吉林大学数字信号处理实验报告

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验报告

数字信号处理实验报告

中南大学《数字信号处理》实验报告课程名称数字信号处理指导教师学院信息科学与工程学院专业班级姓名实验一 常见离散时间信号的产生和频谱分析实验内容及要求(1)复习常用离散时间信号的有关内容;(2) 用MATLAB 编程产生上述任意3种序列(长度可输入确定,对(d) (e) (f)中的参数可自行选择),并绘出其图形;1)单位阶跃序列: n=-20:20; xn=heaviside(n); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位阶跃序列');xlabel('n');ylabel('u(n)');box on2)单位抽样序列: n=-20:20;xn=heaviside(n)-heaviside(n+1); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位抽样序列');xlabel('n');ylabel('\delta(n)');box on-20-15-10-5051015200.20.40.60.81单位阶跃序列nu (n )3)矩阵序列: n=-20:20; N=5;xn=heaviside(n)-heaviside(n-N); xn(n==0)=1;xn(n==N)=0;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('矩阵序列');xlabel('n');ylabel('R_{N}(n)');box on-20-15-10-50510152000.20.40.60.81单位抽样序列n(n )-20-15-10-50510152000.20.40.60.81矩阵序列nR N (n )4)正弦序列:n=-40:40;A=2;w=pi/8;f=pi/4; xn=A*sin(w.*n+f);plot(n,xn);stem(n,xn);axis([-40 40 -4.2 4.2]) title('正弦序列');xlabel('n');ylabel('x(n)');box on(3) 混叠现象对连续信号01()sin(2***)x t pi f t =其中,01500f Hz =进行采样,分别取采样频率2000,1200,800s f Hz Hz Hz =,观察|)(|jw e X 的变化,并做记录(打印曲线),观察随着采样频率降低频谱混叠是否明显存在,说明原因。

数字信号处理实验一实验报告

数字信号处理实验一实验报告

实验一离散时间信号与系统时域分析一、实验目的1、学习MATLAB语言编程和调试技巧。

2、学会简单的矩阵输入和图形表示法3、掌握简单的绘图命令。

二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令stem()和plot()。

实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。

其基本原理分别如下:对一个模拟信号x(t)进行采样离散化x(n),为了不失真地从采样信号x(n)中恢复原始信号x(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2备。

一个离散时间系统,输入信号为x(n),输出信号为y(n),运算关系用T【.】表示,则输入与输出的关系可表示为y(n)=T[x(n)]。

三、实验结果实验一x=[3 1 2 0 -4 2 -3];n=-3:1:3;stem(n,x);xlabel('n');ylabel('x(n)');axis([-4 4 -5 5]);grid;n x (n )实验二n=0:9;x=0.5.^n;stem(n,x);xlabel('n');ylabel('x(n)');grid;n x (n )实验三x=[-2 0 1 -1 3];h=[1 2 0 -1];c=conv(x,h);M=length(c)-1;n=0:1:M;stem(n,c);xlabel('n');ylabel('幅度’);n 幅度实验四t=0:1/256:2;x=3*cos(2*pi*t)-2*cos(6*pi*t)+cos(10*pi*t); plot(t,x);grid;实验五T=0.2;t=0:T:2;x=3*cos(2*pi*t)-2*cos(6*pi*t)+cos(10*pi*t); stem(t,x);grid;实验六N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[1 zeros(1,N-1)];n=0:1:N-1;y=filter(a,b,x);stem(n,y);xlabel('n');ylabel('幅度');n 幅度实验七n=0:1:40;x=[5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)]; plot(n,x);N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)]; n=0:1:40;y=filter(a,b,x);stem(n,y);xlabel('n');ylabel('幅度 ');n 幅度。

数字信号处理实验一 实验报告

数字信号处理实验一 实验报告

数字信号处理实验一1.完成本文档内容的自学阅读和其中各例题后子问题;Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。

