2017年江苏省苏州市张家港市中考数学一模试卷
2017年江苏省苏州市中考数学一模试卷

2017年江苏省苏州市中考数学一模试卷一、选择题本大题共10小题,每小题3分,共30分.1.(3分)的倒数是()A.B.﹣C.D.﹣2.(3分)某细胞截面可以近似看成圆,它的半径约为0.000 000787m,则0.000 000787用科学记数法表示为(),若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.68.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,且经过点(3,0),则a﹣b+c的值为()A.﹣1 B.0 C.1 D.29.(3分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F 的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m10.(3分)在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为()1314.(3C15.(316.(317.(318.(3PC,以的长为.三、解答题本大题共10小题,共76分19.(5分)计算:+|﹣|﹣﹣tan30°.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=+1.22.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?23.(8分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.24.(8,使BC25.(8(2,6),B(m,,AC与)求证:=;26.(10E.过27)(的坐标为(,),顶点的坐标为(,);(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.(3)若正方形OABC以每秒个单位的速度沿射线AO下滑,直至顶点C落到x轴上时停止下滑.设正方形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.28.(10分)如图,在平面直角坐标系中,抛物线y=ax 2﹣2ax ﹣3a (a >0)与x 轴交于A 、B 两点(点A 在点B 左侧),经过点A 的直线l :y=kx +b 与y 轴交于点C ,与抛物线的另一个交点为D ,且CD=4AC .(1)直接写出点A 的坐标,并用含a 的式子表示直线l 的函数表达式(其中k 、b 用含a 的式子表示).(2)点E 为直线l 下方抛物线上一点,当△ADE 的面积的最大值为时,求抛物线的函数表达式;(3)设点P 是抛物线对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否1. C 7.DE=CE=AC=8.x==25(+ (+×=(+25)顺时针边上的AD′DE=3=AE=, (),),+,),1113÷=24015.16.则=,=,(不合题意舍去),x 2==..==F ,, =(, ,BP==19.解:+|+=2021.)÷===,当x=+==.22.23.=故答案为:=,CE⊥BC,y=x>0,x轴垂D,BD?AE=3∴Array)知,,∴=∴=27.∴C ),(2作QD (作A’F==OO′=EO′=S=交x 轴A’O=A′O=A′F=.S=(+t )×..2﹣2ax=,=把A,(2设E(∴由∴S△=)a的面积的最大值为a=,a=.y=x x(3①若=(﹣1 =,a=,),与PQ﹣5a)=,a=综上所述,以点A、D、P、Q为顶点的四边或(1,4).形能成为矩形,点P的坐标为(1,)。
2017中考数学一模检测试卷(有答案)_题型归纳

2017中考数学一模检测试卷(有答案)_题型归纳中考作为考生迈入重点高中的重要考试,备受家长和考生的关注,多做题,多练习,为中考奋战,小编为大家整理了中考数学一模检测试卷,希望对大家有帮助。
A级基础题1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为()A.15B.25C.35D.452.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e的概率为____________.3.2012~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上5.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出一子,则提出白子的概率是多少?(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.B级中等题7从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.8.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由. 10.如图723,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两11.(2013年江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物参考答案:1.C2.273.A4.D5.236.解:(1)∵共有“一白三黑”四个围棋子,∵P(白子)=14.(2)画树状图如图73.∵共有12种等可能的结果,恰好提出“一黑一白”子的有6种情况,∵P(一黑一白)=612=12.图737.25 8.199.解:(1)画树状图如图74.∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∵小明获胜的概率为:12.(2)画树状图如图75.图75∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∵P(小明获胜)=38,P(小强获胜)=58,∵P(小明获胜)≠P(小强获胜),∵他们制定的游戏规则不公平.10.解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,∵P(恰好匹配)=24=12.(2)方法一,画树状图如图76.图76∵所有可能的结果为A1A2,A1B1,A1B2,A2A1,A2B1,A2B2,B1A1,B1A2,B1B2,B2A1,B2A2,B2B1,∵从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∵P(恰好匹配)=412=13.方法二,列表格如下:A1B2 A2B2 B1B2 -A1B1 A2B1 - B2B1A1A2 - B1A2 B2A2- A2A1 B1A1 B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∵P(恰好匹配)=412=13.11.解:(1)A(2)设甲、乙、丙三人的礼物分别记为a,b,c,根据题意画出树状图如图77.一共有6种等可能的情况,三人抽到的礼物分别为abc,acb,bac,bca,cab,cba,3人抽到的都不是自己带来的礼物的情况有bca,cab有2种,所以,P(A)=26=13.希望这篇中考数学一模检测试卷,可以帮助更好的迎接即将到来的考试!。
张家港中考模拟数学试卷

1. 若a,b是方程x^2-4x+3=0的两根,则a+b的值为:A. 1B. 3C. 4D. 72. 下列函数中,y是x的二次函数的是:A. y=2x^2+3x+1B. y=3x+2C. y=x^2+1D. y=x^3+13. 在直角坐标系中,点A(-2,3),点B(2,-3),则线段AB的中点坐标为:A. (0,0)B. (0,3)C. (-2,-3)D. (2,3)4. 若等差数列{an}的公差为d,首项为a1,第n项为an,则前n项和Sn为:A. Sn=n(a1+an)/2B. Sn=n(a1+an)/2+dC. Sn=(a1+an)n/2D.Sn=(a1+an)n/2-d5. 若函数f(x)=ax^2+bx+c(a≠0)的图像开口向上,则下列结论正确的是:A. a>0,b>0,c>0B. a>0,b<0,c>0C. a<0,b>0,c>0D. a<0,b<0,c>06. 在等腰三角形ABC中,AB=AC,若∠BAC=40°,则∠ABC的度数为:A. 40°B. 50°C. 60°D. 70°7. 若log2x+log2(x+1)=3,则x的值为:A. 1B. 2C. 4D. 88. 下列不等式中,正确的是:A. 3x>2x+1B. 3x<2x+1C. 3x≤2x+1D. 3x≥2x+19. 若等比数列{bn}的公比为q,首项为b1,第n项为bn,则前n项和Sn为:A. Sn=b1(1-q^n)/(1-q)B. Sn=b1(1-q^n)/(1+q)C. Sn=b1(1-q^n)/(q-1)D. Sn=b1(1+q^n)/(q-1)10. 若等差数列{an}的公差为d,首项为a1,第n项为an,则第n项an与第n+1项an+1的差为:A. dB. 2dC. d/2D. -d11. 若等差数列{an}的首项为a1,公差为d,则第n项an=______。
2017年江苏省各市中考数学试题汇总(13套)

文件清单:2017年中考真题精品解析数学(江苏无锡卷)(含答案)2017年中考真题精品解析数学(江苏连云港卷)(含答案)2017年江苏省徐州市中考数学试卷(含答案)2017年江苏省淮安市中考数学试卷(含答案)2017年江苏省盐城市中考数学试卷(含答案)2017年苏州市初中毕业暨升学考试试卷(含答案)2017年南京市初中毕业生学业考试(含答案)2017年江苏省南通市中考数学试题(含答案)2017年江苏省常州市中考数学试题及答案(含答案)2017年江苏省扬州市中考数学试题(含答案)2017年江苏省泰州市中考数学试题(含答案)2017年江苏省镇江市中考数学试题(含答案)2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣152.函数=2-xy x 中自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x >23.下列运算正确的是( )A .(a 2)3=a 5B .(ab )2=ab 2C .a 6÷a 3=a 2D .a 2•a 3=a 54.下列图形中,是中心对称图形的是( )A .B .C .D .5.若a ﹣b=2,b ﹣c=﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣56.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.3210.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A.2 B.54C.53D.75二、填空题(本大题共8小题,每小题2分,共16分)11.计算123的值是.12.分解因式:3a2﹣6a+3=.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.若反比例函数y=kx的图象经过点(﹣1,﹣2),则k的值为.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由»AE,EF,»FB,AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x =+21.已知,如图,平行四边形ABCD 中,E 是BC 边的中点,连DE 并延长交AB 的延长线于点F ,求证:AB=BF .22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(63,则点M的坐标为.x图象上异于原点O的任意一点,经过T变换后得到点B.(2)A是函数y=32①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号A型B型处理污水能力(吨/月)240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣15【答案】D .【解析】试题解析:∵﹣5×(﹣15)=1,∴﹣5的倒数是﹣15.故选D .考点:倒数2.函数=2-xy x 中自变量x 的取值范围是()A .x ≠2B .x ≥2C .x ≤2D .x >2【答案】A .考点:函数自变量的取值范围.3.下列运算正确的是( )A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【答案】D.【解析】试题解析:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.4.下列图形中,是中心对称图形的是()A.B.C.D.【答案】C.考点:中心对称图形.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【答案】B【解析】试题解析:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B考点:整式的加减.6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分)70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【答案】A.考点:1.中位数;2.算术平均数.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【答案】C.【解析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,=0.5=50%,x2=﹣2.5(不合题意舍去),解得:x1答即该店销售额平均每月的增长率为50%;故选C.考点:一元二次方程的应用.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【答案】B.故选B.考点:命题与定理.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.32【答案】C.【解析】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH=22AD DH-=12,∴HB=AB﹣AH=8,在Rt△BDH中,BD=2285DH BH+=,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,考点:1.切线的性质;2.菱形的性质.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A .2B .54C .53D .75【答案】D .【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴BC=2234+=5,∵CD=DB ,∴AD=DC=DB=52,∵12•BC•AH=12•AB•A C ,∴AH=125,在Rt △BCE 中,22222475()55BC BE -=-= .故选D.考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.二、填空题(本大题共8小题,每小题2分,共16分)11.计算123⨯的值是.【答案】6.【解析】试题解析:123⨯==6.⨯=12336考点:二次根式的乘除法.12.分解因式:3a2﹣6a+3=.【答案】3(a﹣1)2.考点:提公因式法与公式法的综合运用.