锂电池正极材料的现状和未来发展趋势
锂电池国际发展现状

锂电池国际发展现状
锂电池国际发展现状的概述
锂电池是一种以锂化合物为正极材料的化学电池,由于其具有高能量密度、长循环寿命和较低的自放电率,被广泛应用于移动电子设备、电动汽车和储能系统等领域。
以下是锂电池国际发展现状的概述:
1. 锂电池市场规模持续扩大:随着电动汽车和可再生能源的快速发展,锂电池市场规模逐年增长。
根据国际能源署(IEA)
的预测,到2030年,全球电动汽车用锂电池的需求将超过3000 GWh。
2. 亚洲是全球锂电池生产的中心:中国、日本和韩国是全球锂电池生产的主要国家,亚洲占据了全球锂电池市场的较大份额。
中国尤其在锂电池产量和出口方面居于领先地位。
3. 竞争加剧,技术不断创新:随着市场竞争的日益激烈,锂电池生产商纷纷加大研发投入,推动锂电池技术的不断创新。
例如,针对电动汽车的快速充电需求,研发出了快充电池技术,大幅缩短了充电时间。
4. 锂资源供应压力逐渐增大:锂是一种有限资源,其主要储量集中在澳大利亚、智利和阿根廷等几个国家。
随着锂电池需求的迅速增长,锂资源供应压力正在逐渐增大。
5. 环保问题受到关注:锂电池产业的快速发展也带来了一些环
境问题。
例如,废旧锂电池的回收和处理问题成为了一个亟需解决的环保难题。
综上所述,锂电池国际发展现状呈现出市场规模扩大、亚洲主导、竞争加剧、资源供应压力和环保问题等几个特点。
随着技术的不断创新和环境问题的解决,锂电池在未来有望继续发展壮大。
锂离子电池的发展趋势

锂离子电池的发展趋势锂电池是一种重要的电池技术,广泛应用于电动汽车、手机、笔记本电脑等领域。
它以其高能量密度、长循环寿命和较低的自放电率等优点,成为了当前电池领域的主流技术。
本文将详细介绍锂电池的发展现状以及未来发展趋势。
一、锂电池发展现状锂离子电池锂离子电池是目前最为成熟和广泛应用的锂电池技术。
它的正极材料通常采用锂钴酸锂、锂镍酸锂和锂铁酸锂等,负极材料则采用石墨或石墨烯。
锂离子电池具有高能量密度、长循环寿命和较低的自放电率等优点,已经成为大部分电动汽车和便携式电子设备的首选电池。
锂硫电池锂硫电池是一种具有更高能量密度潜力的锂电池技术。
它的正极采用硫材料,负极采用锂金属或锂合金。
锂硫电池的理论能量密度远高于锂离子电池,可以达到500-600Wh/kg,是锂离子电池的两倍以上。
然而,锂硫电池目前还存在循环寿命短、容量衰减快、安全性差等问题,仍处于研究和开发阶段。
二、锂电池未来发展趋势提高能量密度能量密度是衡量电池性能的重要指标之一,直接影响电池的续航能力和使用时间。
未来锂电池的发展趋势是提高电池的能量密度,使其能够满足更高能量需求的应用,如电动飞机和储能系统。
目前,研究人员正在探索新的正负极材料,如锂硅合金、硅纳米颗粒等,以提高电池的能量密度。
延长循环寿命循环寿命是指电池能够进行多少次完整的充放电循环。
锂电池的循环寿命通常在几百到几千次之间,是影响其使用寿命和性能稳定性的重要因素。
未来的发展方向是延长电池的循环寿命,减少电池的衰减和容量损失。
研究人员正在研究新的电解质、电极材料和电池结构,以提高电池的循环寿命。
提高安全性锂电池的安全性一直是一个重要的关注点。
锂电池在过充、过放、高温等条件下可能发生热失控和爆炸,给人们的生命和财产带来威胁。
未来的发展方向是改进电池的设计和材料,提高其安全性能,减少安全风险。
研究人员正在研究新的电解质、电极材料和安全控制系统,以提高锂电池的安全性。
降低成本锂电池的成本一直是制约其广泛应用的一个因素。
