初一数学知识点汇总
七年级数学重点知识点汇总

七年级数学重点知识点汇总
数学在学生的学习过程中一直扮演着重要的角色,尤其是在七年级。
下面将汇总七年级数学的一些重点知识点,希望对同学们的学习有所
帮助。
一、整数
1. 整数的概念:正整数、负整数、零
2. 整数的比较与大小:绝对值的概念和应用
3. 整数的加减法:同号相加减、异号相加减
4. 整数的乘除法:乘法的规律、除法的运算
二、有理数
1. 有理数的概念:整数、分数
2. 有理数的比较与大小:通分比较大小、绝对值比较大小
3. 有理数的加减法:同号相加减、异号相加减
4. 有理数的乘除法:分数的乘法、除法运算
三、代数
1. 代数式:代数字母、常数项、系数、指数
2. 代数式的计算:代数式的加减法、乘法和因式分解
3. 方程:一元一次方程的概念、解方程的方法
4. 不等式:不等式的概念、解不等式的方法
四、几何
1. 全等三角形:全等的判定条件、全等三角形的性质
2. 直角三角形:勾股定理、直角三角形的性质
3. 平行四边形:平行四边形的性质、平行四边形的面积计算
4. 圆:圆的性质、圆的面积计算
五、统计与概率
1. 数据的收集与整理:调查和统计
2. 数据的表示与分析:频数表、频数分布直方图
3. 概率:概率的概念、概率的计算方法
4. 统计图的绘制与分析:折线图、柱形图的绘制和分析
通过对以上知识点的总结,相信同学们对七年级数学的重要知识点有了更清晰的认识。
希望同学们能够在学习中加以巩固和运用,取得更好的成绩。
祝大家学习进步,取得优异的成绩!。
初中数学知识点汇总(整理完全版)

第二章、整式加减1、整式:⑴单项式:只含有数或字母的积的式子叫单项式。
(单独一个字母或数字也是单项式);系数:单项式中的数字因数;次数:单项式中,所有字母的指数和。
⑵多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
①项:每一个单项式(注意带符号)。
②次数:多项式里次数最高的项的次数。
2、同类项:所含字母相同,并且相同字母的指数也相同的项。
几个常数项也是同类项。
3、合并同类项:系数相加,字母和字母的指数不变。
4、去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
第三章、一元一次方程含有未知数的等式叫做方程,使方程左右两边相等的未知数的值叫做方程的解。
只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程。
1、等式的性质一:等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质二:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2、一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化为1。
注意:①去分母:两边同乘分母的最小公倍时,每一项都不能漏乘。
②去括号:“去正不变,去负全变”。
③移项:是从等号一端移到另一端,移项要变号。
④合并同类项:系数相加减做系数,字母和字母的指数不变。
⑤系数化为一列方程解应用题:(1)设未知数。
(2)找出相等的数量关系,(3)根据相等关系列几何图形:我们把从实物中抽象出的各种图形统称为几何图形。
立体图形:各部分不都在同一平面内,这种图形叫做立体图形。
平面图形:各部分都在同一平面内,这种图形叫做平面图形。
平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
三视图:指主视图、左视图、俯视图。
初一数学知识点总结归纳重点