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.【答案】2.5×105.【解析】试题解析:将250000用科学记数法表示为:2.5×105.考点:科学记数法—表示较大的数.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.【答案】11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.的图象经过点(﹣1,﹣2),则k的值为.15.若反比例函数y=kx【答案】2.【解析】试题解析:把点(﹣1,﹣2)代入解析式可得k=2.考点:待定系数法求反比例函数解析式.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为c m2.【答案】15π.考点:圆锥的计算.17.如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB 在圆心O 1和O 2的同侧),则由»AE,EF ,»FB ,AB 所围成图形(图中阴影部分)的面积等于 .【答案】534﹣6.【解析】试题解析:连接O 1O 2,O 1E ,O 2F ,则四边形O 1O 2FE 是等腰梯形,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,∴四边形EGHF 是矩形, ∴GH=EF=2, ∴O 1G=12, ∵O 1E=1,∴GE=32,∴1112O G O E =; ∴∠O 1EG=30°, ∴∠AO 1E=30°, 同理∠BO 2F=30°,∴阴影部分的面积=S 矩形ABO2O1﹣2S 扇形AO1E ﹣S 梯形EFO2O1=3×1﹣2×2301360π⨯⨯=12(2+3)×32=3﹣534﹣6π. 考点:1.扇形面积的计算;2.矩形的性质.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于 .【答案】3. 【解析】试题解析:平移CD 到C ′D ′交AB 于O ′,如图所示,则∠BO ′D ′=∠BOD , ∴tan ∠BOD=tan ∠BO ′D ′, 设每个小正方形的边长为a ,则O ′B=22(2)5a a a +=,O ′D ′=22(2a)(2)22a a +=,BD ′=3a , 作BE ⊥O ′D ′于点E , 则BE=3a 232222BD O F a aO D a''==''g , ∴O ′E=2222322(5)()22a a O B BE a '-=-=, ∴tanBO ′E=32a2322BE O E a==',∴tan ∠BOD=3.考点:解直角三角形.三、解答题(本大题共10小题,共84分) 19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b )(a ﹣b )﹣a (a ﹣b ) 【答案】(1)-1;(2)ab ﹣b 2考点:1.平方差公式;2.实数的运算;3.单项式乘多项式;4.零指数幂.20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x=+【答案】(1)﹣1<x≤6;(2)x=13.(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.考点:1.解分式方程;3.解一元一次不等式组.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB 的延长线于点F,求证:AB=BF.【答案】证明见解析.【解析】试题分析:根据线段中点的定义可得CE=BE ,根据平行四边形的对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后利用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证.学科网 试题解析:∵E 是BC 的中点, ∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE , 在△CED 和△BEF 中,DCA=FBE CE=BECED=BEF ⎧∠∠⎪⎨⎪∠∠⎩, ∴△CED ≌△BEF (ASA ), ∴CD=BF , ∴AB=BF .考点:1.平行四边形的性质;2.全等三角形的判定与性质.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】1.3考点:列表法与树状图法.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【答案】(1)4556;600;(2)补图见解析;(3)①(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.考点:条形统计图.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(6,﹣3),则点M的坐标为.(2)A是函数y=32x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【答案】(1)Q(a+32b,12b);M(9,﹣23);(2)①y=37x;②34试题解析:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=12PC=12b,DQ=32PQ=32b,∴Q(a+32b,12b);(2)①∵A是函数y=32x图象上异于原点O的任意一点,∴可取A(2,3),∴2+32×3=72,12×3=32,∴B (72,2),设直线OB 的函数表达式为y=kx ,则72k=2,解得k=7,∴直线OB 的函数表达式为y=7x ;②设直线AB 解析式为y=k ′x+b ,把A 、B坐标代入可得2+722k b k b ⎧'⎪⎨'+=⎪⎩,解得3k b ⎧'=-⎪⎪⎨⎪=⎪⎩,∴直线AB 解析式为y=﹣3x+3,∴D (0,3),且A (2,B (72,2),∴,,∴OAB OAD S AB 3===S AD 4V V . 考点:一次函数综合题.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A 型 B 型 处理污水能力(吨/月)240180已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元,售出的1台A 型、4台B 型污水处理器的总价为42万元. (1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【答案】(1) 设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)(2)由于求至少要支付的钱数,可知购买6台A 型污水处理器、3台B 型污水处理器,费用最少,进而求解即可.试题解析:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2+3=44+4=42x y x y ⎧⎨⎩,解得=10=8x y ⎧⎨⎩.答:设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;考点:1.一元一次不等式的应用;2.二元一次方程组的应用.27.如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C ,D 两点(点C 在点D 的上方),直线AC ,DB 交于点E .若AC :CE=1:2. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.【答案】(1) P (1,0).(2) y=28x 2﹣24x ﹣1528.【解析】试题分析:(1)如图,作EF ⊥y 轴于F ,DC 的延长线交EF 于H .设H (m ,n ),则P (m ,0),PA=m+3,PB=3﹣m .首先证明△ACP ∽△ECH ,推出12AC PC AP CE CH HE ===,推出CH=2n ,EH=2m=6,再证明△DPB ∽△DHE ,推出144PB DP n EH DH n ===,可得3-1264m m =+,求出m 即可解决问题;(2)由题意设抛物线的解析式为y=a (x+3)(x ﹣5),求出E 点坐标代入即可解决问题.∴12AC PC AP CE CH HE ===, ∴CH=2n ,EH=2m=6, ∵CD ⊥AB , ∴PC=PD=n , ∵PB ∥HE ,∴△DPB ∽△DHE , ∴144PB DP n EH DH n ===, ∴3-1264m m =+,∴m=1, ∴P (1,0).(2)由(1)可知,PA=4,HE=8,EF=9, 连接OP ,在Rt △OCP 中,PC=2222OC OP -=∴2,2∴E(9,62),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,62)代入得到a=28,∴抛物线的解析式为y=28(x+3)(x﹣5),即y=28x2﹣24x﹣1528.考点:圆的综合题.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【答案】(1) 83;(2) 477≤m<47.【解析】试题分析:(1)只要证明△ABD∽△DPC,可得AD ABCD PD,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3试题解析:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ ⊥BC 于Q ,EM ⊥DC 于M .则EQ=3,CE=DC=4易证四边形EMCQ 是矩形, ∴CM=EQ=3,∠M=90°, ∴EM=2222437EC CM -=-=,∵∠DAC=∠EDM ,∠ADC=∠M , ∴△ADC ∽△DME ,AD DGDM EM=, ∴77AD =,∴AD=47,由△DME ∽△CDA , ∴DM EM =CD AD, ∴71=4AD,∴AD=47,综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,这样的m 的取值范围477≤m <47.考点:四边形综合题.2017年江苏省连云港市中考数学试题数学试题一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2的绝对值是( ) A.2-B.2C.12-D.122.计算2a a ×的结果是( ) A.aB.2aC.22aD.3a3.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数4.如图,已知ABC DEF △∽△,:1:2AB DE =,则下列等式一定成立的是( )A.12BC DF=B.12A D =∠的度数∠的度数C.12ABC DEF =△的面积△的面积D.12ABC DEF =△的周长△的周长5.由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则( )A.三个视图的面积一样大 C.主视图的面积最小 C.左视图的面积最小D.俯视图的面积最小6.8( )A.8826C.822=?D.837.已知抛物线()20y ax a =>过()12,A y -,()21,B y 两点,则下列关系式一定正确的是( ) A.120y y >>B.210y y >>C.120y y >>D.210y y >>8.如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,则点2017A 与点0A 间的距离是( )A.4B.23C.2D.0二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.使分式11x -有意义的x 的取值范围是 . 10.计算()()22a a -+= .11.截至今年4月底,连云港市中哈物流合作基地累计完成货物进,出场量6800000吨,数据6 800 000用科学计数法可表示为 .12.已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是 . 13.如图,在平行四边形ABCD 中,AE BC ^于点E ,AF CD ^于点F ,若60EAF =∠°,则B =∠ .14.如图,线段AB 与O ⊙相切于点B ,线段AO 与O ⊙相交于点C ,12AB =,8AC =,则O ⊙的半径长为 .15.设函数3y x=与26y x =--的图象的交点坐标为(),a b ,则12a b+的值是 .16.如图,已知等边三角形OAB 与反比例函数()0,0k y k x x=>>的图象交于A ,B 两点,将OAB △沿直线OB 翻折,得到OCB △,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC的值为 .(已知62sin154-=°)三、解答题 (本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:()()0318 3.14p ---+-.18.化简:211a a a a-×-.19.解不等式组:()3143216x x x ì-+<ïí--?ïî.20.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60100x#).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.根据以上信息解答下列问题: (1)统计表中c 的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.如图,已知等腰三角形ABC中,AB AC=,点D,E分别在边AB、AC上,且AD AE=,连接BE、CD,交于点F.(1)判断ABE∠的数量关系,并说明理由;∠与ACD(2)求证:过点A、F的直线垂直平分线段BC.23.如图,在平面直角坐标系xOy中,过点()A-的直线交y轴正半轴于点B,2,0将直线AB绕着点O顺时针旋转90°后,分别与x轴y轴交于点D、C.(1)若4OB=,求直线AB的函数关系式;(2)连接BD,若ABD△的面积是5,求点B的运动路径长.24.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.如图,湿地景区岸边有三个观景台A、B、C.已知1400AC=米,AB=米,1000B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求ABC△的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.20.80°≈,cos60.70.49°≈,°≈,sin66.10.91°≈,sin60.70.87°≈,cos53.20.60≈)cos66.10.41°≈,2 1.41426.如图,已知二次函数()230y axbx a =++?的图象经过点()3,0A ,()4,1B ,且与y 轴交于点C ,连接AB 、AC 、BC . (1)求此二次函数的关系式;(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标; (3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE DG =. 求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH BF ¹,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点1A 、1B 、1C 、1D ,得到矩形1111A B C D .如图2,当AH BF >时,若将点G 向点C 靠近(DG AE >),经过探索,发现:11112ABCD A B C D EFGH S S S =+矩形矩形四边形.如图3,当AH BF >时,若将点G 向点D 靠近(DG AE <,请探索EFGH S 四边形、ABCD S 矩形与1111A B C D S 矩形之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题.(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH BF >,AE DG >,11EFGH S =四边形,29HF ,求EG 的长.(2)如图5,在矩形ABCD中,3AD=,点E、H分别在边AB、AD上,1AB=,5BE=,FG=,连接EF、HG,请DH=,点F、G分别是边BC、CD上的动点,且102直接写出四边形EFGH面积的最大值.一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 2的绝对值是( ) A.2-B.2C.12-D.12【答案】B 【解析】试题分析:根据绝对值的性质,一个正数的绝对值为本身,可知2的绝对值为2. 故选:B 考点:绝对值2. 计算2a a ×的结果是( ) A.aB.2aC.22aD.3a【答案】D考点:同底数幂相乘3. 小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数。