2023年锂电池正极材料行业市场需求分析

2023年锂电池正极材料行业市场需求分析随着智能手机、笔记本电脑、电动车等电子产品的普及,以及新能源汽车发展的迅速,锂电池正极材料的市场需求正在不断增长。
本文将从市场需求、行业竞争等方面对锂电池正极材料行业进行市场需求分析。
一、市场需求前景当前,电动车和储能市场的快速增长是锂电池正极材料行业的主要推动力。
随着新能源汽车的普及和国家政策的推进,锂电池行业市场的需求将逐步增长。
另外,锂电池正极材料在消费电子产品领域也得到了广泛应用,如智能手机、笔记本电脑、智能手表等。
二、行业竞争状况目前,国际上锂电池正极材料领域的主要企业为汤姆森、宁德时代、L&F 等,国内主要厂商有比亚迪、松下、南方院等。
锂电池正极材料市场目前存在的重大问题是,大型化、高性能化和长寿命的电池正极材料的需求增长很快,但市场上的主要供应商对新技术和新增市场的需求反应迟钝。
三、市场需求分析1、电动车市场电动车是锂电池正极材料的主要应用领域之一。
随着全球新能源汽车市场的快速增长,锂电池正极材料的需求也不断扩大。
电动车在城市出行中具有优越的经济性、环保性和安全性。
未来五年内,中小型电动汽车的年销售量有望在全球市场上达到300万辆。
电动车的快速发展使锂电池正极材料的市场需求巨大。
2、储能市场储能技术是未来能源发展的重要方向之一。
随着可再生能源的快速发展,储能技术的应用范围将越来越广泛。
锂电池正极材料是储能领域的重要组成部分。
比如,电视剧《爱情公寓》中的“储能芯片”就是由锂电池正极材料制成的。
未来,随着市场需求的不断增长,储能市场将成为锂电池正极材料的又一重要应用领域。
3、消费电子市场锂电池正极材料在消费电子市场上有广泛应用,如智能手机、笔记本电脑、智能手表等。
消费电子产品的市场需求量巨大,每年都在以较快的速度增长。
未来,消费电子产品的功能和性能将不断增加,这将进一步带动锂电池正极材料的市场需求。
四、总结综上所述,随着新能源汽车和储能市场的快速发展,锂电池正极材料的市场需求将近年来不断增长。
2023年锂电池正极材料行业市场前景分析

2023年锂电池正极材料行业市场前景分析随着移动互联网、新能源汽车、电子设备等领域的迅速发展,锂电池成为了市场上的主流电源装备。
而作为锂电池的重要组成部分之一,正极材料产业的发展也备受瞩目。
本文将从锂电池正极材料产业的市场前景、优势和面临的挑战等方面进行分析。
一、市场前景随着全球电动汽车市场的快速崛起,锂电池市场需求量迅速增长。
据市场研究公司EnergyTrend预测,2025年全球锂电池市场规模将达到1,069亿美元,其中电动汽车产业将为市场贡献最大。
另一方面,市场对新型能源、新型充电设备等需求也在逐渐增加,这也对锂电池市场的发展提供了有利条件。
同时,新能源汽车产业快速崛起、5G基站建设加速、海底数据中心需要小型化设备等需求都促进了锂电池市场的快速发展,而锂电池正极材料作为锂电池的重要组成部分,其需求量也将随之增加。
数据显示,2019年锂电池正极材料市场规模达到616亿元,预计到2024年将达到1,153亿元。
二、优势1.技术先进:锂电池正极材料技术的迅速发展,使得锂电池的性能得到了极大的提升。
现今锂电池正极材料已经从最初的LCO形式,发展到了LFP、NCA、NCO等多种不同类型,这些材料的电化学性能、稳定性、安全性等方面的表现都有了极大的进步。
2.资源丰富:锂电池正极材料中的锂质地广泛且丰富,主要分布在我国西南地区,我国具有丰富的锂资源储量,具备较强的资源优势。