答: clf;n=-10:20;u=[zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('时间序号n');ylabel('振幅');title('单位样本序列');axis([-10 20 0 1.2])Q1.2命令clf,axis,title,xlabel和ylabel的作用是什么?答:clf清除图对象,axis 控制轴刻度和风格的高层指令,title 设置图名,xlabel和ylabel设置横纵坐标轴名称。

Q1.3修改程序P1.1以产生带有延时11个单位样本的延迟单位样本序列ud[n]。

运行修改的程序并显示产生的序列。

答:clf;n=0:30;ud=[zeros(1,11) 1 zeros(1,19)];stem(n,ud);xlabel('时间序号n');ylabel('振幅');title('单位样本序列');axis([0 30 0 1.2])Q1.4修改程序P1.1以产生单位步长序列s[n].运行修改后程序并显示产生的序列。

答:clf;n = 0:30;u = [1.*n];stem(n,u);title('Unit Sample Sequence');axis([0 30 0 30])Q1.5修改程序P1.1,以产生带有超前7个样本的延时单位阶跃序列sd[n]。

运行修改后的程序并显示产生的序列。

答:clf;n = -15:30;s=[zeros(1,8) ones(1,38)];stem(n,s);xlabel('Time index n');ylabel('Amplitude'); title('Unit Sample Sequence');axis([-15 30 0 1.2]);Q1.6 运行程序P1.2,以产生复数值的指数序列。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告黎美琪通信一、实验名称:(快速傅里叶变换)的探究二、实验目的.学习理解的基本实现原理(注:算法主要有基时间抽取法和基频域抽取法,此实验讨论的是基频率抽取算法,课本上主要讲解的是基时间抽取算法).编写代码实现基频率抽取算法三、实验条件机四、实验过程(一)基础知识储备.基频率抽取( )算法基本原理:输入[]前后分解,输出[]奇偶分解。

设序列的点数为^,为整数(公式中的、定义不一样,打印后统一改正)将输入的[]按照的顺序分成前后两段:对输出的[]进行奇偶分解()、()和()之间可以用下图所示的蝶形运算符表示:的一次分解流图:的二次分解流图:最后完整的分解流图(^一共分解了三次):的运算过程规律。

)^点的共进行级运算,每级由个蝶形运算组成。

同一级中,每个蝶形的两个输入数据只对计算本蝶形有用,而且每个蝶形的输入、输出数据结点又同在一条水平线上,也就是说计算完一个蝶形后,所得输出数据可立即存入原输入数据所占用的存储单元。

这样,经过级运算后,原来存放输入序列数据的个存储单元中便依次存放()的个值。

(注:这种利用同一存储单元存储蝶形计算输入、输出数据的方法称为原位计算。

原位计算可节省大量内存,从而使设备成本降低。

))旋转因子的变化规律 :以点的为例,第一级蝶形,,,,;第二级蝶形,;第三级的蝶形,。

依次类推,对于级蝶形,旋转因子的指数为∙^(−),,,,,……,^()这样就可以算出每一级的旋转因子。

)蝶形运算两节点之间的“距离” :第一级蝶形每个蝶形运算量节点的“距离”为,第二级每个蝶形运算另节点的“距离”为,第三级蝶形每个蝶形运算量节点的“距离”为。

依次类推:对于等于的次方的,可以得到第级蝶形每个蝶形运算量节点的“距离”为的次方。

.旋转因子 的性质1) 周期性 2) 对称性mk N N mk N W W -=+2 )可约性为整数/,//n N W W n mk n N mk N =.频率抽取()基算法和时间抽取()基算法比较:两种算法是等价的,其相同之处:()与两种算法均为原位运算。

数字信号处理实验报告(实验1-4)