2017年江苏省苏州市昆山市中考数学一模试卷

2017年江苏省苏州市昆山市中考数学一模试卷D(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.23.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB 相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.24.(10分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.25.(8分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A 型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240026.(9分)已知点P(x0,y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.27.(8分)如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8cm,AD⊥BC 于点D,点P从点A出发,沿A→C方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x= ;(2)当点M落在AD上时,x= ;(3)求y关于x的函数解析式,并写出自变量x的取值范围.28.(10分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED 以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q 在整个运动过程中所用时间最少?2017年江苏省苏州市昆山市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1.(2分)2017的相反数是()A.2017 B.﹣2017 C.D.﹣【解答】解:2017的相反数是﹣2017,故选:B.2.(2分)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.3.(2分)下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D.4.(2分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.5.(2分)如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A.B.C.D.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R 时,y增量越来越大,当R<x<2R时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选A.6.(2分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.7.(2分)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤0【解答】解:∵y=kx+3经过点A(2,1),∴1=2k+3,解得:k=﹣1,∴一次函数解析式为:y=﹣x+3,﹣x+3≥0,解得:x≤3.故选A.8.(2分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.9.(2分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.10.(2分)已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个【解答】解:以点B为圆心线段AB长为半径作圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3=0,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点E的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11.(3分)在函数中,自变量x的取值范围是x≤1且x≠﹣2 .【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1且x≠﹣2.12.(3分)分解因式:ax2﹣ay2= a(x+y)(x﹣y).【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).13.(3分)某校男子足球队的年龄分布如图的条形图,请求出这些队员年龄的平均数、中位数15,15 .【解答】解:这些队员年龄的平均数为:(13×2+14×6+15×8+16×3+17×2+18×1)÷22=15,队员年龄的中位数是15.故答案为15,15.14.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.15.(3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF 的周长为3a (用含a的式子表示).【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,∴BF=2a,∵∠B=30°,∴DF=BF=a,∴△DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a.16.(3分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是m>.【解答】解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,由已知得:,即解得:m>.故答案为:m>.17.(3分)如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A 重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为或.【解答】解:依照题意画出图形,如图所示.∵点A的坐标为(a,﹣a)(a>0),∴点B(a,)、点C(﹣,)、点D(﹣,﹣a),∴OA==a,OC==.又∵原点O分对角线AC为1:2的两条线段,∴OA=2OC或OC=2OA,即a=2×或=2a,解得:a1=,a2=﹣(舍去),a3=,a4=﹣(舍去).故答案为:或.18.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为﹣4≤b≤﹣2 .【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故答案为:﹣4≤b≤﹣2.三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)19.(5分)计算:20160﹣|﹣|++2sin45°.【解答】解:原式=1﹣﹣3+2×=1﹣﹣3+=﹣2.20.(5分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.【解答】解:原式=[﹣]•=•=,当x=﹣2时,原式===2.21.(5分)解不等式组:,并把解集在数轴上表示出来.【解答】解:由①得x≥4,由②得x<1,∴原不等式组无解,22.(8分)国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:获奖等次频数频率一等奖 10 0.05二等奖 20 0.10三等奖 30 b优胜奖 a 0.30鼓励奖 80 0.40请根据所给信息,解答下列问题:(1)a= 60 ,b= 0.15 ,且补全频数分布直方图;(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.【解答】解:(1)样本总数为10÷0.05=200人,a=200﹣10﹣20﹣30﹣80=60人,b=30÷200=0.15,故答案为60,0.15;(2)优胜奖所在扇形的圆心角为0.30×360°=108°;(3)列表:甲乙丙丁分别用ABCD表示,A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,恰好选中A、B的有2种,画树状图如下:∴P(选中A、B)==.23.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB 相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【解答】解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,解得:.∴反比例函数的解析式为y=.(2)∵m=1,∴点A的坐标为(4,4),∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.∴经过C、D两点的一次函数解析式为y=﹣x+3.24.(10分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.25.(8分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A 型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y 元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.26.(9分)已知点P(x0,y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.27.(8分)如图,在等腰直角三角形ABC中,∠B AC=90°,AC=8cm,AD⊥BC 于点D,点P从点A出发,沿A→C方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x= 4 ;(2)当点M落在AD上时,x= ;(3)求y关于x的函数解析式,并写出自变量x的取值范围.【解答】解:(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q 重合,AP=CP=4,所以x==4.故答案为4.(2)如图1中,当点M落在AD上时,作PE⊥QC于E.∵△MQP,△PQE,△PEC都是等腰直角三角形,MQ=PQ=PC∴DQ=QE=EC,∵PE∥AD,∴==,∵AC=8,∴PA=,∴x=÷=.故答案为.(3)①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,∵AP=x,∴EF=PE=x,∴y=S=•PE•EF=x2.△PEF②当4<x≤时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.∵PQ=PC=8﹣x,∴PM=16﹣2x,∴ME=PM﹣PE=16﹣3x,∴y=S△PMQ ﹣S△MEG=(8﹣x)2﹣(16﹣3x)2=﹣x2+32x﹣64.③当<x<8时,如图4中,则重合部分为△PMQ,∴y=S△PMQ=PQ2=(8﹣x)2=x2﹣16x+64.综上所述y=.28.(10分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED 以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?【解答】解:(1)∵y=a(x+3)(x﹣1),∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),∵直线y=﹣x+b经过点A,∴b=﹣3,∴y=﹣x﹣3,当x=2时,y=﹣5,则点D的坐标为(2,﹣5),∵点D在抛物线上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)如图1中,作PH⊥x轴于H,设点 P坐标(m,n),当△BPA∽△ABC时,∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴解得m=﹣4或1(舍弃),当m=﹣4时,n=5a,∵△BPA∽△ABC,∴=,∴AB2=AC•PB,∴42=,解得a=﹣或(舍弃),则n=5a=﹣,∴点P坐标(﹣4,﹣).当△PBA∽△ABC时,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,∴n=﹣3a(m﹣1),∴,解得m=﹣6或1(舍弃),当m=﹣6时,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC•PB,∴42=•,解得a=﹣或(不合题意舍弃),则点P坐标(﹣6,﹣3),综上所述,符合条件的点P的坐标(﹣4,﹣)和(﹣6,﹣3).(3)如图2中,作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,则tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,此时点E坐标(1,﹣4).第31页(共31页)。
2017年江苏省各地市中考数学试题及答案汇总