3.市场前景:随着新能源汽车市场的快速崛起及全球电子产品市场的进一步扩大,锂电池市场需求量将不断增加,正极材料产业将会得到更广泛的应用空间。
三、面临的挑战1.产能过剩:目前全球的锂电池正极材料产能过剩,国内市场也存在明显的过剩现象,面临竞争加剧与价格下行等问题。
2.技术进步:锂电池正极材料的技术不断进步,新型材料的研发不断推进,市场的不断变化也对正极材料提出了更高的要求。
3.环保问题:锂电池的材料回收与再利用是当前面临的难题之一,解决这一问题是锂电池正极材料产业可持续发展的必要条件。
锂离子电池原理、研究现状与前景

锂离子电池原理、研究现状与前景锂离子电池是目前应用最广泛的可充电电池之一,其广泛应用于手机、电动车、航空航天等领域。
锂离子电池的优点主要表现在其高能量密度、长寿命、低自放电率以及较高的工作电压等方面。
本文将从锂离子电池的原理、研究现状与前景三个方面进行阐述。
一、锂离子电池原理锂离子电池是一种以锂离子嵌入/脱出负极材料为电池反应基础的电池。
锂离子电池包括正极、负极、电解液和隔膜等组成部分。
其中,正极材料通常为钴酸锂、锰酸锂、三元材料等,负极材料通常为石墨材料。
电解液一般采用有机溶液,例如碳酸盐溶液、有机磷酸酯溶液等。
隔膜则用于隔离正极和负极,避免两者直接接触。
在充电过程中,锂离子由正极向负极移动,同时在负极上嵌入形成化合物。
而在放电过程中,锂离子由负极向正极移动,同时从负极材料中脱出。
这个过程是可逆的,即锂离子在充放电过程中可以反复嵌入/脱出负极材料。
二、锂离子电池研究现状随着科技的发展,锂离子电池也在不断升级改进。
目前,锂离子电池的研究主要集中在以下几个方面:1. 提高电池能量密度提高电池能量密度是目前锂离子电池研究的热点之一。
目前的锂离子电池能量密度已经达到了200Wh/kg左右,而科学家们正在探索新的材料和结构,以进一步提高电池的能量密度。
2. 延长电池寿命锂离子电池的寿命受到多种因素的影响,例如循环次数、充放电速率、温度等。
科学家们正在研究如何通过优化电池结构、选择更稳定的材料等方式延长电池的寿命。
3. 提高电池安全性锂离子电池在充放电过程中会产生热量,如果电池内部温度过高,就可能发生热失控事故。
因此,提高电池的安全性也是当前锂离子电池研究的重要方向之一。
三、锂离子电池未来发展趋势随着科技的不断进步,锂离子电池在未来的应用前景也非常广阔。
以下几个方面是锂离子电池未来的发展趋势:1. 大容量电池大容量电池是未来锂离子电池的重要发展方向之一。
大容量电池可以应用于电动汽车、储能设备等领域,为人们带来更加便捷的生活方式。
锂电池工程师剖析锂电池的未来发展方向与前景

锂电池工程师剖析锂电池的未来发展方向与前景锂电池(Lithium-ion Battery)作为目前最为常见和广泛应用的可充电电池之一,由于其高能量密度、长寿命、轻量化等特点,已成为现代电子设备、电动汽车、储能系统等领域的重要能源供应装置。
然而,随着科学技术的不断进步,锂电池的未来发展方向与前景备受工程师们的关注。
本文将从材料、安全性和可持续性三个方面来剖析锂电池的未来发展趋势与前景,并展望其在新能源领域的应用潜力。
一、材料方面的发展趋势锂电池的性能优劣很大程度上取决于电池材料的选择与优化。
目前,常见的正极材料包括钴酸锂、镍酸锂和锰酸锂等,而负极材料则主要由石墨或石墨烯构成。
未来发展的方向之一是寻找新型正负极材料,以提高能量密度、延长循环寿命等。
对于正极材料而言,目前已有一些替代品如钒氧化物和磷酸铁锂,在能量密度、安全性等方面具备一定的优势。
