流体的基本规律

合集下载

流体力学的基本原理和应用

流体力学的基本原理和应用

流体力学的基本原理和应用流体力学是研究流体运动规律和性质的科学,它涉及了广泛的领域和应用。

本文将从流体力学的基本原理和应用角度探讨这一领域。

一、流体的性质流体是一种没有固定形状的物质,包括液体和气体。

流体具有两个基本性质:可压缩性和流动性。

1. 可压缩性流体的分子间距离较大,可以因为外力的作用而发生压缩变化。

液体的可压缩性较小,而气体的可压缩性较大。

2. 流动性流体的分子之间没有规则排列,可以自由流动。

流体的流动性是流体力学研究的核心内容。

二、流体力学的基本原理流体力学的基本原理主要包括质量守恒定律、动量定律和能量守恒定律。

1. 质量守恒定律质量守恒定律是指在一个封闭系统中,质量不会凭空产生或消失,质量的总量保持不变。

该定律在流体运动中起到了至关重要的作用。

2. 动量定律动量定律描述了流体在受力作用下的运动规律。

根据牛顿第二定律,流体受力等于质量乘以加速度。

通过运用动量定律,可以计算出流体的速度、压强等相关参数。

3. 能量守恒定律能量守恒定律是指在一个封闭系统中,能量的总量保持不变。

流体力学中的能量可以包括内能、动能和势能等。

能量守恒定律可以用来研究流体的热力学性质和能量转化过程。

三、流体力学的应用流体力学的原理和方法被广泛应用于各个领域。

以下是几个常见的应用领域:1. 水力工程水力工程是应用流体力学原理和方法研究和设计涉及水流运动的工程。

例如水坝、水电站和水管网络等都离不开流体力学的理论支持。

2. 空气动力学空气动力学是研究飞行器在空气中运动的科学。

它涉及了空气的流动、阻力和升力等问题,为飞机、火箭等航空器的设计提供了重要的依据。

3. 石油工程石油工程涉及到油气的开采、储存和运输等过程,流体力学的原理在研究油气井、油藏和油气管道等方面起到了至关重要的作用。

4. 生物医学工程流体力学在生物医学工程中的应用主要涉及血液流动、心血管系统和呼吸系统等生物流体的研究。

这些研究对于人类健康和医疗设备的设计都具有重要意义。

流体流动基本规律

流体流动基本规律

ρ
We

gZ2+
ρ u22 2
+
p2
+
ρ
∑h
f
( Pa )
1.3 流体流动旳基本方程
1牛顿流体所具有旳能量称为压头head,单位为m。 Z-----位压头Potential head; u2/2g----动压头dynamic head; p/ρg-----静压头hydrostatic head。 He = We /g -----由泵对单位重量流体提供旳能量, 外加压头或泵旳扬程 Hf=∑hf / g——损失旳能量或称损失压头Hf
1.3 流体流动旳基本方程
∵ Vs = u A=
π 4
d2u
√ ∴ d= 4 Vs =0.0997m=99.7mm πu
查表选择:外径=108 mm,壁厚=4 mm旳管子 d=108-4×2=100 mm
将内径d=100 mm代入上式得到实际流速u=1.49 m/s。
1.3 流体流动旳基本方程
1.3.2 稳定流动与非稳定流动 steady flow and unsteady flow
1.3 流体流动旳基本方程
√ u2 =
2Rg ( ρ -ρ ) 0
ρ[1(- dd21 )4 ]
则体积流量
Vs =
π d22 4
u2 =
π 4
2
d2
质量流量ws =ρ Vs
2R g
(
ρ
0
-
ρ)
ρ [1-
(
d2 d1
)4
]
=
π 4
ρ
2
d2
2R g (ρ - ρ )
0
ρ
[1 -
(

流体流动知识点总结归纳

流体流动知识点总结归纳

流体流动知识点总结归纳流体力学是研究流体流动规律的一门学科,其研究对象涉及液体和气体的流动,包括流体的性质、流体流动的运动规律、流体的控制以及流体力学在工程和科学领域的应用等方面。