2017年江苏省各地市中考数学试题及答案汇总1、2017年南京市中考数学试题及答案---------22、2017年南通市中考数学试题及答案---------143、2017年常州市中考数学试题及答案---------304、2017年淮安市中考数学试题及答案---------455、2017年连云港市中考数学试题及答案---------616、2017年苏州市中考数学试题及答案---------797、2017年泰州市中考数学试题及答案---------948、2017年无锡市中考数学试题及答案---------1099、2017年徐州市中考数学试题及答案---------12210、2017年盐城市中考数学试题及答案---------13511、2017年扬州市中考数学试题及答案---------15312、2017年镇江市中考数学试题及答案---------17113、2017年宿迁市中考数学试题及答案---------1841.南京市2017年中考数学试题及答案第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算的结果是( )A . 7B . 8C . 21D .362.计算的结果是( )A .B .C .D .3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是 ( )A .三棱柱B .四棱柱C . 三棱锥D .四棱锥4.,则下列结论中正确的是 ()A .B . C. D .5.若方程的两根为和,且,则下列结论中正确的是 ( ) ()()()1218632÷-÷---⨯()3624101010⨯÷310710410910a <<13a <<14a <<23a <<24a <<()2519x -=a b a b >A .是19的算术平方根 B .是19的平方根 C.是19的算术平方根 D .是19的平方根6.过三点(2,2),(6,2),(4,5)的圆的圆心坐标为( )A .(4,)B .(4,3) C.(5,) D .(5,3) 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7.计算:; .8.2016年南京实现约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 .9.若式子在实数范围内有意义,则的取值范围是 . 10.的结果是 .11.方程的解是 . 12.已知关于的方程的两根为-3和-1,则 ; .13.下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大的是 年.a b 5a -5b +A B C 1761763-==GDP 21x -x 2102x x-=+x 20x px q ++=p =q =14.如图,是五边形的一个外角,若,则 .15.如图,四边形是菱形,⊙经过点,与相交于点,连接,若,则 .16.函数与的图像如图所示,下列关于函数的结论:①函数的图像关于原点中心对称;②当时,随的增大而减小;③当时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是 .1∠ABCDE 165∠=︒A B C D ∠+∠+∠+∠=ABCD O ,,A C D BC E ,AC AE 78D ∠=︒EAC ∠=1y x =24y x=12y y y =+2x <0x >三、解答题 (本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 计算. 18. 解不等式组 请结合题意,完成本题的解答.(1)解不等式①,得 .(2)解不等式③,得 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .19. 如图,在中,点分别在上,且相交于点.求证.112a a a a ⎛⎫⎛⎫++÷- ⎪ ⎪⎝⎭⎝⎭()26,2,31 1.x x x x -≤>--<+⎧⎪⎨⎪⎩①②③ABCD ,E F ,AD BC ,,AE CF EF BD =O OE OF =20. 某公司共25名员工,下标是他们月收入的资料.(1)该公司员工月收入的中位数是 元,众数是 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21. 全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.“直角”在初中几何学习中无处不在.如图,已知,请仿照小丽的方式,再用两种不同的方法判断是否为直角(仅限用直尺和圆规).AOB ∠AOB ∠23.张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买个甲种文具时,需购买个乙种文具.(1)①当减少购买一个甲种文具时,▲,▲;②求与之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲,乙两种文具各购买了多少个?24.如图,是⊙的切线,为切点.连接并延长,交的延长线于点,连接,交⊙于点.(1)求证:平分.(2)连结,若,求证.x y x =y =y x ,PA PB O ,A B AO PB C PO O D PO APC ∠DB 30C ∠=︒//DB AC25.如图,港口位于港口的南偏东方向,灯塔恰好在的中点处,一艘海轮位于港口的正南方向,港口的正西方向的处,它沿正北方向航行5,到达处,测得灯塔在北偏东方向上.这时,处距离港口有多远?(参考数据:)26.已知函数(为常数)(1)该函数的图像与轴公共点的个数是( )A.0B.1C.2D.1或2(2)求证:不论为何值,该函数的图像的顶点都在函数的图像上.(3)当时,求该函数的图像的顶点纵坐标的取值范围.27. 折纸的思考. B A 37︒C AB A B D km E C 45︒E A sin370.60,cos370.80,tan370.75︒≈︒≈︒≈()21y x m x m =-+-+m x m ()21y x =+23m -≤≤【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片(图①),使与重合,得到折痕,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点落在上的处,并使折痕经过点,得到折痕,折出,得到.(1)说明是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形和等边三角形.他发现,在矩形中把经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3,另一边长为.对于每一个确定的的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的的取值范围.()ABCD AB BC >AB DC EF C EF P B BG ,PB PC PBC ∆PBC∆ABCD PBC ABCD PBC ∆cm acm a a【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4和1的直角三角形铁片,所需正方形铁片的边长的最小值为 .答案:一、选择题一、填空题二、解答题cm cmcm2.南通市2017年中考数学试题及答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在0,2,1,2--这四个数中,最小的数为()A.0B.2C.1-D.2-2.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学计数法表示为()A.5⨯D.418100.1810⨯⨯C.6⨯B.41.8101.8103. 下列计算,正确的是()A.2a a aa a a=C.933÷=D.()236a a a-=B.236=a a4. 如图是由4的大小相同的正方形组合而成的几何体,其左视图是()5. 平面直角坐标系中,点(1,2)P-关于x轴的对称的点的坐标为()A.(1,2)B.(1,2)--D.(2,1)--C.(1,2)6. 如图,圆锥的底面半径为2,母线长为6,则侧面积为( )A .4πB .6πC .12πD .16π7. 一组数据:1,2,2,3,若添加一个数据2,在发生变化的统计量是( )A .平均数B .中位数C .众数D .方差8. 一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量()y L 与事件(min)x 之间的关系如图所示,则每分钟的出水量是( )A .5LB .3.75LC .2.5LD .1.25L9. 已知AOB ∠,作图步骤1:在OB 上任取一点M ,以点M 为圆心,MO 长为半径画半圆,分别交,OA OB 于点,P Q ; 步骤2:过点M 作PQ 的垂线交PQ 于点C ;步骤3:画射线OC .则下列判断:①PC CQ =;②//MC OA ;③OP PQ =;④OC 平分AOB ∠,其中正确的个数为( )A .1B .2C .3D .410. 如图,矩形ABCD 中,10,5AB BC ==,点,,,E F G H 分别在矩形ABCD 各边上,且,AE CG BF DH ==,则四边形EFGH 周长的最小值为( )A .B .C .D .二、填空题(每题8分,满分24分,将答案填在答题纸上)11.在实数范围内有意义,则x 的取值范围为 .12.如图,DE 是ABC ∆的中位线,若8BC =,则DE = .13.四边形ABCD 内接于圆,若110A ∠=,则C ∠= 度.14.若关于x 的方程260x x c -+=有两个相等的实数根,则c 的值为 .15.如图,AOB ∆将绕点O 按逆时针方向旋转045后得到COD ∆,若015AOB ∠=,则AOD ∠= 度.16.甲乙二人做某种机械零件,已知甲每小时比乙多做4个,甲做60个所用的时间与乙作40个所用的时间相等,则乙每小时所做零件的个数为 .17.已知x m =时,多项式222x x n ++的值为1-,则x m =-时,该多项式的值为 .18.如图,四边形OABC 是平行四边形,点C 在x 轴上,反比例函数(0)k y x x=>的图象经过点(5,12)A ,且与边BC 交于点D ,若AB BD =,则点D 的坐标为 .三、解答题 (本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19. (1)计算2014(2)()2---; (2)解不等式组321213x x x x -≥⎧⎪+⎨>-⎪⎩ 20. 先化简,再求值:524(2)23m m m m -+-⋅--,其中12m =-. 21.某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:min ),然后所得数据绘制成如下不完整的统计图表:请根据图表中提供的信息回答下列问题:(1)a=;b=;(2)将频率分布直方图补充完整;(3)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不小于50min?22. 不透明袋子中装有2个红球,1个白球和1个黑球,这些球除除颜色外无其他差别,随机摸出1个球不放回,再随机1个球,求两次均摸到红球的概率.21.热气球的探测器显示,从热气球A看一栋楼顶部B的仰角α为045,看这栋楼底部C的俯角β为060,热气球与楼的水平为100m,求这栋楼的高度(结果保留根号).24.如图,Rt ABC ∆中,090,3C BC ∠==,点O 在AB 上,2OB =,以OB 为半径的O 与AC 相切于点D ,交BC 于点E ,求弦BE 的长.25.某学习小组在研究函数的图象与性质时,已知表、描点并画出了图象的一部分.(1)请补全函数图象;(2)方程31226x x -=-实数根的个数为 (3)观察图象,写出该函数的两条性质.26.如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交,,AD BE BC 于点,,P O Q ,连接,BP EQ .(1)求证:四边形BPEQ 是菱形;(2)若6,AB F =为AB 的中点,9OF OB +=,求PQ 的长.27.我们知道,三角形的内心是三条角平分线的焦点,过三角形内心的一条直线与两边相交,两焦点之间的线段把这个三角形分成两个图形,若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“内似线”. (1)等边三角形“内似线”的条数为(2)如图,ABC ∆中,AB AC =,点D 在AC 上,且BD BC AD ==,求证:BD 是ABC ∆的“内似线”;(3)在Rt ABC∆中,090,4,3,,∠===分别在边,C AC BC E FAC BC上,且EF是ABC∆的“内似线”,求EF的长.28.已知直线y kx b=+与抛物线2(0)=>相交于,A B两点(点A在点B的左侧),与y轴y ax a正半轴相交于点C,过点A作AD x⊥轴,垂足为D.(1)若060,//∠=轴,2AOB AB xAB=,求a的值;(2)若0AOB∠=,点A的横坐标为4,490-=,求点B的坐标;AC BC(3)延长,= .AD BO相交于点E,求证:DE CO参考答案:一、选择题一、填空题11.X≥2 12. 4 13. 70 14. 9 15. 30 16. 815)17. 3 18. (18 ,2三、解答题19.20.21.22题3.常州市2017年中考数学试题及答案一、选择题(每小题3分,共10小题,合计30分)1.-2的相反数是( ).A .-12B .12C .±2D .22.下列运算正确的是( ).A .m ·m=2mB .(mn)3=mn 3C .(m 2)3=m 6D .m 6÷a 3=a 33.右图是某个几何体的三视图,则该几何体是( ).A .圆锥B .三棱柱C .圆柱D .三棱锥4.计算:1x x -+1x 的结果是( ). A .2x x + B .2x C .12 D .15.若3x>-3y,则下列不等式中一定成立的是( ).A.x+y>0 B.x-y>0 C.x+y<0 D.x-y<06.如图,已知直线AB、CD被直线AE所截,AB∥CD, ∠1=60°,则∠2的度数是( ). A.100°B.110°C.120°D.130°7.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴上,OD=2OA=6, AD:AB=3:1, 则点C的坐标是( ).A.(2,7) B.(3,7) C.(3,8) D.(4,8)8.如图,已知□ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC,若EF=2,FG=GC=5,则AC的长是( ).A.12 B.13 C.D.二、填空题:(本大题共10小题,每小题2分,共20分)9.计算:|-2|+(-2)0= .10.x的取值范围是 .11.肥皂泡的泡壁厚度大约是0.0007mm,则数据0.0007用科学计数法表示为 .12.分解因式:ax2-ay2= .13.已知x=1是关于x的方程ax2-2x+3=0的一个根,则a= .14.已知圆锥的底面圆半径是1,母线长是3,则圆锥的侧面积是 .15.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是 .16.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点.若∠DAB=40°,则∠ABC=°.17.已知二次函数y= ax2+bx-3自变量x的部分取值和对应函数值y如下表:则在实数范围内能使得y-5>0成立的x的取值范围是 .x(x≥0)图像上一点,过点A作x轴的垂线l,B是l上18.如图,已知点A是一次函数y=12一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数ky(k)0)x的图像过点B、C,若△OAB的面积为6,则△ABC的面积是 .三、解答题:(本大题共6个小题,满分60分) 19.(6分)先化简,再求值:(x+2) (x-2)-x (x-1),其中x=-2.20.