然而,这些替代材料仍需继续研发和改进,以满足大规模商业化应用的要求。
在负极材料方面,锂金属的应用备受关注。
锂金属负极具有更高的理论比容量和能量密度,可以显著提升电池性能。
但是,锂金属负极存在金属锂枝晶的生长和集聚问题,可能引发电池短路和燃烧等安全隐患。
因此,未来的研究方向是如何有效解决锂金属负极的安全性问题,以实现其广泛应用。
此外,锂离子电池的电解液也是关键因素之一。
传统的锂离子电池常见电解液采用有机溶剂,但其存在易燃和挥发的问题。
近年来,固态电解液逐渐崭露头角,它具备着较高的热稳定性和耐温性能,能够有效解决电池热失控带来的安全隐患。
因此,未来发展方向之一是研究和应用更为安全可靠的固态电解质。
二、安全性的关注与改进锂电池的安全性一直是工程师们关注的焦点。
过度充放电、过温、电池内部短路等问题都可能引发电池的燃烧、爆炸等严重事故。
为了提高安全性,工程师们正在不断改进电池的结构设计和制造工艺。
例如,采用陶瓷涂层和导电剂等手段,可以提高正负极材料的结构稳定性和导电性能,从而减少电池的热失控风险。
锂离子电池技术的发展现状与前景

锂离子电池技术的发展现状与前景随着科技的快速发展,人们对能源的需求也越来越高,同时环保意识也越来越强。
因此,对于替代传统化石能源的新型能源的需求也越来越迫切。
锂离子电池因其体积小,重量轻,使用寿命长,环保等优点而备受关注。
本文将从锂离子电池的技术发展现状和未来发展前景两方面展开探讨。
一、锂离子电池技术发展现状1. 锂离子电池的基本原理锂离子电池是一种将锂离子嵌入和从电极材料中取出的可充电电池。
其基本结构包括正极、负极、隔膜和电解质。
当充电时,锂离子从正极材料中取出并通过电解质传递到负极材料中,放电时则相反。
随着锂离子电池的使用寿命延长和容量增加,锂电池已被广泛应用于电动汽车、智能手机、笔记本电脑等领域。
2. 锂离子电池的技术发展历程早在20世纪80年代,锂离子电池就已经开始研究了。
1991年,索尼推出了第一款商用锂离子电池,被广泛应用于便携式电子产品。
随着技术的不断创新和进步,锂离子电池的能量密度逐渐提高,使用寿命大大延长,环保性也得到了很大的改善。
目前,锂离子电池技术已经逐渐成熟,许多企业已经开始投入大量资金进入相应的研究和开发。
3. 锂离子电池的应用领域目前,锂离子电池已经广泛应用于各个领域,如电动汽车、智能手机、笔记本电脑等。
其中,电动汽车市场是锂离子电池应用的一大重点领域。
随着国家政策的不断扶持和落地,电动汽车市场发展迅猛,锂离子电池也将会随之大幅提升。
二、锂离子电池技术发展前景1. 锂离子电池市场前景分析从市场需求和政策支持来看,锂离子电池市场前景非常广阔。
政策层面上,国家加大了对新能源汽车的支持力度,如“新能源汽车推广应用财政补贴资金管理办法”等文件的出台,给了新能源汽车和锂离子电池更多的发展机会。
同时,人们对绿色环保的需求也越来越高,青睐使用绿色、可再生能源的产品,因此锂离子电池的市场需求将会持续增长。
2. 锂离子电池技术发展趋势未来,锂离子电池的技术将会朝着更高的性能、更长的使用寿命、更安全的方向发展。
锂电池调研报告

锂电池调研报告锂电池调研报告(一)一、引言锂电池是一种以锂离子在正负极之间周期地嵌入和脱嵌反应为电荷/放电过程进行能量转换的新型化学电池,由于其高能量密度、轻质和长寿命等特点,已广泛应用于移动电子设备、电动汽车等领域。
本篇报告将对锂电池的发展现状、市场需求和未来趋势进行调研和分析。