在这篇文章中,我们将对流体流动的一些基本知识点进行总结归纳,以便读者对这一领域有一个清晰的了解。

一、流体的性质1. 流体的定义流体是指那些易于变形,并且没有固定形状的物质。

流体包括液体和气体两种状态,其共同特点是具有流动性。

2. 流体的密度和压力流体的密度是指流体单位体积的质量,常用符号ρ表示。

流体的压力是指单位面积上受到的力的大小,它与流体的密度和流体所在深度有关。

3. 流体的黏性流体的黏性是指流体内部分子之间的相互作用力,黏性越大,流体的内部抵抗力越大,流动越不容易。

黏性会对流体的流动性能产生影响,需要在实际工程中进行考虑。

二、流体流动的基本原理1. 流体的叠加原理流体的叠加原理是指当多个流体同时流动时,它们的速度矢量叠加,得到合成的速度矢量。

这个原理在实际工程中有很多应用,例如飞机的空气动力学设计和水流的流体力学研究等。

2. 流体的连续性方程流体的连续性方程是描述流体在运动过程中质量守恒的基本方程,它表明流体在流动过程中质量的变化等于流入流出的质量之差。

3. 流体的动量方程流体的动量方程描述了流体在运动过程中动量守恒的基本原理,它表明流体在受到外力作用后所产生的加速度与外力的大小和方向有关。

4. 流体的能量方程流体的能量方程描述了流体在运动过程中能量守恒的基本原理,它表明流体在流动过程中所受到的压力和速度的变化与能量的转化和损失相关。

三、流体的流动类型1. 定常流动和非定常流动定常流动是指流体在任意一点上的流速和流量随时间不变的流动状态,而非定常流动则是指流体在不同时间点上的流速和流量随时间有变化的流动状态。

2. 层流流动和湍流流动层流流动是指流体在管道内流动时,各层流体之间的相互滑动,流态变化连续,流线互不交叉。

流体力学基础流体的性质与流体力学原理

流体力学基础流体的性质与流体力学原理

流体力学基础流体的性质与流体力学原理流体力学基础——流体的性质与流体力学原理流体力学是研究流体运动和流体力学基本原理的学科,广泛应用于航空、航海、能源、化工等领域。

本文将介绍流体的性质以及流体力学的基本原理。

一、流体的性质流体指的是气体和液体,在力学中被视为连续介质。

流体具有以下几个主要的性质:1. 可流动性:与固体不同,流体具有较低的粘性和内聚力,因此可以流动。

流体的流动性使其在工程领域中应用广泛,并且流体力学正是研究流体流动的力学学科。

2. 不可压性:对于液体来说,密度变化相对较小,一般可视为不可压缩的。

而对于气体来说,变化较大的压力会引起密度变化,所以流体力学中对气体流动的研究需要考虑密度的变化。

3. 流体静力学压力:流体静力学压力是由于流体自身重力或外力作用下的压力差异引起的。

流体中的每一点都承受来自其周围流体的压力。

4. 流体动力学压力:流体动力学压力是由于流体的动力作用引起的压力差异。

当流体以较高速度通过管道或物体时,流体动力学压力扮演着重要的角色。

二、流体力学原理流体力学原理是研究流体运动的基本规律,它由庞加莱提出的运动方程、贝努利定律、连续方程等组成。

以下将分别介绍这几个基本原理:1. 流体运动方程:流体运动方程描述了流体在空间中运动的规律。

流体运动方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程指出质量在流体中不会凭空消失或产生;动量守恒方程描述了流体运动中受到的作用力和压力的关系;能量守恒方程则研究了流体在流动过程中的能量转化。