(8分)解方程和不等式组: (1)252x x --=332x x ---3 (2)26415x x -≤⎧⎨+<⎩21.(8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”“打球”“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是 .(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.23.(8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.24.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种共50个,总费用不超过5500元,那么最多可购买多少个足球?(x<0) 25.(8分)如图,已知一次函数y=kx+b的图像与x轴交于点A,与反比例函数y=mx的图像交于点B(-2,n),过点B作BC⊥x轴于点C,点D(3-3n,1)是该反比例函数图像上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.26.(10分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足时,四边形MNPQ是正方形;⑵如图2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.②若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.27.(10分)如图,在平面直角坐标系xOy中,已知二次函数y=-1x2+bx的图像过点A(4,0),2顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CP的对称点为B′,当△OCB′为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2BD,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.x+4的图像是直线l,设直线l分别与y轴、x轴交于28.(10分)如图,已知一次函数y=-43点A、B.(1)求线段AB的长度;(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.①当⊙N与x轴相切时,求点M的坐标;②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x轴于点E.直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.参考答案:一、选择题二、填空题:9. 3 .10. x≥2 .11. 7×104 .12. a(x+y)(x-y .13. -1 .14. 3π .15.15 .16. 70 .17. x﹥4或x<-2 .18. 18 .三、解答题:19.(略)20.(略)21.解:(1)30÷30%=100;(2)其他100×10%=10人,打球100-30-20-10=40人;=800,所以估计该校课余兴趣爱好为“打球”的学生为数为800人.(3)2000×4010022.解:(1)从4个球中摸出一个球,摸出的球面数字为1的概率是1;4(2)用画树状图法求解,画树状图如下:从树状图分析两次摸球共出现12种可能情况,其中两次摸出的乒乓球球面上数字之和为偶数的概率为:412=13. 23.解:(1)证明:∵∠BCE=∠ACD=90°,∴∠ACB=∠DCE ,又∵∠BAC=∠D ,BC=CE ,∴△ABC ≌△DEC ,∴AC=CD.(2)∵∠ACD=90°,AC=CD ,∴∠EAC=45°,∵AE=AC ∴∠AEC=∠ACE=12×(180°-45°)=67.5°, ∴∠DEC=180°-67.5°=112.5°.24.解:(1)解设每个篮球售价x 元,每个足球售价y 元,根据题意得:232032540x y x y +=⎧⎨+=⎩,解得:100120x y =⎧⎨=⎩答:每个篮球售价100元,每个足球售价120元.(2)设学校最多可购买a 个足球,根据题意得100(50-a)+120a ≤5500,解得:a ≤25.答:学校最多可购买25个足球.5746537565341323142231数字之和第二个球第一个球44132425.解:(1)把B(-2,n),D(3-3n,1)代入反比例函数y=m x得, 332n mn m ⎧⎨-=-=⎩解得:36m n ⎧⎨==-⎩,所以m 的值为-6. (2)由(1)知B 、D 两点坐标分别为B(-2,3),D(-6,1),设BD 的解析式为y=px+q,所以6312p q p q -+=⎧⎨-+=⎩,解得412p q ==⎧⎪⎨⎪⎩ 所以一次函数的解析式为y=12x+4,与x 轴的交点为E(-8,0) 延长BD 交x 轴于E ,∵∠DBC=∠ABC ,BC ⊥AC ,∴BC 垂直平分AC ,∴CE=6, ∴点A(4,0),将A 、B 点坐标代入y=kx+b 得2340k b k b ⎧⎨+=-+=⎩,解得122k b ⎧⎪⎨⎪=-⎩=,所以一次函数的表达式为y=-12x+2.26.解:(1)①矩形;②AC ⊥BD ;⑵①∵∠ABC=90°,AB=4,BC=3,∴BD=AC=5, 作DF ⊥AB 于F ,∵AD=BD ,∴DF 垂直平分AB ,∴BF=2,由勾股定理得由题意知S ABED =S △ABD +S △BCD =12×AB ×DF+12×BC ×BF=12×412×3×+3;②如图四边形ABED面积的最大值时点E在直线AC上,点D是以AE为斜边的直角三角形的直角顶点,所以AE=6,DO=3,在△ABC中,由面积公式得点B到AC的距离为125,所以四边形ABED面积的最大值= S△AED+S△ABE=12×6×3+12×6×125=16.2.27.解:(1)将A(4,0)代入y=-12x2+bx得,-12×42+b×4=0,解得b=2,所以二次函数的表达式为y=-12x2+2x;(2)根据题意画出图形,二次函数y=-12x2+2x的顶点坐标为B(2,2),与两坐标轴的交点坐标为O(0,0)、A(4,0).此时,若△OCB′为等边三角形,则∠OCB′=∠QCB′=∠QCB=60°,因为∠B=90°,所以tan∠,所以;(3) ①当点F在OB上时,如图,当且仅当DE∥OA,即点E与点A重合时△DOF≌△FED,此时点E的坐标为E(4,0);②点F在OA时,如图DF⊥OA,当OF=EF时△DOF≌△DEF,由于OD=2BD,所以点D坐标为(43,43),点F坐标为(43,0),点E坐标为(83,0);点F在OA时,如图,点O关于DF的对称点落在AB上时,△DOF≌△DEF,此时OD=DE=2BD=43,BE=23,作BH ⊥OA 于H ,EG ⊥OA 于G ,由相似三角形的性质求得HG=23所以点E 坐标为(2+232-23).综上满足条件的点E 的坐标为(4,0)、(83,0)、(2+232-23.28.解:(1)函数y=-43x+4中,令x=0得y=4,令y=0得,x=3, 所以A(0,4),B(3,0).AB=(2)①由图1知,当⊙N 与x 轴相切于点E 时,作NH ⊥y 轴于H ,则四边形NHOE 为矩形,HO=EN=AM=AN ,∵∠HAN+∠OAB=90°,∠HNA+∠HAN=90°,∴∠OAB=∠HAN ,因为AM ⊥AN ,∴AH OB =HN AO =ANAB,设AH=3x ,则HN=4x,AN=NE=OH=5x, ∵OH=OA+AH,∴3x+4=5x, ∴x=2,∴AH=6,HN=8,AN=AM=10. ∵AM=AN ,∠OAB=∠HAN ,∴Rt △HAN ≌Rt △FMA, ∴FM=6,AF=8,OF=4, ∴M(6,-4).②当点P 位于y 轴负半轴上时,设直线AN 的解析式为y=kx+b ,将A(0,4),N(8,10)代入得1048k b b +==⎧⎨⎩,解得341k b ⎧=⎪⎨=⎪⎩,所以直线AN 的解析式为y=34x+4.所以点C 坐标为(-163,0),过D作x 轴的垂线可得点D(16,16).设点P 坐标为(0,-p),N(8,10)则直线NP 解析式为y=108p+x-p,作EF ⊥CD 于F ,CE=163+8=403,AC=320,CD=320+20=803,由相似三角形性质可得EF=8,△CDE ∽△APQ ,则48083p +=点Q 横坐标绝对值,解得点Q 的横坐标绝对值为3410p +(),将点Q 横坐标绝对值代入AB 及NP 解析式得108p +·3410p +()-p=3410p +()·(-43)+4,解得p 1=-4(舍去),p 2=6,所以P(0,-6).当点P 位于y 轴正半轴上时,设点P 坐标为(0,4+p),N(8,10),D(16,16)则直线NP 解析式为y=68p-x+4+p,△CDE ∽△AQP ,则40163p =点Q 横坐标绝对值,解得点Q 的横坐标绝对值为,将点Q 横坐标绝对值代入AB 及NP 解析式得68p -·(-65p )+4+p=(-65p )·(-43)+4,解得p=10,所以P(0,14).法二:把M (6,-4),D (16,16)代入y=kx+b 得161664k b k b +=⎧⎨+=-⎩,解得162k b ⎧⎨=-=⎩,∴直线MD的解析式为y=2x-16,当x=8时,y=0,点E (8,0)在直线DE 上。
2017年江苏省苏州市中考数学一模试卷

2018.3Zjie2017 年江苏省苏州市中考数学一模试卷一、选择题本大题共10 小题,每小题 3 分,共 30 分. 1.( 3 分) 的倒数是( )A .B .﹣C .D .﹣2.( 3 分)某细胞截面可以近似看成圆,它的半径约为 0.000 000787m ,则 0.000 000787 用科学记数法表示为( )A .7.87× 107B . 7.87×10 ﹣ 7 ﹣ 7 ﹣6C . 0.787×10D .7.87× 103.( 3 分)下列运算正确的是( )A .a 2+a 3=a 5B . a 2?a 3=a 6C . a 8÷ a 4=a 2D .(﹣ 2a 2)3=﹣ 8a 64.( 3 分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40 名学生,其中,参加书法兴 趣小组的有8 人,文学兴趣小组的有 11 人,舞蹈兴趣小组的有 9 人,其余参加绘画兴趣小组.则参加绘画 兴趣小组的频率是( )A .0.1B . 0.15C . 0.25D . 0.35.( 3 分)小明记录了 3 月份某一周的最高气温如下表:日期12 日 13 日 14 日 15日 16 日 17 日 18 日 最高气温(℃)15 10 13 14 13 16 13 那么 7 天每天的最高气温的众数和中位数分别是( )A .13, 14B . 13, 15C . 13,13 D .10, 136.( 3 分)已知点 A (﹣ 1, y 1)、 B (2, y 2), C (3, y 3)都在反比例函数 y=﹣ 的图象上,则下列y 1、 y 2、y 3 的大小关系为( )A .y1<y2< y3B . y1> y3> y2C . y1>y2> y3D .y2> y3>y17.( 3 分)如图,△ ABC 中, AB=AC=15, AD 平分∠ BAC ,点 E 为 AC 的中点,连接 DE ,若△ CDE 的周长为21,则 BC 的长为( )A .16B . 14C . 12D . 68.( 3 分)抛物线y=ax2+bx+c( a≠ 0)的对称轴是直线x=1,且经过点(3,0),则 a﹣ b+c 的值为()第 1 页(共 13 页)2018.3 Zjie A.﹣ 1 B. 0 C. 1 D. 29.( 3 分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C 两点测得该塔顶端 F 的仰角分别为 45°和 60°,矩形建筑物宽度AD=20m,高度 DC=30m 则信号发射塔顶端到地面的高度(即FG 的长)为()A.( 35 +55) m B.( 25 +45) m C.(25 +75) m D.( 50+20 ) m10.( 3 分)在平面直角坐标系中,Rt△ AOB的两条直角边OA、 OB 分别在 x 轴和 y 轴上, OA=3, OB=4.把△ AOB 绕点 A 顺时针旋转120°,得到△ ADC.边 OB 上的一点M 旋转后的对应点为M′,当 AM′+DM 取得最小值时,点M 的坐标为()A.( 0,) B.( 0,)C.( 0,)D.(0, 3)二、选择题本大题共8 小题,每小题3 分,共 24分 .11.( 3分)因式分解: a2﹣1= .12.( 3分)若式子在实数范围内有意义,则x 的取值范围是.13.( 3分)如图, a∥ b, MN ⊥ a,垂足为 N.若∠1=56 °,则∠ M 度数等于.第 2 页(共 13 页)2018.3 Zjie 14.( 3 分)某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、 C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中 A 所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是.15.( 3 分)关于 x 的一元二次方程 x2﹣ 2x+m﹣ 1=0 有两个实数根,则m 的取值范围是.16.( 3 分)如图,矩形 ABCD中, AB=4,将矩形ABCD绕点 C 顺时针旋转90°,点 B、 D 分别落在点B′, D′处,且点 A, B′, D′在同一直线上,则 tan ∠ DAD′.17.( 3 分)如图,⊙ O 的半径是2,弦 AB 和弦 CD 相交于点E,∠AEC=60°,则扇形AOC 和扇形 BOD 的面积(图中阴影部分)之和为.18.( 3 分)如图,在等腰Rt△ ABC 中,∠ ABC=90°, AB=BC=4.点 P 是△ ABC 内的一点,连接PC,以 PC 为直角边在PC 的右上方作等腰直角三角形 PCD.连接 AD,若 AD∥ BC,且四边形ABCD 的面积为12,则 BP的长为.三、解答题本大题共10 小题,共76 分第 3 页(共 13 页)2018.3 Zjie 19.( 5 分)计算:+| ﹣| ﹣﹣tan30 °.20.( 5 分)解不等式组:.21.( 6 分)先化简,再求值:(1﹣)÷,其中 x= +1.22.( 6 分)某班为奖励在校运动会上取得较好成绩的运动员,花了 396 元钱购买甲、乙两种奖品共30件.其中甲种奖品每件 15 元,乙种奖品每件 12 元,求甲、乙两种奖品各买多少件?23.( 8 分)九年级(1)班和( 2)班分别有一男一女共4 名学生报名参加学校文艺汇演主持人的选拔.( 1)若从报名的 4 名学生中随机选 1 名,则所选的这名学生是女生的概率是.( 2)若从报名的 4 名学生中随机选 2 名,用树状图或表格列出所有可能的情况,并求出这 2 名学生来自同一个班级的概率.24.( 8 分)如图,已知Rt△ ABD 中,∠ A=90°,将斜边BD 绕点 B 顺时针方向旋转至BC,使 BC∥ AD,过点C 作 CE⊥BD 于点 E.(1)求证:△ ABD≌△ ECB;(2)若∠ ABD=30°, BE=3,求弧 CD的长.第 4 页(共 13 页)2018.3 Zjie 25.( 8 分)如图,在平面直角坐标系中,函数y= ( x> 0, k 是常数)的图象经过A( 2, 6),B( m, n),其中 m> 2.过点 A 作 x 轴垂线,垂足为C,过点 B 作 y 轴垂线,垂足为D, AC 与 BD 交于点 E,连结 AD,DC,CB.