二、锂电池的发展现状1. 技术发展锂电池作为一种先进的电池技术,经过多年的发展已取得了巨大的突破。
最早的锂电池由M.S. Whittingham于1970年代初期开发,后来由J.B. Goodenough在1980年代改进了正极材料,使得锂电池的性能得到了显著提高。
随着技术的进一步发展,锂电池的能量密度不断提高,已经成为目前最具潜力的可重复充放电电源之一。
2. 市场需求随着移动电子设备和电动汽车市场的蓬勃发展,锂电池的市场需求也在快速增长。
移动电子设备如智能手机、平板电脑等对电池的续航时间要求越来越高,而锂电池具有高能量密度的特点,能够满足这一需求。
电动汽车也成为锂电池应用的重要领域,其需求将进一步推动锂电池产业的发展。
三、锂电池市场分析1. 市场规模根据市场研究报告,2019年全球锂电池市场规模约为180亿美元,预计到2025年将达到600亿美元。
其中,移动电子设备领域占据了最大份额,其次是电动汽车领域。
随着技术进步和市场需求的增长,锂电池市场规模有望继续扩大。
2. 市场竞争目前,全球锂电池行业竞争激烈,主要的厂商包括宁德时代、比亚迪、松下等。
这些公司在技术研发、生产能力和市场拓展方面都具有优势,并且他们与移动电子设备和电动汽车制造商建立了长期稳定的合作关系。
此外,一些新兴的锂电池企业也在市场中崭露头角,其技术创新和成本优势使得它们具有一定的竞争力。
四、锂电池的未来趋势1. 技术创新在锂电池领域,技术创新是推动市场发展的重要驱动力。
当前,锂电池技术的关键问题是提高能量密度、延长续航时间以及提高安全性能。
未来,随着新材料、新工艺的应用,锂电池的性能将会进一步提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂电池正极材料的现状和未来发展趋势锂离子电池可以说是目前世界上应用最成熟最广泛的新能源,如手机电脑等便携式电子产品,电动汽车,电动工具,储能项目。
特别是当前中国政府和资本疯狂投资支持新能源汽车和动力电池产业的发展。
放眼未来,锂电产业还有很长的一段路要走,比如高能量密度体系的开发,成本的进一步降低,资源的回收和利用等问题摆在我们面前。
今天给大家介绍下关于锂离子电池材料的现状和未来发展趋势。
我们知道锂电里所有的材料无非来自于自然界,那首先看一下元素周期表哪些元素能为我们所用呢?
图1
图1a为相关各种元素的价格和在地球上的储量
图1b为相关元素的质量比容量和体积比容量
上面只是让大家对正负极材料相关的元素有一个印象,并不能代表化合物本身的性质和可用性,下面大家再看一个更直观和经典的图表。
图2
a.常见的正极材料电位和克容量值(LFSF-氟化铁酸锂铁,LTS-硫化锂钛)
b.转化型正极材料的电位和克容量值
c.常见的负极材料电位和克容量值
d.所有的正负极材料电位和容量的均值
图3
一般情况下增强电池材料性能的策略如上图3所示:
a.减小活性材料的粒径尺寸:带来更快的离子电子传导率/更高的表面活性/改善机械稳定性
b.形成复合材料:引入导电介质/机械支撑机构
c.掺杂和接枝官能团
d.微调粒子的形态
e.表面包覆
f.对电解质的改性
正极材料
这里主要包括LCO,尖晶石LMO,橄榄石LFP等晶体结构。
大多数正极材料研究集中在过渡金属氧化物和聚阴离子化合物上,因为它们具有较高的电压和较高的容量
(100-200mAh/g和3-5V平均电压)。
图4中(e)给出了这些典型的正极材料充放电曲线。
图4
以下列举了具有代表性想正极材料特性以及目前的发展水平:
表1
过渡金属氧化物
1.钴酸锂LCO