2. 贝努利定律:贝努利定律是流体力学中最为著名的定律之一。

它说明了在无粘度和定常状态下,流体在不同位置的速度、压力和高度之间存在着一种平衡关系。

贝努利定律在飞行器设计和管道流动等领域中有广泛的应用。

3. 材料导数:材料导数是流体力学中用来描述物质随时间变化的速率的重要概念。

对于流体来说,由于其非刚性的特性,物质随时间的变化需要通过材料导数来描述,它包括时间导数和空间导数。

流体流动规律

流体流动规律

流体流动规律
流体流动规律是研究流体运动规律的科学领域。

根据流体力学原理,流体在流动过程中遵循一些基本的规律,这些规律可以总结为以下几个方面:
1. 质量守恒定律:在流体流动过程中,流体的质量保持不变。

即流入单位时间内的质量等于流出单位时间内的质量。

2. 动量守恒定律:在没有外力作用的情况下,流体的动量保持不变。

动量是质量与速度的乘积,根据质量守恒定律和动量守恒定律可以推导出流体中哥万定理和伯努利定理等重要定律。

3. 能量守恒定律:在没有外界能量输入或输出的情况下,流体的总能量保持不变。

能量守恒定律可以用来解释流体流动的能量转化和能量损失等现象。

4. 流体的连续性方程:对一个不可压缩流体来说,流经管道中的流量保持不变,即进口流量等于出口流量。

对于可压缩流体来说,流量的连续性方程可以通过质量守恒定律和流体的状态方程推导得到。

5. 流体的雷诺数:流体的流动性质和流动状态可以通过雷诺数来描述。

雷诺数是流体的惯性力和粘性力的比值,可以用来判断流体的流动状态是层流还是湍流。

这些流体流动规律在工程领域、地球科学、大气科学和生物医学等各个领域中都有广泛的应用。

通过研究和理解这些规律,我们可以更好地预测和控制流体流动行为,从而为科学研究和工程实践提供重要的指导。

流体运动的动力学定律

流体运动的动力学定律

流体运动的动力学定律流体运动是自然界中一种常见的现象,它涉及到许多物理定律和原理。

在流体力学领域,有一些基本的动力学定律可以帮助我们理解和描述流体运动的规律。

本文将介绍一些重要的流体力学定律,并探讨其应用。

1. 质量守恒定律质量守恒定律是流体力学中最基本的定律之一。

它表明在任何封闭系统中,质量是不会被创造或者消失的,只会发生转移或者转化。

在流体运动中,质量守恒定律可以用以下公式表示:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是单位体积内的质量,v是流体的速度矢量,∂/∂t表示对时间的偏导数,∇·表示散度运算符。