( 1)若△ ABD 的面积为3,求 k 的值和直线AB 的解析式;( 2)求证:= ;( 3)若 AD∥ BC,求点 B 的坐标.26.( 10 分)如图,在△ ABC 中, AB=AC,以 AB 为直径的⊙ O 交 BC 边于点 D,交 AC 边于点 E.过点 D 作⊙ O 的切线,交 AC 于点 F,交 AB 的延长线于点 G,连接 DE.(1)求证: BD=CD;(2)若∠ G=40°,求∠ AED的度数.(3)若 BG=6, CF=2,求⊙ O 的半径.第 5 页(共 13 页)2018.3 Zjie27.( 10 分)如图,正方形 OABC 的顶点 O 在坐标原点,顶点 A 的坐标为( 4, 3) ( 1)顶点 C 的坐标为( , ),顶点 B 的坐标为( , );( 2)现有动点 P 、Q 分别从 C 、A 同时出发,点 P 沿线段 CB 向终点 B 运动,速度为每秒 1 个单位,点 Q 沿 折线 A →O →C 向终点 C 运动,速度为每秒 k 个单位,当运动时间为 2 秒时,以 P 、 Q 、 C 为顶点的三角形是 等腰三角形,求此时 k的值.( 3)若正方形 OABC 以每秒 个单位的速度沿射线 AO 下滑,直至顶点 C 落到 x 轴上时停止下滑. 设正方形OABC 在 x 轴下方部分的面积为 S ,求 S 关于滑行时间 t 的函数关系式,并写出相应自变量 t 的取值范围.28.( 10 分)如图,在平面直角坐标系中,抛物线y=ax 2﹣ 2ax ﹣3a ( a > 0)与 x 轴交于 A 、 B 两点(点 A 在 点 B 左侧),经过点 A 的直线 l : y=kx+b 与 y 轴交于点 C ,与抛物线的另一个交点为 D ,且 CD=4AC .( 1)直接写出点 A 的坐标,并用含a 的式子表示直线 l 的函数表达式(其中 k 、 b 用含 a 的式子表示) .( 2)点 E 为直线 l 下方抛物线上一点,当△ ADE 的面积的最大值为 时,求抛物线的函数表达式;( 3)设点 P 是抛物线对称轴上的一点,点 Q 在抛物线上,以点 A 、D 、P 、 Q 为顶点的四边形能否为矩形?若能,求出点 P 的坐标;若不能,请说明理由.第 6 页(共 13 页)2018.3Zjie参考答案与试题解析一、选择题1. C . 2. B . 3. D . 4. D .5. C . 6. B .7.【解答】 解:∵ AB=AC , AD 平分∠ BAC ,∴ A D ⊥ BC , ∴∠ADC=90°,∵点 E 为 AC 的中点,∴ D E=CE= AC= .∵△ CDE 的周长为 21,∴ C D=6,∴ B C=2CD=12.故选 C .8.【解答】解:∵抛物线 y=ax 2 +bx+c 的对称轴为 x=1,∴根据二次函数的对称性得:点( 3, 0)的对称点为(﹣ 1,0),∵当 x=﹣1 时, y=a ﹣ b+c=0,∴ a ﹣ b+c 的值等于 0.故选 B .9.【解答】 解:设 CG=xm ,由图可知: EF=( x+20) ?tan45 °, FG=x?tan60°,则( x+20)tan45 °+30=xtan60 °,解得 x= =25( +1),则 FG=x?tan60°=25( +1)× =( 75+25 )m .故选 C .10. 【解答】 解:∵把△ AOB 绕点 A 顺时针旋转120 °,得到△ ADC ,点 M 是 BC 边上的一点, ∴ A M=AM ′ ,∴ A M ′+DM 的最小值 =AM+DM 的最小值,作点 D 关于直线 OB 的对称点 D ′,连接 AD ′交 OB 于M,则A D′=AM′+DM的最小值,过 D 作DE⊥x 轴于 E,∵∠OAD=120°,∴∠DAE=60°,∵ AD=AO=3,∴ DE= ×3= ,AE= ,∴ D(,),∴ D′(﹣,),设直线 AD′的解析式为y=kx+b,∴,∴,∴直线 AD′的解析式为y=﹣x+,当 x=0 时, y= ,∴M( 0,),故选 A.二、填空题11.( a+1)( a﹣ 1). 12. x>﹣ 2 .第 7 页(共 13 页)2018.3 Zj ie13.【解答】解:∵ a∥ b,∠1=56 °,∴ 扇形AOC 与扇形DOB 面积的和∴∠ 2=∠ 1=56°,= = ,∴∠ 3=∠ 2=56°,故答案为:.∵ MN ⊥ a,∴∠ M=180°﹣∠ 3﹣ 90°=180°﹣ 56°﹣ 90°=34°.故答案为: 34°.14.【解答】解:由题意可得,被调查的学生有:20÷=240(人),则选择跳绳的有:240﹣ 20﹣ 80﹣40=100(人),故答案为: 100 人.15.【解答】解:由题意知,△=4﹣ 4( m﹣1)≥ 0,∴m≤ 2,故答案为: m≤2 .16.【解答】解:由题意可得:AD∥CD′,故△ ADE∽△ D′CB,′则= ,设A D=x,则 B′C=x, DB′=4﹣ x,AB=CD′=4,故= ,解得: x1=﹣ 2﹣2(不合题意舍去),x2=﹣ 2+2 ,则D B′=6﹣2 ,则 tan∠ DAD′== = .故答案为:.17.【解答】解:连接 BC,如图所示:∵∠ CBE+∠ BCE=∠ AEC=60°,∴∠ AOC+∠ BOD=120°,18.【解答】解:如图,作PF⊥ BC 于点 F,延长FP交A D 于点 E,∵AD∥BC,∴∠ PFC=∠ DEP=90°,∴∠ CPF+∠ PCF=90°,∵∠ DPC=90°,∴∠ CPF+∠ DPE=90°,∴∠ PCF=∠ DPE,在△ PCF和△ DPE中,∵,∴△ PCF≌△ DPE( AAS),∴PF=DE、PE=CF,设P F=DE=x,则 PE=CF=4﹣x,∵S 四边形 ABCD= ( AD+BC)?AB=12,∴ ×( AD+4)× 4=12,解得 AD=2,∴ AE=BF=2﹣ x,第 8 页(共 13 页)2018.3∴F C=BC﹣ BF=4﹣( 2﹣x) =2+x,可得 2+x=4﹣x,解得 x=1,∴ BP= = ,故答案为:.三、解答题19 .【解答】解:+| ﹣|﹣﹣tan30 °=3+ ﹣ 1﹣=20.【解答】解:由①得,x>﹣ 1,由②得, x≤ 4,∴不等式组的解集为﹣1< x≤ 4.21.【解答】解:( 1﹣)÷===,当 x= +1 时,原式= = .22.【解答】解:设甲种奖品买了x 件,乙种奖品买了 y 件.根据题意得:,解得:.答:甲种奖品买了12 件,乙种奖品买了18 件.Zjie 23.【解答】解:( 1)所选的学生性别为女生的概率== ,故答案为:;( 2)画树形图得:所以共有12 种等可能的结果,满足要求的有 4 种.∴这 2 名学生来自同一个班级的概率为 =.24.【解答】(1)证明:∵∠A=90°,CE⊥ BD,∴∠ A=∠BEC=90°.∵BC∥AD,∴∠ ADB=∠EBC.∵将斜边 BD 绕点 B 顺时针方向旋转至BC,∴ BD=BC.在△ ABD 和△ ECB中,∴△ ABD≌△ ECB;(2)∵△ABD≌△ ECB,∴AD=BE=3.∵∠ A=90°,∠BAD=30°,∴BD=2AD=6,∵ BC∥ AD,∴∠ A+∠ABC=180°,∴∠ ABC=90°,∴∠ DBC=60°,∴弧 CD的长为=2π.第 9 页(共 13 页)2018.325.【解答】解:( 1)∵函数 y=( x> 0,k 是常数)的图象经过A( 2, 6),∴k=2× 6=12,∵ B( m, n),其中 m>2.过点 A 作x 轴垂线,垂足为 C,过点 B 作 y 轴垂线,垂足为D,∴m n=12 ①, BD=m, AE=6﹣ n,∵△ ABD 的面积为 3,∴BD?AE=3,∴m( 6﹣ n) =3②,联立①②得, m=3, n=4,∴ B(3, 4);设直线 AB 的解析式为y=kx+b( k≠0),则,∴,∴直线 AB 的解析式为y=﹣ 2x+10 ( 2)∵ A(2 ,6), B(m,n ),∴B E=m﹣ 2,CE=n, DE=2,AE=6﹣n,∴D E?AE=2( 6﹣ n) =12﹣ 2n,BE?CE=n(m﹣2)=mn﹣2n=12﹣2n,∴D E?AE=BE?CE,∴Zjie ∵AD∥BC,∴四边形ADCB是平行四边形.又∵ AC⊥ BD,∴四边形ADCB是菱形,∴DE=BE, CE=AE.∴B(4, 3).26.【解答】(1)证明:连接AD ,∵AB 为直径,∴∠ACB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;( 3)由( 2)知,,( 2)解:连接OD,∵∠ AEB=∠DEC=90°,∵ GF 是切线, OD 是半径,∴△ DEC∽△BEA,∴ OD⊥ GF,∴∠ CDE=∠ABE∴∠ ODG=90°,∴ AB∥ CD,∵∠ G=40°,第 10 页(共 13 页)2018.3∴∠ GOD=50°,∵O B=OD,∴∠OBD=65°,∵点 A、 B、 D、 E 都在⊙ O 上,∴∠ ABD+∠ AED=180°,∴∠ AED=115°;(3)解:∵AB=AC,∴∠ABC=∠ C,∵ OB=OD,∴∠ ABC=∠ ODB,∴∠ ODB=∠ C,∴O D∥ AC,∴△ GOD∽△ GAF,∴= ,∴设⊙ O 的半径是r,则 AB=AC=2r,∴A F=2r﹣ 2,∴= ,∴r=3,即⊙ O 的半径是3.27.【解答】解:(1)如图 1 中,作CM⊥ x 轴于,AN⊥x 轴于 N.连接 AC、 BO 交于点 K.易证△ AON≌△ COM,可得 CM=ON=4,OM=AN=3,∴C(﹣3,4),∵CK=AK,OK=BK,Zjie∴K(,),B(1,7),故答案为﹣ 3,4,1, 7.(2)由题意得,AO=CO=BC=AB=5,当 t=2时, CP=2.①当点 Q 在 OA 上时,∵ PQ≥AB> PC,∴只存在一点 Q,使QC=QP.作 QD⊥ PC于点 D(如图 2 中),则CD=PD=1,∴QA=2k=5﹣ 1=4,∴k=2.②当点 Q 在 OC上时,由于∠ C=90°所以只存在一点Q,使 CP=CQ=2,∴2k=10﹣ 2=8,∴ k=4.综上所述, k 的值为 2 或 4.( 3)①当点 A 运动到点O 时, t=3.当0< t ≤3 时,设 O’C交’ x 轴于点E,作A’F⊥x 轴于点F(如图3 中).则△ A’OF∽△ EOO’,第 11 页(共 13 页)2018.3 Zjie ∴== ,OO′= t ,∴E O′= t,∴S= t 2.②当点 C 运动到 x 轴上时, t=4当 3< t≤ 4 时(如图4 中),设 A’B 交’x 轴于点 F,则A’O=A′O=t ﹣ 5,∴ A′F=.∴ S= ( + t )× 5= .综上所述, S= .28.【解答】解:( 1)令 y=0,则 ax2﹣ 2ax﹣ 3a=0,解得 x1=﹣ 1,x2=3∵点 A 在点 B 的左侧,∴ A(﹣ 1,0 ),如图 1,作 DF⊥ x 轴于 F,∴DF∥ OC,∴= ,∵CD=4AC,∴= =4,∵OA=1,∴OF=4,∴ D 点的横坐标为 4,代入 y=ax2﹣ 2ax﹣ 3a 得, y=5a,∴D(4, 5a),把 A、 D 坐标代入y=kx+b 得,解得,∴直线 l 的函数表达式为y=ax+a.( 2)如图 2,过点 E 作 EH∥ y 轴,交直线l 于点H,设E(x, ax2﹣ 2ax﹣ 3a),则 H(x,ax+a).∴HE=( ax+a)﹣( ax2﹣ 2ax﹣ 3a)=﹣ ax2+3ax+4a,第 12 页(共 13 页)2018.3由 得 x=﹣1 或 x=4,即点 D 的横坐标为 4,∴ S △ ADE=S △ AEH+S △ DEH= (﹣ ax 2 +3ax+4a ) =﹣ a ( x﹣ ) 2+ a .∴△ ADE 的面积的最大值为 a ,∴ a= ,解得: a= .∴抛物线的函数表达式为 y= x 2﹣ x ﹣ .( 3)已知 A (﹣ 1, 0),D ( 4, 5a ).∵ y =ax 2﹣2ax ﹣3a ,∴抛物线的对称轴为 x=1,设 P ( 1, m ),①若 AD 为矩形的边,且点 Q 在对称轴左侧时,则AD ∥ PQ ,且 AD=PQ , 则 Q (﹣ 4, 21a ),m=21a+5a=26a ,则 P (1, 26a ),∵四边形 ADPQ 为矩形,∴∠ ADP=90°,2 2 2 , ∴ AD +PD=AP∴ 52 +( 5a )2 +( 1﹣ 4) 2+( 26a ﹣ 5a ) 2=(﹣ 1﹣ 1) 2 +( 26a ) 2,即 a 2= ,∵ a >0 ,Zjie∴ a= ,∴ P 1( 1, ),②若 AD 为矩形的边,且点 Q 在对称轴右侧时,则AD ∥ PQ ,且 AD=PQ , 则 Q ( 4, 5a ),此时点 Q 与点 D 重合,不符合题意,舍去;③若 AD 是矩形的一条对角线,则 AD 与 PQ 互相平分且相等.∴ x D +x A =x P +x Q ,y D +y A =y P +y Q ,∴ xQ=2,∴ Q ( 2,﹣ 3a ).∴ yP=8a∴ P ( 1,8a ).∵四边形 APDQ 为矩形,∴∠ APD=90°∴ AP 2+PD 2=AD 2∴(﹣ 1﹣ 1)2+( 8a )2 +(1﹣ 4) 2+( 8a ﹣5a )2=52+( 5a ) 2 即 a 2 = ,∵ a > 0,∴ a=∴ P 2( 1, 4)综上所述,以点 A 、 D 、 P 、 Q 为顶点的四边形能成为矩形,点 P 的坐标为( 1, )或( 1,4).第 13 页(共 13 页)。
2017年江苏省苏州市中学考试数学一模试卷

实用文档2017年江苏省苏州市中考数学一模试卷一、选择题本大题共10小题,每小题3分,共30分.分)的倒数是(3 )1.(.﹣D..B .﹣A C2.(3分)某细胞截面可以近似看成圆,它的半径约为0.000 000787m,则0.000 000787用科学记数法表示为()7﹣7﹣7﹣610.7.87×7.87×10 C.0.787×10 DA.7.87×10 B.)分)下列运算正确的是(3.(36238423252368aa?a=a ﹣)= D.(﹣2aC.a÷a=a A.a+a=aB.名学生,其中,参加书法兴分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了404.(3人,其余参加绘画兴趣小组.则参加绘画人,舞蹈兴趣小组的有9趣小组的有8人,文学兴趣小组的有11)兴趣小组的频率是(0.3..0.15 C.0.25 DA.0.1 B月份某一周的最高气温如下表:(.3分)小明记录了35那么7天每天的最高气温的众数和中位数分别是()A.13,14 B.13,15 C.13,13 D.10,136.(3分)已知点A(﹣1,y)、B(2,y),C(3,y)都在反比例函数y=﹣的图象上,则下列y、y、21312y的大小关系为()3A.y<y<y B.y>y>y C.y>y>y D.y>y>y1223223 111337.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.62)b+ca),,且经过点()的对称轴是直线≠(y=ax3.8(分)抛物线+bx+ca0x=130,则﹣的值为(实用文档A.﹣1 B.0 C.1 D.29.(3分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()50+20)(m.25+75))+55m B.(m D25+45)m C.A.((3510.(3分)在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为(),)D.(0,3).,)B(0(,)C.0.A(0二、选择题本大题共8小题,每小题3分,共24分.2.1= 3分)因式分解:a﹣.11(.x的取值范围是12.(3分)若式子在实数范围内有意义,则13.(3分)如图,a∥b,MN⊥a,垂足为N.若∠1=56°,则∠M度数等于.14.