LCO正极材料是由Goodenough首次提出,并且由Sony首先将其并成功商业化。
优点是高比容量,高电压,低自放电已经良好的循环性能,至今仍广泛应用。
主要的缺点是成本高,热稳定性差和高倍率和深循环的容量的快速衰上。
成本高是由于Co元素的价格高,可以在图一中看到Co的价格。
热稳定性差是指高温150℃状态下正极LCO结构被破坏释放出大量的热造成电池热失控起火爆炸。
LCO是目前商业化正极材料中热稳定性最差的。
虽然热稳定性也在很大程度上取决于非材料因素,例如电池设计和电池尺寸,但由于释放的氧和有机材料之间的放热反应,LCO通常经历超过200℃的热失控。
深循环(脱锂电位4.2V以上,意味着大约50%以上的Li脱出)导致晶格畸变从而恶化循环性能。
对LCO的改性方面:对许多不同金属(Mn, Al, Fe, Cr)作为钴掺杂剂/部分代用品进行过研究,虽然证明有一些效果,但对性能的提升有限。
各种金属氧化物的涂层(Al2O3, B2O3, TiO2, ZrO2),因为他们的机械和化学稳定性可以减少LCO的结构变化和与电解质的副反应,增强的LCO稳定性,甚至对深循环性能特性有一定改善。
2.镍酸锂LNO
LNO具有和LiCoO相同的晶体结构和275mAh/g的类似理论比容量,与LCO相比主要在成本上低很多,但是LNO的问题在于Ni2+有替代Li+的倾向,在脱嵌Li的过程中会堵住Li的扩散通道。
安全性和稳定性方面LNO比LCO更容易造成热失控。
另外改性上可以在
高SOC条件下的热稳定性差可通过Mg掺杂来改善,添加少量Al能提高其热稳定性和电化学性能.
3.镍钴铝酸锂NCA
LiNi0.8Co0.15Al0.05O2 (NCA)目前已经被商业化应用,例如松下为Tesla开发的动力电池。
其优点在于拥有较高的比容量200mAh/g和相对LCO更好的日历寿命。
但在国内刚刚处于起步阶段。
关于其失效模式在于其在高温下(40-70℃)由于SEI和微裂纹的生长导致容量衰减,当然NCA这种材料从合成到电池生产对产线的环境控制要求极为苛刻,在国内大规模应用还需要时日,我们拭目以待。
4.锰酸锂LMO
LMO由于其稳定性和较低的成本优势也得到了广泛的应用,但是其主要缺点是较差的循环性能,原因是在Li脱出的过程中其层状结构有变为尖晶石结构的趋势和循环过程中Mn 的溶解的不利影响。
具体讲是由于Mn3+的歧化反应形成Mn2+和Mn4+,2价Mn离子可以溶解在电解质中破坏负极的SEI,所有含Mn的正极都存在这个反应。
伴随着含Mn电极的电池老化,电解质和负极中Mn的含量逐渐增加,石墨负极阻抗变大。
但对比LTO负极没有显著的变化(如下图中红色曲线),这是由于LTO负极的电位高于石墨负极。
在改性方面一般采用阳离子参杂改善LMO的高温循环稳定性。
5.镍钴锰酸锂NMC
NMC是现今锂离子电池研究的一大热点,与钴酸锂相比,具有以下显著优势:
成本低:由于含钴少,成本仅相当于钴酸锂的1/4且更绿色环保。
安全性好:安全工作温度可达170℃,而钴酸锂仅为130℃
电池的循环使用寿命延长了45%。
另外值得一提的是与NCA类似的高Ni三元材料(LiNi0.8 Co0.1 Mn0.1 O2)有更高的能量/功率密度(能够在高Ni含量下会有更多的Li脱出而保持其结构稳定)。
目前应用的常规523和622体系则是加入更多的Mn和Co是为了更好的平衡安全和循环性能。
聚阴离子型化合物
1.磷酸铁锂LFP
LFP拥有良好的热稳定性和功率性能,结构如图4C,其主要缺点是较低的电位和较差的离子导电性。