这个方程表明质量的变化率等于流入和流出的质量之差。

2. 动量守恒定律动量守恒定律是描述流体运动中动量守恒的重要定律。

它可以用以下公式表示:ρ(∂v/∂t + v·∇v) = -∇P + ∇·τ + ρg其中,P是压力,τ是应力张量,g是重力加速度。

这个方程表明流体的动量变化率等于压力梯度、应力梯度和重力之和。

3. 能量守恒定律能量守恒定律是描述流体运动中能量守恒的基本定律。

它可以用以下公式表示:ρC(∂T/∂t + v·∇T) = ∇·(k∇T) + Q其中,C是比热容,T是温度,k是热导率,Q是单位体积内的热源。

这个方程表明流体的能量变化率等于热传导、热源产生和流体运动对温度的影响之和。

4. 流体静力学定律流体静力学定律描述了静止流体中的压力分布和压力的传递规律。

根据这个定律,静止流体中的压力在任何方向上都是相等的,并且压力沿着流体中的任意路径传递。

这个定律可以用来解释液体中的浮力现象和液体的压强。

5. 流体动力学定律流体动力学定律描述了流体运动中的压力分布和流速的关系。

根据这个定律,流体中的压力随着流速的增加而减小,在流速较大的地方压力较低,在流速较小的地方压力较高。

这个定律可以用来解释流体在管道中的流动、喷泉的原理等。

综上所述,流体运动的动力学定律是研究流体力学的基础。

化工原理流体知识点总结

化工原理流体知识点总结

化工原理流体知识点总结一、流体的基本性质1. 流体的定义流体是指在受到作用力的情况下,能够流动的物质,包括液体和气体。

2. 流体的分类(1)牛顿流体:满足牛顿流体定律的流体,即剪切应力与剪切速率成正比。

(2)非牛顿流体:不满足牛顿流体定律的流体,如塑料、胶体等。

3. 流体的性质(1)密度:单位体积流体的质量,通常用ρ表示,单位kg/m³。

(2)粘度:流体流动时的内部摩擦阻力,通常用η表示,单位Pa·s或mPa·s。

(3)表观黏度:流体在管道中流动时表现出的粘度,通常用μ表示,单位Pa·s或mPa·s。

(4)流变性:流体在外力作用下的形变特性,包括剪切流变和延伸流变。

4. 流体的运动(1)层流:流体呈层状流动,流线平行且不交叉。

(2)湍流:流体呈旋涡形式混合流动,流线交叉且无规律。

二、流态力学1. 流体静压(1)静压力:流体在容器中受到的压力,通常用P表示,单位Pa。

(2)流体的压强:P = ρgh,其中ρ为流体密度,g为重力加速度,h为液面高度。

(3)帕斯卡定律:在静止流体中,内部任意一点的压力均相等。

2. 流体动压(1)动压力:流体在流动状态下受到的压力。

(2)动压公式:P = 0.5ρv²,其中ρ为流体密度,v为流体的流速。

3. 流体的质量守恒(1)连续方程:描述流体在流动中的质量守恒关系。

(2)连续方程公式:ρ1A1v1 = ρ2A2v2,其中ρ为流体密度,A为管道横截面积,v为流速。

4. 流体的动量守恒(1)牛顿第二定律:描述流体在流动中的动量守恒关系。

(2)牛顿第二定律公式:F = ρQ(v2 - v1),其中F为管道上流体受到的合力,Q为流体流量,v为流速。

三、流体的运动1. 流体的流动类型(1)层流:小阻力、流速较慢。

(2)湍流:大阻力、流速较快。

2. 流体的流动参数(1)雷诺数:描述流体流动状态的无量纲参数,Re = ρvD/η,其中D为管道直径。

工程流体力学理想流体流动的基本规律

工程流体力学理想流体流动的基本规律

述流体质点运动随时间的变化规律。



位置: x = x(x,y,z,t)
速度: u=u(x,y,z,t)=dx/dt

y = y(x,y,z,t)
v=v(x,y,z,t) =dy/dt
流 动
z = z(x,y,z,t)
w=w(x,y,z,t)=dz/dt


同理: p=p(x,y,z,t) ,ρ=ρ(x,y,z,t)

到整个流场的运动规律。
a,b,c,t, 拉格朗日变数 a,b,c,t=to 时质点的坐标 ,质点标号
rr rr(a,b,c,t)
xx(a,b,c,t)
y
y(a,b,c,t)
zz(a,b,c,t)
(a,b,c,t) T T(a,b,c,t)
理想流体流动的基本规律
欧拉法
着眼于空间点,在空间的每一点上描
理想流体流动的基本规律
迹线:流体质点在一段时间内的运动轨迹
t5

t1
t2
t3
t4
线

流线:在某一时刻, 流场中的一系列线,其上每一点的切

线方向就是该点流动速度方向
线
V
V
V
理想流体流动的基本规律
流线方程的微分形式:
dx dy dz dL 常数 u v wU
迹 线
udy vdx 0
hw
能 量
说明