(3分)某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、实用文档D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是.2.的取值范围是2x+m﹣1=0有两个实数根,则m(15.3分)关于x的一元二次方程x﹣′′,D、D分别落在点B°,点AB=4,将矩形ABCD绕点C顺时针旋转90B中,16.(3分)如图,矩形ABCD.∠DAD′tan处,且点A,B′,D′在同一直线上,则17.(3分)如图,⊙O的半径是2,弦AB和弦CD相交于点E,∠AEC=60°,则扇形AOC和扇形BOD的面积(图中阴影部分)之和为.18.(3分)如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD的面积为12,则BP的长为.三、解答题本大题共10小题,共76分°.tan30﹣5.19(分)计算:﹣|﹣+|实用文档分)解不等式组:.5.(20x=+1,其中(1.﹣)÷21.(6分)先化简,再求值:22.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?23.(8分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.24.(8分)如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.y=(x>0,k是常数)的图象经过A(2,分)如图,在平面直角坐标系中,函数25.(86),B (m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,实用文档CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;=;)求证:(2(3)若AD∥BC,求点B的坐标.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,交AC边于点E.过点D作⊙O的切线,交AC于点F,交AB的延长线于点G,连接DE.(1)求证:BD=CD;(2)若∠G=40°,求∠AED的度数.(3)若BG=6,CF=2,求⊙O的半径.27.(10分)如图,正方形OABC的顶点O在坐标原点,顶点A的坐标为(4,3)(1)顶点C的坐标为(,),顶点B的坐标为(,);(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿实用文档折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.以每秒个单位的速度沿射线AO下滑,直至顶点C落到x(3)若正方形OABC轴上时停止下滑.设正方形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.2在AB两点(点轴交于0)与xA、﹣28.(10分)如图,在平面直角坐标系中,抛物线y=ax﹣2ax3a(a>.,且CD=4AC轴交于点C,与抛物线的另一个交点为D与B点左侧),经过点A的直线l:y=kx+by.的式子表示)b用含a的式子表示直线的坐标,并用含al的函数表达式(其中k、)直接写出点(1A时,求抛物线的函数表达式;的面积的最大值为lE为直线下方抛物线上一点,当△ADE2()点(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.实用文档OB′交′,连接AD关于直线OB的对称点D作点D参考答案与试题解析,M于一、选择题的最小值,′+DM则AD′=AM.B..5.C.6..2.B.3 D.4.D.1 C,轴于E 作DE⊥x过D,平分∠BAC.【解答】解:∵AB=AC,AD7°,∵∠OAD=120,AD⊥BC∴°,∴∠DAE=60°,∴∠ADC=90,∵AD=AO=3的中点,E为AC∵点,3=,∴DE=×AE=.DE=CE=∴AC=,()∴D,,∵△CDE21的周长为,CD=6∴,)∴D,′(﹣.∴BC=2CD=12,y=kx+bAD′的解析式为设直线.故选C,∴2,x=1解:8.【解答】∵抛物线y=ax+bx+c的对称轴为)的对称点∴根据二次函数的对称性得:点(03,,,为(﹣10),∴,∵当x=﹣﹣b+c=0y=a1时,.0b+ca∴﹣的值等于,y=x+﹣∴直线AD′的解析式为.B故选,x=0时,y=当,.9【解答】CG=xm解:设,,)∴M(0°,由图可知:EF=?tan60FG=x°,tan45)(x+20?.+30=xtan60°°,故选Atan45x+20则(),=25x=解得(+1))FG=x则?75+25(=+1=25tan60°()×.m.故选C°,.10绕点∵把△解:解答】【AOB120顺时针旋转A 边上的一点,ADC得到△,点是MBC′,∴AM=AM二、填空题的最小值,′AM∴的最小值+DM=AM+DM .2>﹣x.12.)1﹣a()a+1(.11实用文档AOCBOD=12°AODO和°,∠2=56∴∠3===,,⊥a∵MN故答案为:.°°﹣90°M=180°﹣∠3﹣90=180°﹣56∴∠°.=34°.故答案为:3418.【解答】解:如图,作PF⊥BC于点F,延长FP交AD于点E,解:由题意可得,【解答】14.,被调查的学生有:20÷(人)=240,40=100(人)﹣240﹣2080﹣则选择跳绳的有:人.故答案为:100∵AD,﹣﹣15.【解答】解:由题意知,△=44(m1)≥0∥BC,°,DEP=902∴m≤,∴∠PFC=∠°,PCF=90∴∠m故答案为:≤2.CPF+∠°,′,解:由题意可得:.【解答】AD∥CDDPC=90∵∠16°,′,′∽△故△ADEDCBDPE=90CPF+∠∴∠,∠PCF=DPE∴∠,则=中,和△DPE在△PCF,=4′,﹣′,,则设AD=xB′C=xDB=4xAB=CD,故=,∵,2+2=x(不合题意舍去)﹣﹣=解得:x22,﹣21,(AAS)DPE∴△PCF≌△,则=6﹣2′DB,PF=DE、PE=CF∴.则==′∠tanDAD=,x﹣设PF=DE=x,则PE=CF=4,)?AB=12=∵S(AD+BC.故答案为:ABCD四边形,如图所示:17解:连接.【解答】BC,4=12)×,解得AD=2AD+4∴×(°,AEC=60∠∠CBE+∵∠BCE=,AE=BF=2∴﹣x实用文档解)所选的学生性别为女生的概率,,解得x=1可得2+x=4﹣x==,,=∴BP=故答案为:;.故答案为:(2)画树形图得:三、解答题﹣﹣﹣|19.【解答】解:+|所以共有12种等可能的结果,满足要求的有4种.°tan30∴这2名学生来自同一个班级的概率为=.﹣=3+﹣1=24.【解答】(1)证明:∵∠A=90°,CE⊥BD,∴∠A=∠BEC=90°.,1x【解答】20.解:由①得,>﹣∵BC∥AD,,x由②得,≤4∴∠ADB=∠EBC..<4x≤∴不等式组的解集为﹣1∵将斜边BD绕点B顺时针方向旋转至BC,∴BD=BC.在△ABD和△ECB中,)÷.21【解答】﹣1解:(=∴△ABD≌△ECB;=,=(2)∵△ABD≌△ECB,.+1x=当==时,原式∴AD=BE=3.∵∠A=90°,∠BAD=30°,∴x解:设甲种奖品买了.22【解答】BD=2AD=6,件,乙种奖品买∵y了BC∥AD,件.∴∠A+∠ABC=180°,,根据题意得:∴∠ABC=90°,.解得:∴∠DBC=60°,件.12答:甲种奖品买了件,乙种奖品买了18∴弧CD的长为=2π.实用文档B是平行四边形.∴四边形ADCB是常数)0,k)∵函数y=(x>25.【解答】解:(1,⊥BD又∵AC,6)的图象经过A(2,是菱形,∴四边形ADCB,×6=12k=2∴.,CE=AE∴DE=BE轴垂线,垂足n),其中m>2x.过点A作m∵B(,∴B(4,3).,DB 作y轴垂线,垂足为C为,过点,nAE=6﹣∴mn=12①,BD=m,26.,3ABD的面积为∵△【解答】(1)证明:连接AD,,?AE=3∴BD②,=3n)m∴(6﹣,,n=4联立①②得,m=3;4B∴(3,),0)y=kx+b(k≠设直线AB的解析式为,则∵AB为直径,,∴∴∠ACB=90°,2x+10﹣∴直线AB的解析式为y=∴AD⊥BC,∵AB=AC,,)(6A2()∵(2,),Bm,n∴BD=CD;,﹣nAE=6DE=2CE=nBE=m∴﹣2,,,,∴=12n6(﹣)﹣2nAE=2DE?,﹣(CE=nm22n﹣﹣)=mn2n=12?BE,?AE=BECE?∴DE∴,2)由()知,3((2)解:连接OD,∵GF是切线,OD是半径,°,∠AEB=∵∠DEC=90∴OD⊥GF,,∽△∴△DECBEA∴∠ODG=90°,ABE∠CDE=∴∠∵∠G=40°,,∴CD∥AB实用文档,∵OB=OD故答案为﹣3,4,1,7.°,OBD=65∴∠上,都在⊙OA∵点、B、D、E(2)由题意得,AO=CO=BC=AB=5,°,∴∠ABD+∠AED=180当t=2时,CP=2.°;∴∠AED=115①当点Q在OA上时,∵PQ≥AB>PC,∴只存在一点Q,使QC=QP.,)解:∵(3AB=AC作QD⊥PC于点D(如图2中),则CD=PD=1,,∴∠ABC=∠C,OB=OD∵,ODB∠∴∠ABC=,∴∠ODB=∠C,AC∥∴OD,GAFGOD∽△∴△∴QA=2k=5﹣1=4,,∴=∴k=2.,的半径是∴设⊙Or,则AB=AC=2r②当点Q在OC上时,由于∠C=90°所以只存在一点,﹣∴AF=2r2Q,使CP=CQ=2,,=∴∴2k=10﹣2=8,∴k=4.综上所述,k,∴r=3的值为2或4..3的半径是即⊙O(3)①当点A运动到点O时,t=3.当0<轴于,⊥CM中,作)如图(【解答】.27解:11xANt≤3时,设O'C'交x轴于点E,作A'F ⊥x交于点BO、.连接N轴于⊥xACK轴于点F(如图3.中).,CM=ON=4COM≌△AON易证△,可得,OM=AN=3则△A'OF∽△EOO',,3(﹣C∴CK=AK,∵)4,,OK=BK 实用文档O,∴=,=t∴EO′,CD=4AC∵2.∴S=t,∴==4t=4x轴上时,C②当点运动到,OA=1∵,轴于点F,当3<t≤4时(如图4中)设A'B'交x∴OF=4,∴D点的横坐标为4,2﹣2ax﹣3a代入y=ax得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,,O=A则A'′O=t5﹣∴直线l的函数表达式为y=ax+a..F=A′∴(2)如图2,过点E作EH∥y轴,交直线l于点H,.(∴S=+t)×5=.综上所述,S=2,.28【解答】﹣2ax﹣3a=0axy=0解:(1)令,则=3=x解得﹣,x121的左侧,在点B∵点A2.ax+a),则H(x,(设Ex,ax3a﹣2ax﹣),0),(﹣∴A122,=﹣axaxax+a)﹣(+3ax+4a﹣2ax﹣3a)HE=∴(,F轴于xDF1如图,作⊥,或x=4﹣由得x=1,4的横坐标为即点D2)x=)﹣a(﹣+3ax+4a(﹣=+Sax=S∴S DEH△△ADE△AEH2.+a,∴△ADE的面积的最大值为a实用文档A为矩形的边,且在对称轴右侧时,则AD∥PQ,且AD=PQ,.解得:a=则Q(4,5a),2.﹣x﹣x∴抛物线的函数表达式为y=此时点Q与点D重合,不符合题意,舍去;③若AD是矩形的一条对角线,则AD与PQ互相平分且相等.)已知(3A(﹣1,0),.,5a)D(42∴x+x=x+x,y﹣2ax﹣3a,+y=y+y,∵y=ax QPADQADP∴x=1,x=2,∴抛物线的对称轴为Q∴Q(2,﹣3a),1设P(,m).∴为矩形的边,且点ADQ在对称轴左侧时,则y=8a①若P∴P(1,8a).,∥ADPQ,且AD=PQ ∵四边形),21a,APDQ为矩形,(﹣则Q4∴∠APD=90),(126a,°,则m=21a+5a=26aP222=ADAP+PD∵四边形ADPQ为矩形,∴22222+=58a﹣5a1+(﹣4))+)1∴(﹣﹣1)+(ADP=90∴∠°,8a(2222)∴(,5aAD+PD=AP2222)﹣11)5a﹣(4﹣1)(+∴55a+()+26a=(﹣2=,即a22,)(+26a∵a>0,2,=即a∴a=,a∵>0∴P(1,4)2,∴a=综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,,),1()或(P∴1,4).1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年江苏省苏州市张家港市中考数学一模试卷一.选择题(共10小题,每小题3分,共30分)1.(3分)相反数等于2的数是()A.2 B.﹣2 C.±2 D.2.(3分)某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是()A.平均数为30 B.众数为29 C.中位数为31 D.极差为53.(3分)人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣74.(3分)如果在实数范围内有意义,则x的取值范围是()A.x≠4 B.x≤4 C.x≥4 D.x<45.(3分)反比例函数y=的图象与一次函数y=x+2的图象交于点A(a,b),则a﹣b+ab的值是()A.1 B.﹣1 C.3 D.26.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球7.(3分)如图,在△ABC中,AB=AC,以BC为直径画半圆交AB于E,交AC于D,的度数为40°,则∠A的度数是()A.40°B.70°C.50°D.20°8.(3分)已知关于x的方程ax2+bx+c=0(a≠0)的两根为:x1=1,x2=﹣5,则二次函数y=ax2+bx+c的对称轴是()A.直线x=2 B.直线x=3 C.直线x=﹣2 D.y轴9.(3分)如图,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达地面的B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,E、B、A在一条直线上.信号塔CD的高度为()A.20B.20﹣8 C.20﹣28 D.20﹣2010.(3分)如图,点M(﹣3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A坐标是()A.(,)B.(,11)C.(2,2) D.(,)二、填空题:(本大题共8小题,每小题3分,共24分,)11.(3分)计算:(﹣2x3)2=.12.(3分)分解因式:4x2﹣9y2=.13.(3分)如图,直线a、b被直线c所截,且a∥b.若∠1=35°,则∠2=°.14.(3分)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是cm.15.(3分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=15°,AB=6cm,则⊙O半径为cm.16.(3分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则通话时间不超过10min的频率为.17.(3分)如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为.18.(3分)如图,在△ABC中,AB=4,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,则的最大值为.三、解答题:(本大题共10小题,共76分,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(5分)计算:﹣+|﹣2|﹣()﹣1+2cos45°.20.