于Bayes 理论对腐蚀预测模型进行修正,通过修正腐蚀模型实现,最后通过渤海某一平台为例,进行验证和分析。
其基本原理如下:考虑腐蚀的影响,并设腐蚀函数为d(t),则管节点的临界深度fa 可表示为()0f a w dt =-其中t 为平台服役时间。
根据断裂力学理论,以疲劳寿命为控制量,并考虑尺寸参数的不确定性,平台节点的疲劳寿命分析功能函数()()()001w d t ma avgY S dag t tf C B Y a B S -=-⎡⎣⎰其中C 和m 为材料的裂纹扩展参数,由材料属性确定,e S 为等效疲劳应力范围,avg f 为荷载作用的平均频率,()Y a 为裂纹扩展的几何修正系数,S B 和Y B 分别为描述疲劳应力和几何修正系数计算过程中的不确定因素的随机变量。
综上可知,等效疲劳应力范围e S 和荷载作用的平均频率avgf 为两个重要的计算参数,而这参数可以通过对整个冰激疲劳环境划分子工况的方法确定,因此根据每个子工况的疲劳应力参数与工况比例获取e S 和avgf ;()10101km mi i i i e ki i i f E S S f ==⎡⎤∂⎢⎥⎢⎥=⎢⎥∂⎢⎥⎣⎦∑∑,01kavg i i i f f ==∂∑,其中k 为子工况数,i ∂为子工况i 所占的比例,0i f 为子工况i 的荷载频率,()m iE S 为子工况中mS 的均值。
由于考虑到腐蚀的影响,腐蚀函数d(t)采用paik 腐蚀模型,该模型的表达式为()()()()()()()()()()2''22'2BBi i C CA A A A d t A t T t TA A μσμσμσσ+=-=-+其中的A 和B 分别为与腐蚀保护系统相关的系数,t 为平台服役时间,CT 为CPS 寿命。
此时关键确定参数A ,切此参数需要根据不断地检测数据进行更新,根据bayes 更新原理,设更新前的系数A 的均值和标准差为()()A A μσ,更新后的均值和标准差为()()''A A μσ,因此,第i 年检测更新后的均值和标准差为()()()()()()()2''22'2i A A A A A A A μσμσμσσ+=+()2i A σ=新后的腐蚀模型为()()()()()()()()()()2''22'2BBi i C C A A A A d t A t T t T A A μσμσμσσ+=-=-+。
因此,在实际计算平台中,考虑了24种工况,分析渤海冰区平台的动态疲劳可靠性,并根据检测维修进行更新,结果表明检测和维修对平台可靠性影响较大,腐蚀速率越大可靠性下降越快,但是维修平台可以恢复原值,但是在随后的服役过程中可靠性下降速率较快。
对于海洋工程结构,在研宄疲劳问题的同时,必须考虑腐烛问题。
据统计,我国年腐蚀损失约占国民生产总值的5%,海洋腐蚀的损失约占总腐蚀损失的三分之一。
尽管船舶与海洋工程结构物在建造之初配有严格的腐蚀防护系统,理论上船体腐独处于可接受范围之内,根据实船检测发现,在船舶服役期间防腐系统并不是足够有效,尤其在一些局部区域,由于涂层老化或者其它因素导致涂层脱落,会导致更加严重的腐烛。
据统计资料显示近90%的海洋工程结构物失效是由腐烛引发,而腐烛疲劳占事故总数的接近30%。
由此可见,腐蚀疲劳在海洋工程领域具有普遍性和危害性。
与陆地上的工程结构相比,船舶与海洋工程结构的特殊性之一就是其长期处于海洋环境中,结构表面所遭受的腐烛极为严重。
海洋工程结构在服役期内将受到交变载荷和腐烛环境的联合作用,使得其服役时间明显缩短。
一般认为,工程结构或构件在交变载荷和腐独环境联合作用下因开裂或断裂提前失效的现象,称为腐烛疲劳。
在腐烛疲劳过程中,存在两种基本的损伤形式:一是由交变载荷引起的疲劳损伤;二是由腐烛介质引起的腐烛损伤。
当海洋工程结构遭受交变载荷和腐姓环境的联合作用时,这两种损伤的作用不是简单叠加,而是两种基本损伤之间存在明显的稱合效应,即互相促进腐独疲劳的本质是海洋工程用钢海水的电化学腐烛过程与交变载荷对工程结构的力学损伤过程的稱合作用。
因此,海洋工程结构在交变载荷与腐性环境联合作用下的腐烛疲劳破坏是一种更为严重的腐烛力学破坏形式。
腐蚀疲劳现象于1917年首次提出,至今一个世纪以来,国内外学者对腐蚀疲劳做了长期而广泛的研究,其主要的研究成果集中在对腐蚀疲劳裂纹的形成和扩展机制,以及各种因素对疲劳S-N 曲线和裂纹扩展速率的曲线影响研究。
为了考虑海水腐烛对海洋工程结构疲劳性能的影响,目前工程上常用的处理方法主要有以下两种:一是根据规范给出各个区域构件的腐烛余量,在疲劳寿命分析时以扣除腐烛余量的板厚去计算疲劳热点位置的应力响应,然后按照空气中的曲线评估疲劳损伤,对于那些没有腐烛防护的结构,则要求使用更为保守的腐烛条件下的曲线。
二是通过对实际结构腐烛检测和实海挂片腐烛数据的统计分析和拟合,建立构件腐烛厚度随时间变化的腐烛模型,从而能够确定构件在全寿命期内任意时亥的剩余厚度。