数字信号处理实验报告(实验1-4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法实验容1、帮助命令使用 help 命令,查找 sqrt (开方)函数的使用方法;2、MATLAB 命令窗口(1)在MATLAB 命令窗口直接输入命令行计算31)5.0sin(21+=πy 的值;(2)求多项式 p(x) = x3 + 2x+ 4的根;3、矩阵运算(1)矩阵的乘法已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B(2)矩阵的行列式已知 A=[1 2 3;4 5 6;7 8 9],求A(3)矩阵的转置及共轭转置已知A=[1 2 3;4 5 6;7 8 9],求A'已知 B=[5+i,2-i,1;6*i,4,9-i], 求 B.' , B'(4)特征值、特征向量、特征多项式已知 A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵 A的特征值、特征向量、特征多项式;(5)使用冒号选出指定元素已知: A=[1 2 3;4 5 6;7 8 9];求 A 中第 3 列前 2 个元素;A 中所有列第 2,3 行的元素;4、Matlab 基本编程方法(1)编写命令文件:计算 1+2+…+n<2000 时的最大 n 值;(2)编写函数文件:分别用 for 和 while 循环结构编写程序,求 2 的 0 到 15 次幂的和。

5、MATLAB基本绘图命令(1)绘制余弦曲线 y=cos(t),t∈[0,2π](2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π](3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求:(a)线形为点划线、颜色为红色、数据点标记为加号;(b)坐标轴控制:显示围、刻度线、比例、网络线(c)标注控制:坐标轴名称、标题、相应文本;>> clear;t=0:pi/10:4*pi;y=10*sin(t);plot(t,y);plot(t,y,'-+r');grid>> xlabel('X'),ylabel('Y');>> title('Plot:y=10*sin(t)');>> text(14,10,'完整图形');实验二常见离散信号的MATLAB产生和图形显示实验容与步骤1. 写出延迟了np个单位的单位脉冲函数impseq,单位阶跃函数stepseq, n=ns:nf function [x,n]=impseq[np,ns,nf];function [x,n]=stepseq[np,ns,nf];2. 产生一个单位样本序列x1(n),起点为ns= -10, 终点为nf=20, 在n0=0时有一单位脉冲并显示它。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理课程设计实验报告基础实验实验一离散时间系统及离散卷积一、实验目的(1)熟悉MATLAB软件的使用方法。

(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。

(3)利用MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。

(4)熟悉离散卷积的概念,并利用MATLAB计算离散卷积。

二、实验容1、离散时间系统的单位脉冲响应(1)选择一个离散时间系统;(2)用笔进行差分方程的递推计算;(3)编制差分方程的递推计算程序;(4)在计算机上实现递推运算;(5)将程序计算结果与笔算的计算结果进行比较,验证程序运行的正确性;2.离散系统的幅频、相频的分析方法(1)给定一个系统的差分方程或单位取样响应;(2)用笔计算几个特殊的幅频、相频的值,画出示意曲线图;(3)编制离散系统的幅频、相频的分析程序;(4)在计算机上进行离散系统的幅频、相频特性,并画出曲线;(5)通过比较,验证程序的正确性;3. 离散卷积的计算(1)选择两个有限长序列,用笔计算其线性卷积;(2)编制有限长序列线性卷积程序;(3)利用计算程序对(1)选择的有限长序列进行卷积运算;(4)比较结果验证程序的正确性。