初一数学知识点总结归纳重点一、数的认识1.自然数:自然数的概念,零的引入;2.整数:正整数、负整数、零的概念,数轴的认识;3.分数:分数的概念,分数的意义和表示方法;4.小数:小数的概念,小数的意义和表示方法;5.数轴:正数、零、负数在数轴上的位置和比较。
二、算式和四则运算1.算式:加减法、乘除法相关的概念;2.加法和减法:加减法的运算法则,各种类型算式的解法;3.乘法和除法:乘除法的运算法则,各种类型算式的解法;4.混合运算:将多种运算符号混合运用进行计算。
三、整数的运算1.整数的加减法:整数加减法的运算法则,绝对值大小的比较;2.整数的乘除法:整数乘除法的运算法则,绝对值大小的比较;3.混合运算:将整数加减乘除运算符号混合运用进行计算。
四、小数的运算1.小数加减法:小数加减法的运算法则,金钱问题的计算;2.小数乘法:小数乘法的运算法则,精确计算和估算;3.小数除法:小数除法的运算法则,约分和归纳。
五、分数的运算1.分数加减法:分数加减法的运算法则,通分化简,运算后的化简;2.分数乘法:分数乘法的运算法则,化简和分数序关系的判断;3.分数除法:分数除法的运算法则,化简和分数序关系的判断;4.多种运算符号混合运算:将分数加减乘除运算符号混合运用进行计算。
六、数的应用1.比例:概念、同比例的增减、反比例的增减;2.百分数:百分数的概念、百分数的转化、利息和手续费的计算;3.利益与代价:利润、利率、买卖差价的计算;4.单位换算:长度、容量、质量的换算。
七、图形的认识和计算1.点、线、面的认识和分类;2.直线、曲线的特点和区别;3.正方形、长方形、三角形、圆形的特点和计算;4.棱柱、棱锥、球体的特点和计算。
八、数据与统计1.数据的收集和整理;2.数据的表达方式和统计图的绘制;3.平均数的计算;4.简单的概率问题。
初一数学涉及的知识点非常的广泛,上述列举的只是其中的一部分重点。
初一数学的学习是以打好数学基础为主线,将知识点逐步展开,培养学生的思维能力和解决问题的能力。
初一数学知识点(精选5篇)

初一数学知识点(精选5篇)第一章有理数1.整数。
(正整数、0、负整数)2.正数和负数。
3.有理数。
(整数和分数统称有理数)4.自然数。
(非负整数)5.相反数。
(只有符号不同的两个数互为相反数)6.绝对值。
(一个数的绝对值就是表示这个数的点与原点的距离)第二章代数式1.代数式。
(用运算符号把数或表示数的字母连接起来的式子)2.代数式的值。
(求代数式的值就是给代数式中的字母个代数式确定值)第三章实数1.平方根。
(如果一个数的平方等于a,那么这个数就叫做a 的平方根)2.算数平方根。
(一个非负数的正的平方根叫做算数平方根)3.立方根。
(如果一个数的立方等于a,那么这个数就叫做a 的立方根)4.实数。
(有理数和无理数)5.实数的性质。
(实数能进行减、乘、除、加、乘方运算)6.近似数。
(通过四舍五入得到的与精确数接近的数)第四章整式和分式1.整式。
(与有理数相对的数式叫整式)2.分式。
(整式的一部分)3.分式的值为零。
(分子为零且分母不等于零)4.分式的乘除。
(乘除法转化成乘法计算)5.分式的加减。
(异分母的分式加减转化成通分后求和)6.分式方程。
(分母里含有未知数的方程叫分式方程)初一数学知识点篇21.有理数:有理数包括正整数、0和负整数。
有理数可以用分数表示。
2.数轴:数轴是一条直线,它的上面写着从0开始连续不断的点。
数轴上的0是正负数的分界线。
3.相反数:如果两个数的和为0,那么这两个数是一对相反数。
相反数包括正数和负数。
4.绝对值:一个数的绝对值是它离0的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数。
5.代数式:用代数式表示出数量关系和变化规律的式子。
包括等式、不等式、方程、不等式、函数等。
6.整式:整式包括单项式和多项式。
单项式是由数字和字母组成,多项式是由几个单项式组成。
7.分式:分式包括分子和分母。
分子是由数字和字母组成,分母是由分式和整式组成。
8.方程:用方程表示出两个量之间的关系,并且这个方程是一个等式。
七年级的数学知识点