在采用有限元法计算疲劳热点应力时,选择多个时刻建立不同剩余厚度的精细有限元模型,得到结构热点应力随时间的变化趋势,然后按照无腐烛条件下的曲线计算疲劳损伤。
海洋结构物根据其各个部位所处腐烛环境不同,其腐烛形态和规律都有所不同。
腐 蚀疲劳根据腐烛介质分类,分为气相腐烛疲劳和液相腐烛疲劳。
本文所关注的是海洋结 构物全浸区的腐烛疲劳行为,属于典型的液相腐烛疲劳。
海洋结构物用钢与海水介质通 过电化学腐烛作用,显著降低了结构的疲劳性能。
通常将影响腐她疲劳因素分为三类:冶金因素,力学因素与环境因素。
一个因素的变化就有可能引起腐蚀疲劳行为的臣大差异,因此目前还没朽种腐烛疲劳机理模型能够解释所有的腐烛疲劳现象。
腐蚀疲劳是一个较为复杂的问题,由于许多影响因素间错综复杂的关系,目前要定量预计所设计的构件的腐蚀疲劳强度还很困难,腐蚀疲劳的防护起到一定的作用:1.合理选材与优化材料;采用耐腐蚀疲劳的材料。
由于钢的强度愈高,通常其腐蚀疲劳敏感性愈大,因此选择强度低的钢种一般更为安全。
例如含二氧化硫的溶液中Cr26Ni15铁素体–奥氏体双相不锈钢较奥氏体不锈钢耐蚀。
2.降低张应力水平或改善表面应力状态;设计上注意结构合理化,减少应力集中,避免缝隙结构,适当加大截面尺寸。
3.缓腐蚀作用;常用的措施有施加表面、添加缓蚀剂和实施电化学保护技术。
(1)表面涂(镀)层喷丸、氮化等在材料表面产生压应力,有利于提高耐腐蚀疲劳性能。
例如碳钢经氮化处理后在3%氯化钠溶液中的寿命可提高2~3倍。
(2)添加缓蚀剂例如在含乙醇的水中加200ppm 重铬酸钠可使正火的0.35%碳钢的腐蚀疲劳性能接近空气中的疲劳性能。
(3)电化学保护在弱酸性、中性和碱性介质中可采用阴极保护,如碳钢在3%氯化钠溶液中和在循环应力作用下,采用阴极保护可显著提高耐腐蚀疲劳性能。
但不能完全防止,这可能是由于在交变应力作用下,材料电势的变化并不是同一方向的。
在氧化介质中使用的碳钢,特别是不锈钢,也可采用阳极保护。
在海洋工程中,根据不同的海工况疲劳损伤累计公式推导: 已知S-N 曲线表达式为mN AS-=,伽马函数表达形式为()10x t x t e dt ∞--Γ=⎰,瑞利分布函数为()22exp 4sg s σ⎡⎤=-⎢⎥⎢⎥⎣⎦。
对于第i 个短期海况,其疲劳损伤i D 为:()00002020/2222/22000exp 4exp mi i i i m i i i i mi i m m i i T D s f Pg ds A Tf P s g ds A Tf P s s ds A Tf P d A Tf σ∞∞∞∞⎛⎫= ⎪⎝⎭⎛⎫= ⎪⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤⎢⎥⎢⎥=- ⎪⎢⎥⎣⎦⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦=⎰⎰⎰⎰()()/222200exp 12m m i i m i i P d A Tf P m A ∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥- ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎛⎫⎛⎫=Γ+ ⎪ ⎪⎝⎭⎝⎭⎰式中,T 为设计寿命(s );A,m-S-N 曲线参数;i 为第i 个海况;0i f 为第i 海况应力幅值响应的过零率,单位Hz ;pi-Tz 和Hs 的联合概率;gi 第i 个海况应力幅值概率密度分布函数;s-应力变化范围,i σ为第i海况的均方根,r σ=整个寿命期内的总损伤D为:(()01112MMmm i i i i i i T m D D P f A σ==⎛⎫⎛⎫==Γ+ ⎪ ⎪⎝⎭⎝⎭∑∑考虑到雨流修正系数λ和持久强度系数μi,疲劳损伤D 为:(()()011,2Mmm i i i i i i T m D m P f A λεμσ=⎛⎫⎛⎫=Γ+ ⎪ ⎪⎝⎭⎝⎭∑其中,M 海况个数。
雨流修正系数λ被定义为如下形式:()()()[](),11b m i i m a m a m λεε=+--⎡⎤⎣⎦式中,()()0.9260.033, 1.578 2.323a m m b m m =-=-。
持久强度系数i μ的表达式:()()()()/200/21,1//21,1/21,m i i i i i m r m νννμν∆Γ+-Γ+=-Γ+式中,()()2100,,exp xa i a x u u du ν-⎛⎫=Γ=-⎰。
腐蚀疲劳是研究海洋工程结构中不可或缺的影响因素,由于兼顾腐蚀和疲劳两大难点,这将会是以后海洋工程结构课题研究的重要方向和发展趋势。