三、实验要求(1)编制实验程序,并给编制程序加注释;(2)按照实验容项要求完成笔算结果;(3)验证编制程序的正确性,记录实验结果。

(4)至少要求一个除参考实例以外的实例,在实验报告中,要描述清楚实例中的系统,并对实验结果进行解释说明。

四、实验程序及其结果1、离散时间系统的脉冲响应% y(n)-0.9y(n-1)+ 0.5y(n-2)=x(n)+0.5x(n-1) 设x(n)=2^n; 0<=n<=15 clear all;b=[1,0.5];a=[1,-0.9,0.5];n=0:15; x=impseq(0,0,15)h=filter(b,a,x); % 系统冲击响应subplot(2,1,1);stem(n,h);title('系统冲激响应');xlabel('n');ylabel('h');n=0:15; x=2.*n; nx=0:15;nh=0:15;y=conv_m(x,nx,h,nh);ny=length(y);n=0:ny-1;subplot(2,1,2);stem(n,y);title('系统对x(n)响应');xlabel('n');ylabel('y');B=roots(b);A=roots(a);figure; zplane(B,A);2、离散系统的幅频、相频的分析方法% 差分方程为y(n)-1.76y(n-1)+1.1829y(n-2)-0.2781y(n-3)% =0.0181x(n)+0.0543x(n-1)+0.0543x(n-2)+0.0181x(n-3) b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1;l=0:length(a)-1;K=500;k=0:1:K;w=pi*k/K;H=(b*exp(-j*m'*w))./(a*exp(-j*l'*w)); %计算频率相应magH=abs(H); % magH为幅度angH=angle(H); %a ngH为相位subplot(2,1,1); plot(w/pi,magH);grid;xlabel('以\pi为单位的频率'); ylabel('幅度');title('幅度响应');subplot(2,1,2); plot(w/pi,angH); grid;xlabel('以\pi为单位的频率'); ylabel('相位');title('相位响应');3、离散卷积的计算% x=[1,4,3,5,3,6,5] , -4<=n<=2% h=[3,2,4,1,5,3], -2<=n<=3% 求两序列的卷积clear all;x=[1,4,3,5,3,6,5]; nx=-4:2;h=[3,2,4,1,5,3];nh=-2:3;ny=(nx(1)+nh(1)):(nx(length(x))+nh(length(h)));y=conv(x,h);n=length(ny);subplot(3,1,1);stem(nx,x);xlabel('nx');ylabel('x');subplot(3,1,2);stem(nh,h);xlabel('nh');ylabel('h');subplot(3,1,3);stem(ny,y);xlabel('n');ylabel('x和h的卷积');实验二 离散傅里叶变换与快速傅里叶变换一、实验目的(1)加深理解离散傅立叶变换及快速傅立叶变换概念; (2)学会应用FFT 对典型信号进行频谱分析的方法; (3)研究如何利用FFT 程序分析确定性时间连续信号; (4)熟悉应用FFT 实现两个序列的线性卷积的方法。

二、实验容1、用离散傅立叶变换程序处理时间抽样信号,并根据实序列离散傅立叶变换的对称性,初步判定程序的正确性;2.观察三角波和反三角波序列的时域和幅频特性,用N=8点FFT 分析信号序列的幅频特性,观察两者的序列形状和频谱曲线有什么异同?绘出两序列及其幅频特性曲线。

三角波序列反三角波序列⎪⎩⎪⎨⎧≤-≤≤+=elsen nn n n x c 048301)(⎪⎩⎪⎨⎧≤-≤≤-=elsen n n n n x d 043304)(3.已知余弦信号如下当信号频率 F=50Hz 采样间隔 T=0.000625s ,采样长度 N=64时,对该信号进行傅里叶变换。

用FFT 程序分析正弦信号,分别在以下情况进行分析。

(1)F=50, N=32,T=0.000625; (2)F=50, N=32,T=0.005; (3)F=50, N=32,T=0.0046875; (4)F=50, N=32,T=0.004; (5)F=50, N=64=0.0006254.选定某一时间信号进行N=64点离散傅立叶变换,并且,对同一信号进行快速傅立叶变换,并比较它们的速度。

三、实验要求1、编制DFT 程序及FFT 程序,并比较DFT 程序与FFT 程序的运行时间。

给编制的程序加注释;2.完成实验容2,并对结果进行分析。

在单位圆Z 上的变换频谱会相同吗?如果不同,你能说出那个低频分量更多吗?为什么?3.完成实验容3,并对结果进行分析;4.利用编制的计算卷积的计算程序,给出一下三组函数的卷积结果。