七年级的数学知识点一、有理数。
1. 概念。
- 有理数就像是数学世界里的“普通居民”,它包括整数和分数。
整数呢,就像一群规规矩矩站成一排的数字,像 - 3, - 2, - 1,0,1,2,3等等。
分数就比较有趣啦,它是一个整数除以另一个整数(除数不能为0哦),像1/2, - 3/4之类的。
2. 数轴。
- 数轴就像一条有方向的线,上面有好多小点点代表数字。
0在中间,左边是负数,右边是正数。
就像在一条路上,0是个中间站,负数在左边的岔道,正数在右边的岔道。
在数轴上,越往右的数越大,越往左的数越小。
比如说,2就比 - 1大,因为2在数轴上更靠右。
3. 绝对值。
- 绝对值就像是一个数字的“保镖”,不管这个数字是正数还是负数,绝对值都让它变成正数(0的绝对值就是0啦)。
比如说, - 5 = 5,3 = 3。
它表示这个数到0的距离,就像不管你在0的左边还是右边,我只看你离0有多远。
4. 有理数的运算。
- 加法和减法:同号相加或相减就比较简单啦,符号不变,数字相加或相减。
比如3+2 = 5, - 3+( - 2)= - 5。
异号相加或相减呢,就像是拔河比赛,用大的绝对值减去小的绝对值,符号跟着绝对值大的那个数。
像3+( - 2)=1, - 3+2 = - 1。
- 乘法和除法:同号相乘除得正数,异号相乘除得负数。
比如说3×2 = 6, - 3×( - 2)=6,3÷( - 2)= - 1.5, - 3÷2 = - 1.5。
二、整式的加减。
1. 单项式和多项式。
- 单项式就像数学里的“独行侠”,它是由数字和字母的积组成的式子,单独的一个数或者一个字母也是单项式。
像3x, - 2y²,5这些都是单项式。
多项式呢,就是几个单项式的和,就像一群单项式手拉手组成的小团队。
比如2x+3y,x² - 2x+1都是多项式。
2. 整式的加减。
- 其实就是合并同类项。
同类项就像是长得差不多的小伙伴,它们所含字母相同,并且相同字母的指数也相同。
初一数学知识点归纳(全)

初一数学知识点归纳(全)初一数学知识点归纳如下:一、有理数1. 有理数的定义:能写成两个整数的比的数叫做有理数。
2. 有理数的分类:正有理数、负有理数和零。
3. 有理数的性质:比较两个有理数的大小,绝对值大的数较大;绝对值相等的数,正数较大;都是负数时,绝对值小的数较大。
4. 有理数的运算:加法、减法、乘法和除法。
二、整式的加减1. 整式的定义:由数字、字母的乘积组成的代数式叫做整式。
2. 整式的加减法法则:同类项合并,即把同类项的系数相加或相减,字母和字母的指数保持不变。
三、一元一次方程1. 方程的定义:含有未知数的等式叫做方程。
2. 一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1的方程叫做一元一次方程。
3. 解一元一次方程的方法:移项、合并同类项、系数化为1。
四、几何图形初步1. 几何图形的定义:用点、线、面等基本元素构成的图形叫做几何图形。
2. 几何图形的分类:平面图形和立体图形。
3. 平面图形的基本性质:对称性、相似性、全等性等。
4. 立体图形的基本性质:表面积、体积、棱长等。
五、相交线与平行线1. 相交线的定义:在同一平面内,两条直线相交于一点,这个点叫做交点。
2. 平行线的定义:在同一平面内,两条直线永远不相交,这两条直线叫做平行线。
3. 平行线的性质:同位角相等,内错角相等,同旁内角互补。
六、实数1. 实数的定义:有理数和无理数的统称叫做实数。
2. 实数的分类:有理数、无理数。
3. 无理数的定义:不能写成两个整数的比的数叫做无理数。
4. 实数的运算:加法、减法、乘法和除法。
七、平面直角坐标系1. 平面直角坐标系的定义:在平面上,以两条互相垂直的直线为坐标轴,建立直角坐标系。
2. 点的坐标:在平面直角坐标系中,每个点都有一个唯一的有序实数对(x, y)与之对应,这个有序实数对叫做该点的坐标。
3. 函数的定义:在平面直角坐标系中,对于每一个自变量x,都有唯一确定的因变量y与之对应,这种对应关系叫做函数。
七年级数学知识点归纳