1. 为动能修正系数,表示速度分布的不均匀性,恒大于1
恒 定
2. 粘性流体在圆管中作层流流动时,=2

3. 流动的紊流程度越大,越接近于1
4. 在工业管道中 =1.01~1.1,通常不加特别说明,均取 =1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重量数据: 空重 约81000kg 最大起飞重量221350kg 载弹量 约27000kg back
空速管原理
总压管 + 静压管
山鹰高教机空速管特写
Mig-21空速管特写
高速流体流动的基本规律
• 高速飞行中,空气密度的变化很大, 必须考虑空气压缩性的影响。
不论是低速或高速飞行,空气流过飞机各处的 速度和压力发生改变
不同流动速度时,机翼前缘驻点空气密度增加的百分比
气流速度(km/h) 空气密度增加的 百分比(Δρ/ρ) 200 1.3% 400 5.3% 600 12.2% 800 22.3% 1000 45.8% 1200 56.5%
§2-2 流体的基本规律
• 相对运动原理 • 流体和连续性介质假设
• 流动流体的物理量和参数
相对运动原理
大气静止--飞机运动
等价于
飞机静止--空气运动
限定条件:
水平等速直线运动
流体和连续介质假设
将空气看作连续介质
地面
气体分子自由行程约6*10-8 m 着海拔高度 40km高度以下 的增加,空气 可以认为稠密大气、连续 密度变小,空 气分子的自由 120~150km 行程越来越大。 气体分子自由行程与飞行器相当 200km以上 气体分子自由行程有几公里
音波在流体中传播速度。
水中:1440 m/s; 海平面标准大气状态下空气中:340 m/s; 12km高空标准大气状态下空气中:295 m/s。
流体的可压缩性越大,音速越小; 而流体的可压缩性越小,音速越大; 音速a可以作为压缩性的指标。
音速(声速)
理论上推知,在绝热过程中,大气中的音速为
a 20 T
流体运动现象的观察和描述
• • • • • 烟流、色液 漂浮物 雷诺实验 (阴影法)超音速 ……
流场
流体所占据的空间。 大气层就是一个很大的流场。
定常流动与非定常流动 流场中任一点的任一个流动参数(如速度、 压强、密度等) 随时间而变化 的流动称为非定 常流动。 流场中任一固定点的所有流动参数都不随时 间而变化的流动称为定常流动。
同温层堡垒 B-52
武器装备: 在弹舱内和翼下可挂27.2吨常 规炸弹和核弹 G型可带12枚AGM-86巡航导弹, 8枚AGM-69近距攻击导弹 H型还装有一门20mm六管炮
同温层堡垒 B-52
尺寸数据: 翼展 56.39 m 机长 49.05 m 机高 12.40 m 机翼面积 371.6 m2 后掠角35°
收敛段
扩张段
Ma<1 Ma=1
Ma>1
A rocket engine at the Smithsonian, cut open to show convergent-divergent De Laval nozzle.
Q&A
同温层堡垒 B-52
性能数据(H型) : 最大平飞速度 1010km/h (高度12200米) 巡航速度 800-896km/h 实用升限 16770m 最大爬升率 17m/s 最大载油量航程16090km
定常流动时,流管不随时间而变;在非定常流动 的情况下,流管随时间而变。 充满在流管内的流体,称为流束。
流线 流谱 流管
低速流体流动的基本规律

质量守恒与连续方程 能量方程 伯努利方程
质量守恒与连续方程
定常流动
流管内的气体不会穿过管壁(内外气体没有交换)
质量守恒(入=出) : qm,1 = qm,2
马赫数
M数是 空气密度变化程度 或 压缩性影响大小 的衡量标志 M ≤ 0.3的流动 0.3< M ≤0.85 0.85< M ≤1.3 1.3< M ≤5 M >5 —— —— —— —— —— 低速流动 亚音速流动 跨音速流动 超音速流动 高超音速流动
雷诺数
Re = ρ v l / μ 无量纲量 表征空气粘性作用的大小 特征尺寸 l 的飞行器以速度 v 飞行 v 粘性力 ∝ μ v l2 /l —— μ v l F S y 惯性力(质量 乘 速度变化量) ρ l3 v /t ~~ ρ l2 v 2 两者之比 —— Re
收缩 流管
流速减小 压力增大 密度增大 温度升高 流速增大 压力减小 密度减小 温度降低
扩张 流管
低速流动和高速流动的区别
低速、亚音速 ρ1 v1 A1 =ρ2 v2 A2 低速(ρ1=ρ2 ) A1
v1 v2 / v1 = A1/A2 A2 -> v2 > v1 v2 亚音速(ρ <ρ ) 2 1
个速度方向,所以不能有两条流线同时通过同一点。
3种例外: 在速度为零的点上,通常称为驻点 在速度为无限大的点上,奇点 流线相切点。
流管和流束
流管: 在流场中通过一封闭曲线上每一点的所有流线所 形成的管,且每一条流线与该封闭曲线只有一个 交点。
在给定瞬时,流管中的流体就好像在一个固体管中流动 一样,因为流线上的流体质点总是沿着流线的方向流动, 它是不会穿过由流线形成的管壁的。
状态参数和状态方程
大气的状态参数: 密度 ρ(kg/m3) 温度 T (K) 压强 p (Pa)。
状态方程: 对于一定量的气体,它的压强p、密度ρ 和温 度T等三个参数就可以决定它的状态。它们之间 的关系,可以用气体的状态方程表示 。
p RT
R —— 气体常数
流动流体的物理量和参数
符号 单位
ρ1 v1 A1 =ρ2 v2 A2
不可压流体(ρ=常数) v1 A1 = v2 A2
气流在不同管径中流速的变化
能量方程
假设流管内外没有能量交换——能量守恒
质量为qm =ρ1v1A1的流体 势能为 qmgz 动能为
½ qmv2
内能 qmu (不可压理想流体此项不变) 压力所作的功 p1v1A1
gz+
气流截面积与马赫数的关系
连续方程 ρvA=常数
取对数: lnρ + lnv + lnA = lnC
求导: dρ/ρ + dv/v + dA/A=0 (1)
压缩性 —— 马赫数
dρ/ρ = - M2 dv/v (2)
(2) 带入(1) dA/A = ( M2 –1) dv/v
拉瓦尔喷管
产生超音速的气流
弱扰动的传播
(i) 扰动源静止(v=0)
(ii) 扰动源亚音速运动(v<a)
(iii) 扰动源以等音速运动(v=a)
(iv) 超音速运动(v>a)
马赫锥
低速流动和高速流动的区别
流管形状 低速气流 (不可压缩) 流速增大 压力减小 密度不变 温度不变 流速减小 压力增大 密度不变 温度不变 亚音速气流 (M<1) 流速增大 压力减小 密度减小 温度降低 流速减小 压力增大 密度增大 温度升高 超音速气流 (M>1)
空气为可压缩流体
空气流过飞行器表面时,压强会发生变化,密度也随之改变 但当速度很低时,改变量很小,可认为其不可压缩