(6分)解不等式组.21.(7分)请你先化简,再从﹣2,2,中选择一个合适的数代入求值.22.(6分)解分式方程:.23.(7分)在一个不透明的盒子中放有三张分别写有数字1,2,3的红色卡片和三张分别写有数字0,1,4的蓝色卡片,卡片除颜色和数字外完全相同.(1)从中任意抽取一张卡片,该卡片上写有数字1的概率是;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为x,蓝色卡片上的数字作为y,将(x,y)作为点A的坐标,请用列举法(画树状图或列表)求二次函数y=(x ﹣1)2的图象经过点A的概率.24.(6分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.25.(8分)在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,3)和B(﹣3,m).(1)求反比例函数y1=和一次函数y2=ax+b的表达式;(2)点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.若AC=CD,求点C的坐标.26.(8分)如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.27.(10分)已知:在直角坐标系中,点A(0,6),B(8,0),点C是线段AB 的中点,CD⊥OB交OB于点D,Rt△EFH的斜边EH在射线AB上,顶点F在射线AB的左侧,EF∥OA.点E从点A出发,以每秒1个单位的速度向点B运动,到点B停止.AE=EF,运动时间为t(秒).(1)在Rt△EFH中,EF=,EH=;F(,)(用含有t的代数式表示)(2)当点H与点C重合时,求t的值.(3)设△EFH与△CDB重叠部分图形的面积为S(S>0),求S与t的关系式;(4)求在整个运动过程中Rt△EFH扫过的面积.28.(13分)如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P 的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q 从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t (秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?2017年江苏省苏州市张家港市中考数学一模试卷参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.(3分)相反数等于2的数是()A.2 B.﹣2 C.±2 D.【解答】解:∵2+(﹣2)=0,∴相反数等于2的数是:﹣2.故选:B.2.(3分)某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是()A.平均数为30 B.众数为29 C.中位数为31 D.极差为5【解答】解:==29.8,∵数据29出现两次最多,∴众数为29,中位数为29,极差为:32﹣28=4.故B.3.(3分)人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【解答】解:0.0000077=7.7×10﹣6,故选:C.4.(3分)如果在实数范围内有意义,则x的取值范围是()A.x≠4 B.x≤4 C.x≥4 D.x<4【解答】解:根据题意得:4﹣x≥0,解得x≤4.故选B.5.(3分)反比例函数y=的图象与一次函数y=x+2的图象交于点A(a,b),则a﹣b+ab的值是()A.1 B.﹣1 C.3 D.2【解答】解:∵反比例函数y=的图象与一次函数y=x+2的图象交于点A(a,b),∴b=,b=a+2,∴ab=3,a﹣b=﹣2,∴a﹣b+ab=﹣2+3=1.故选A.6.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.7.(3分)如图,在△ABC中,AB=AC,以BC为直径画半圆交AB于E,交AC于D,的度数为40°,则∠A的度数是()A.40°B.70°C.50°D.20°【解答】解:∵BC为圆的直径,∴∠BDC=90°,∵的度数为40°,∴∠DBC=20°,∴∠C=70°,∵AB=AC,∴∠ABC=∠C=70°,∴∠A=40°,故选A8.(3分)已知关于x的方程ax2+bx+c=0(a≠0)的两根为:x1=1,x2=﹣5,则二次函数y=ax2+bx+c的对称轴是()A.直线x=2 B.直线x=3 C.直线x=﹣2 D.y轴【解答】解:∵关于x的方程ax2+bx+c=0(a≠0)的两根为:x1=1,x2=﹣5,∴二次函数y=ax2+bx+c与x轴的两个交点的横坐标为分别为1和﹣5,∴对称轴为:x==﹣2故选(C)9.(3分)如图,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达地面的B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,E、B、A在一条直线上.信号塔CD的高度为()A.20B.20﹣8 C.20﹣28 D.20﹣20【解答】解:根据题意得:AB=8米,DE=20米,∠A=30°,∠EBC=45°,在Rt△ADE中,AE=DE=20米,∴BE=AE﹣AB=20﹣8(米),在Rt△BCE中,CE=BE•tan45°=(20﹣8)×1=20﹣8(米),∴CD=CE﹣DE=20﹣8﹣20=20﹣28(米);故选:C.10.(3分)如图,点M(﹣3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A坐标是()A.(,)B.(,11)C.(2,2) D.(,)【解答】解:作AD⊥x轴于D,CE⊥x轴于E,设直线OM的解析式为y=kx,∵点M(﹣3,4),∴4=﹣3k,∴k=﹣,∵四边形ABCO是正方形,∴直线AC⊥直线OM,∴直线AC的斜率为,∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°∴∠COE=∠OAD,在△COE和△OAD中,∴△COE≌△OAD(AAS),∴CE=OD,OE=AD,设A(a,b),则C(﹣b,a),设直线AC的解析式为y=mx+n,∴解得m=,∴=,整理得,b=7a,∵正方形面积为128,∴OA2=128,在RT△AOD中,AD2+OD2=OA2,即(7a)2+a2=128,解得,a=,∴b=7a=7×=,∴A(,),故选D.二、填空题:(本大题共8小题,每小题3分,共24分,)11.(3分)计算:(﹣2x3)2=4x6.【解答】解:(﹣2x3)2=(﹣2)2(x3)2=4x6.12.(3分)分解因式:4x2﹣9y2=(2x+3y)(2x﹣3y).【解答】解:原式=(2x+3y)(2x﹣3y).故答案为:(2x+3y)(2x﹣3y).13.(3分)如图,直线a、b被直线c所截,且a∥b.若∠1=35°,则∠2=145°.【解答】解:∵a∥b,∴∠1=∠3,∵∠1=35°,∴∠3=35°,∴∠2=180°﹣∠3=145°,故答案为:145.14.(3分)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是12cm.【解答】解:设这个圆锥的底面半径为rcm,根据题意得2πr=,解得r=12,所以这个圆锥的底面半径长为12cm.故答案为12.15.(3分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=15°,AB=6cm,则⊙O半径为6cm.【解答】解:连接OA,如图所示则∠AOE=2∠C=30°,∵AB⊥CD,∴AE=BE=AB=3cm,∴OA=2OE=6cm,即⊙O半径为6cm;故答案为:6.16.(3分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则通话时间不超过10min的频率为.【解答】解:通话时间不超过10min的频率为==.故答案是:.17.(3分)如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为4.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故答案为:4.18.(3分)如图,在△ABC中,AB=4,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,则的最大值为.【解答】解:设AD=x,=y,∵AB=4,AD=x,∴=()2=()2,∴=x2①,∵DE∥BC,∴△ADE∽△ABC,∴=,∵AB=4,AD=x,∴=,∴=,∵△ADE的边AE上的高和△CED的边CE上的高相等,∴==②,①÷②得:∴y==﹣x2+x,∵AB=4,∴x的取值范围是0<x<4;∴y==﹣(x﹣2)2+≤,∴的最大值为.故答案为:.三、解答题:(本大题共10小题,共76分,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(5分)计算:﹣+|﹣2|﹣()﹣1+2cos45°.【解答】解:﹣+|﹣2|﹣()﹣1+2cos45°.=﹣+2﹣﹣2+=﹣20.(6分)解不等式组.【解答】解:由①得:x≥2,由②得:x<4,所以这个不等式组的解集为:2≤x<4.21.(7分)请你先化简,再从﹣2,2,中选择一个合适的数代入求值.【解答】解:===;为使分式有意义,a不能取±2;当a=时,原式==.22.(6分)解分式方程:.【解答】解:去分母得:3x+x+2=4,解得:x=,经检验,x=是原方程的解.23.(7分)在一个不透明的盒子中放有三张分别写有数字1,2,3的红色卡片和三张分别写有数字0,1,4的蓝色卡片,卡片除颜色和数字外完全相同.(1)从中任意抽取一张卡片,该卡片上写有数字1的概率是;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为x,蓝色卡片上的数字作为y,将(x,y)作为点A的坐标,请用列举法(画树状图或列表)求二次函数y=(x ﹣1)2的图象经过点A的概率.【解答】解:(1)∵有三张红色卡片和三张蓝色卡片,共6张,其中写有数字1的有2张,∴该卡片上写有数字1的概率是=;故答案为:;(2)根据题意画树状图如下图象经过的点为:(1,0)(2,1)(3,4),则二次函数y=(x﹣1)2的图象经过点A的概率是=.24.(6分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵△ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.25.(8分)在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b 的图象交于点A(1,3)和B(﹣3,m).(1)求反比例函数y1=和一次函数y2=ax+b的表达式;(2)点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.若AC=CD,求点C的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A (1,3)和B(﹣3,m),∴点A(1,3)在反比例函数y1=的图象上,∴k=1×3=3,∴反比例函数的表达式为y1=.∵点B(﹣3,m)在反比例函数y1=的图象上,∴m==﹣1.∵点A(1,3)和点B(﹣3,﹣1)在一次函数y2=ax+b的图象上,∴,解得:.∴一次函数的表达式为y2=x+2.(2)依照题意画出图形,如图所示.∵BC∥x轴,∴点C的纵坐标为﹣1,∵AD⊥BC于点D,∴∠ADC=90°.∵点A的坐标为(1,3),∴点D的坐标为(1,﹣1),∴AD=4,∵在Rt△ADC中,AC2=AD2+CD2,且AC=CD,∴,解得:CD=2.∴点C1的坐标为(3,﹣1),点C2的坐标为(﹣1,﹣1).故点C的坐标为(﹣1,﹣1)或(3,﹣1).26.(8分)如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.【解答】(1)证明:如图1,连接CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠ADB+∠EDC=90°,∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠EAC=∠EAB+∠BAC=90°,∴EA是⊙O的切线.(2)证明:如图2,连接BC,∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBA=∠ABC=90°∵B是EF的中点,∴在RT△EAF中,AB=BF,∴∠BAC=∠AFE,∴△EAF∽△CBA.(3)解:∵△EAF∽△CBA,∴=,∵AF=4,CF=2.∴AC=6,EF=2AB,∴=,解得AB=2.∴EF=4,∴AE===4,27.(10分)已知:在直角坐标系中,点A(0,6),B(8,0),点C是线段AB 的中点,CD⊥OB交OB于点D,Rt△EFH的斜边EH在射线AB上,顶点F在射线AB的左侧,EF∥OA.点E从点A出发,以每秒1个单位的速度向点B运动,到点B停止.AE=EF,运动时间为t(秒).(1)在Rt△EFH中,EF=t,EH=t;F(t,6﹣t)(用含有t的代数式表示)(2)当点H与点C重合时,求t的值.(3)设△EFH与△CDB重叠部分图形的面积为S(S>0),求S与t的关系式;(4)求在整个运动过程中Rt△EFH扫过的面积.【解答】解:(1)如图1中,作EM⊥OA垂足为M,∵AE=EF=t,AO=6,BO=8,∠AOB=90°,∴AB===10.∵∠AOB=∠EFH=90°,∠EHF=∠ABO,∴△EFH∽△AOB,∴=,即=,∴EH=t,∵EM∥OB,∴==,∴AM=t,EM=t,∴点F坐标(t,6﹣t).故答案分别为:t,t,t,6﹣t.(2)如图2中,当点H与点C重合时,AE+EH=AC,∴t+t=5,∴t=,∴t=时,点H与点C重合.(3)当点H与点B重合时,AE+EH=AB,∴t+t=10,∴t=,当点E与点C重合时,t=5,当点E与点B重合时,t=10,①如图2中,FH与CD交于点M,当≤t时,∵CH=EH﹣EC=EH﹣(AC﹣AE)=t﹣5+t=t﹣5.CM=CH=t﹣3,MH=CH=t ﹣4,∴S=•CM•MH=(t﹣3)(t﹣4)=t2﹣t+6.②如图3中,<t≤5时,S=S=6,△CDB③如图4中,当5<t≤10时,∵EB=AB﹣AE=10﹣t,EM=EB=6﹣t,BM=EB=8﹣t,∴S=•EM•MB=•(6﹣t)(8﹣t)=(10﹣t)2.综上所述:S=.AFH=•FH•(AO+BF)(3)如图5中,在整个运动过程中Rt△EFH扫过的面积=S△=••16=.28.(13分)如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P 的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q 从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t (秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?【解答】解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,a),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或.。