对LFP进行纳米化,碳包覆和金属参杂是提高其性能的方法。
如果不用炭包覆有纳米化的LFP,使用性能较好的导电剂混合使用也同样可实现良好的导电性。
通常纳米化的LFP电极材料的低压实密度限制了LFP电池的能量密度。
其它橄榄石结构包括LiMnPO4(LMP),比LFP提高了0.4V的平均电压(表1),从而提高了能量密度。
此外还有Li3V2(PO4)3(LVP)有相当高的工作电压(4.0V)和良好的容量(197mAh/ g)。
LVP/C纳米复合材料在5C的高倍率下也表现出95%的理论容量,低温下也表现出比LFP 好的性能。
但是LVP没有大规模应用的原因主要在于1.合成的成本和原材料的毒性对环境和人体的伤害2.在高压下电解质的匹配问题。
2.LiFeSO4F(LFSF)
另外一种聚阴离子盐材料LFSF,其具有3.6V平台和相对较高的理论比容量
(151mAh/g) ,而且LiFeSO4F具有更好的离子/电子导电性,因此它基本不需要碳涂层或纳米化颗粒。
电化学如下图6所示。
图6
转化正极材料
转化电极在锂化/脱锂期间经历固态氧化还原反应,其结晶结构会发生变化,伴随着断裂和重组的化学键。
转化电极材料的完全可逆电化学反应通常如下:
图7
A型的正极中式(1)包括含有高价(2价或更高)的金属离子,可以得到具有较高的理论容量的金属卤化物。
B型正极包括S, Se, Te, I.其中S因它的高理论比容量(1675mAh/g),成本低以及在地壳的丰富储量目前已经被大家大量研究。
图8
图b显示出了完整的S转化反应,其涉及可溶于有机电解质中间体多硫化物的中间步骤。
图c给出了转换型正极的典型放电曲线。
BIF3和CUF2表现出高电压平台,相比较而言S和Se也显示非常平坦和长电压平台,表示两个固相之间的反应具有良好的动力学特征。
氟和氯化合物
由于偏中等电压平台和较高的理论比容量,金属氟化物(MF)和氯化物(MCI)近来也已经被积极地研究。
然而MF和MCL通常有比较大的电压滞后,体积膨胀,副反应,和活性材料的溶解(如下表2)。
大多数MF包括FEF3和FEF2,由于其金属卤键的高度离子特性所引起的带隙大而带来的较差的电子传导性,但他们的开放式结构可以保证良好的离子导电性。
表2
硫和硫化锂
硫具有1675mAh/g的理论容量,同时还具有成本和储量丰富的优势。
然而缺点是S
为主的正极低电势,低电导率,中间体反应产物(多硫化物)在电解质的溶解,和(在纯S的情况下)非常低气化温度真空下干燥电极引发S的损失。
加上硫充放电过程中大约80%的体积变化,这可能会破坏碳复合材料和电极的电接触。
为了减轻溶解和体积膨胀的影响,可以将S包覆在具有过量内部空隙空间的中空结构中。
使用聚乙烯吡咯烷酮聚合物,碳和TiO2 渗透和化学沉淀浸渍硫。
当在薄电极构造的半电池中测试时,这些复合材料显示出有时接近1000个循环的循环寿命。
为了避免膨胀,防止干燥过程S蒸发,电极可以制成碳包覆Li2S的形式,这是因为Li2S具有更高的熔点,这种电池在循环400周后依然保持良好的结构稳定性没有变化。
电解液的修饰改性也是改善多硫化物溶解的一个方法。
LINO3和P2S5添加剂用于在Li金属的表面形成良好的SEI,以防止还原和多硫化物的沉淀。
使用固态电解质是最好的办法,也可以防止多硫化物的溶解,同时也避免了锂枝晶短路,增强电池的安全性。
以上这些比较新的材料肯定还有很长的产业化道路要走,任重而道远。
个人看法是目前很多新型材料对现实生产的指导意义不大,但历史的车轮滚滚向前,总有一天会实现甚至超越既定目标。