粘性
内摩擦 气体分子不规则运动的结果 动粘性系数μ 内摩擦力与相邻流层特性参数之间的关系
内摩擦力 v∞
v F S y
v∞
v1
v2 Δv
Δy
平板
back
音速(声速)
• 音波--疏密波(压缩波、膨胀波相间)
流线
流场中某一瞬时的一族假想曲线,曲线上任一点的切线 方向就是同一瞬时当地速度矢量的方向。
特征: (i) 定常流动时,流场中各点流速不随时间改变,所以 同一点的流线始终保持不变,且流线与迹线 (流场中流 体质点在—段时间内运动的轨迹线)重合。 (ii) 流线不能相交,也不能折转。因为空间每一点只能有一
T 是空气的热力学温度。随着飞行高度 的增加,空气的温度是变化的,音速 a 也 将随之变化,空气的压缩性也是变化的。
马赫数
( M , Ma , Mach Number )
M=v/a 飞行速度与当地音速之比 无量纲量 表征空气可压缩性影响的大小 v越大,空气被压缩的越厉害(作用的压力大) a越大,空气越难压缩(可压缩性小)
v2 ρ2 / v1 ρ1 =A1/A2
v2 / v1 =(A1/A2 ) (ρ1/ρ2)
-> v2 > v1
低速流动和高速流动的区别
超音速 A1
v1
ρ1 v1 A1 =ρ2 v2 A2
A2 v2
ρ2 >ρ1 (!)
v2 ρ2 / v1 ρ1 =A1/A2 v2 / v1 =(A1/A2 ) (ρ1/ρ2) -> v2 < v1
½
v2 + p/ρ=常值
伯努利方程
流动速度与压强之间的关系
能量守恒定理
忽略势能变化
p
1
+ 1/2ρ1 v12 = p
2
+ 1/2ρ2 v22
伯努利方程演示
试验管道 气流
压强指示计
测压管
伯努利方程应用条件
(1) 理想流体 (2) 不可压缩流 (3) 定常流动 (4) 在所考虑的范围内,没有能 量的交换 (5) 在同一条流线上或同一根流 管上。(没有物质交换)
密度 温度
压强 声速 粘度
ρ T
p c(a) μ
kg/m3 K
Pa m/s Pa*s
流动流体的物理量和参数

密度 压强

温度T
流体分子运动剧烈程度的指标
密度、压强和温度关系 p=ρRT

声速c(a) 与介质的可压缩性和温度相关 空气中 c=20 sqrt(T)
空气的物理性质

可压缩性 (压强改变时其密度和体积改变的性质)
相关文档
最新文档