七年级数学知识点归纳一、数与代数1. 整数- 整数 classification- 奇数与偶数- 质数与合数- 整数的四则运算- 整数的性质2. 有理数- 有理数的概念- 有理数的加法与减法- 有理数的乘法与除法- 有理数的比较大小- 绝对值与相反数3. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘法运算- 代数式的除法运算- 因式分解4. 线性方程- 一元一次方程- 二元一次方程- 线性方程的解法- 线性方程的应用问题5. 不等式- 不等式的概念- 不等式的解集表示- 不等式的解法- 线性不等式与二次不等式二、几何1. 平面图形- 点、线、面的基本性质- 直线、射线、线段- 角的概念与分类- 平行线与相交线的性质- 三角形的基本性质与分类2. 圆的基本性质- 圆的定义- 圆的半径、直径、弦、弧- 圆周角与圆心角- 切线的概念与性质3. 面积与体积- 平行四边形、三角形、梯形的面积计算 - 圆的面积计算- 长方体与立方体的体积计算4. 变换图形- 平移、旋转、对称的概念- 图形的平移变换- 图形的旋转变换- 轴对称与中心对称三、数据与概率1. 数据的收集与整理- 数据的表示方法- 统计表的绘制- 频数与频率的概念2. 数据的分析与解释- 众数、中位数、平均数的计算- 数据的图表表示(条形图、折线图、饼图)3. 概率的初步认识- 随机事件的概念- 可能性的判断与概率计算以上是七年级的数学知识点归纳,每个部分都包含了基础概念、性质、计算方法和应用实例。
学生应掌握这些知识点,以便能够解决实际问题,并为以后的学习打下坚实的基础。
教师和家长应指导学生通过练习和实际应用来巩固这些概念。
七年级数学全部知识点

七年级数学全部知识点
一、数字和运算
1. 正整数、负整数、零的概念和表示方法
2. 整数的加减乘除
3. 分数的概念和表示方法
4. 分数的加减乘除
5. 百分数的概念和表示方法
6. 百分数的加减乘除
7. 带分数的概念和表示方法
8. 带分数的加减乘除
9. 小数的概念和表示方法
10. 小数的加减乘除
二、图形和几何
1. 点、直线、线段、射线、角、平行线、垂直线等基本概念
2. 各种图形的概念,如正方形、长方形、三角形、梯形、圆等
3. 几何图形的周长和面积的计算方法
三、代数
1. 代数式的概念和表示方法
2. 代数式的加减乘除
3. 简单方程的概念和解法
4. 解一元一次方程的方法
四、函数
1. 函数的概念和基本性质
2. 函数的图形和特征
3. 一次函数的概念和解法
4. 比例的概念和解法
五、概率和统计
1. 样本、事件、概率的概念和表示方法
2. 随机事件的概念和性质
3. 等可能事件的概念和性质
4. 统计中的频数、频率、中位数、众数等概念
以上是七年级数学全部的知识点。
希望同学们在学习这些知识点时,能够认真复习、勤于练习、善于思考,做到知识点的掌握和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学知识点汇总
?1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:
(1)它是等式;
(2)分母中不含有未知数;
(3)未知数最高次项为1;
(4)含未知数的项的系数不为0.
4.等式的性质:
等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项
(1)依据:乘法分配律
(2)把未知数相同且其次数也相同的相合并成一项;常数计
算后合并成一项
(3)合并时次数不变,只是系数相加减。
6.移项
(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质
(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
(1)去分母:在方程两边都乘以各分母的最小公倍数;
(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
(4)合并同类项:把方程化成ax=b(a≠0)的形式;
(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
8.同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程
与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
1.单项式:在代数式中,假设只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。
所有字母的指数之和叫做这个单项式的次数。
任何一个非零数的零次方等于1.
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列
时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。