(1))2cos()(Ft t x π=⎩⎨⎧≤≤=其它1401)(n n x 14054)(≤≤⎪⎭⎫ ⎝⎛=n n h n(2) (3)四、实验程序及其结果分析 1、离散傅里叶变换function [ Xk] = dft( xn,N ) %计算N 点的DFT n=0:1:N-1;k=0:1:N-1; WN=exp(-j*2*pi/N);nk=n'*k; WNnk=WN.^nk;Xk=xn*WNnk; End2、(1)三角波 clear all; n=0:1:7;x1=(n+1).*(n>=0).*(n<=3)+(8-n).*(n>=4); % 三角波序列 subplot(3,1,1);stem(n,x1); title('三角波序列');xlabel('n'); N=8; k=0:N-1; X1=fft(x1,N);magX1=abs(X1);phaX1=angle(X1); subplot(3,1,2);stem(k,magX1); xlabel('k');ylabel('三角波DFT 的幅度'); subplot(3,1,3);stem(k,phaX1);xlabel('k');ylabel('三角波DFT 的相位');⎩⎨⎧≤≤=其它901)(n n x 190)5.0sin(5.0)(≤≤=n n n h 90)1.01()(≤≤-=n n n x 901.0)(≤≤=n nn h(2)反三角波clear all;n=0:1:7;x2=(4-n).*(n>=0).*(n<=3)+(n-3).*(n>=4); % 反三角波序列subplot(3,1,1);stem(n,x2);title('反三角波序列');xlabel('n');N=8; k=0:N-1;X2=fft(x2,N);magX2=abs(X2);phaX2=angle(X2);subplot(3,1,2);stem(k,magX2);xlabel('k');ylabel('幅度');subplot(3,1,3);stem(k,phaX2);xlabel('k');ylabel('相位');结果分析:由图知:三角波和反三角波序列的波形不同,当N=8时,正反三角波的幅频特性相同,因为两者的时域只差一个相位3、余弦信号的FFT分析clea all;F=50; N=32;T=0.000625; % (1) F=50,N=32,T=0.000625n=1:N;x=cos(2*pi*F*n*T);figure(1); subplot(2,1,1); plot(n,x);ylabel('x(n)'); xlabel('n');title('(1) F=50,N=32,T=0.000625');X=fft(x); magX=abs(X);subplot(2,1,2);plot(n,X);ylabel('FFT|X|'); xlabel('f(pi)');F=50; N=32;T=0.005; % (2) F=50,N=32,T=0.005n=1:N;x=cos(2*pi*F*n*T);figure(2);subplot(2,1,1);plot(n,x);ylabel('x(n)');xlabel('n');title('(2) F=50,N=32,T=0.005');X=fft(x); magX=abs(X);subplot(2,1,2); plot(n,X); ylabel('FFT|X|'); xlabel('f(pi)');F=50,N=32,T=0.0046875; % (3) F=50,N=32,T=0.0046875 n=1:N;x=cos(2*pi*F*n*T);figure(3);subplot(2,1,1); plot(n,x); ylabel('x(n)');xlabel('n');title('(3) F=50,N=32,T=0.0046875');X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X); ylabel('FFT|X|'); xlabel('f(pi)');F=50,N=32,T=0.004; % (4) F=50,N=32,T=0.004n=1:N; x=cos(2*pi*F*n*T);figure(4);subplot(2,1,1);plot(n,x); ylabel('x(n)');xlabel('n');title('(4) F=50,N=32,T=0.004');X=fft(x); magX=abs(X);subplot(2,1,2);plot(n,X);ylabel('FFT|X|'); xlabel('f(pi)');F=50,N=64,T=0.000625; % (5) F=50,N=64,T=0.000625n=1:N;x=cos(2*pi*F*n*T);figure(5); subplot(2,1,1); plot(n,x); ylabel('x(n)'); xlabel('n'); title('(5) F=50,N=64,T=0.000625');X=fft(x); magX=abs(X);subplot(2,1,2); plot(n,X); ylabel('FFT|X|'); xlabel('f(pi)');结果分析;不同的采样间隔会产生不同的栅栏效应,相当于透过栅栏观赏风景,只能看到频谱的一部分,而其它频率点看不见,因此很可能使一部分有用的频率成分被漏掉,从而产生不同的频谱图,减小栅栏效应可用提高采样间隔也就是频率分辨力的方法来解决。

相关文档
最新文档