数字信号处理实验报告
数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验一 实验报告

数字信号处理实验一1.完成本文档内容的自学阅读和其中各例题后子问题;Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。
答: clf;n=-10:20;u=[zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('时间序号n');ylabel('振幅');title('单位样本序列');axis([-10 20 0 1.2])Q1.2命令clf,axis,title,xlabel和ylabel的作用是什么?答:clf清除图对象,axis 控制轴刻度和风格的高层指令,title 设置图名,xlabel和ylabel设置横纵坐标轴名称。
Q1.3修改程序P1.1以产生带有延时11个单位样本的延迟单位样本序列ud[n]。
运行修改的程序并显示产生的序列。
答:clf;n=0:30;ud=[zeros(1,11) 1 zeros(1,19)];stem(n,ud);xlabel('时间序号n');ylabel('振幅');title('单位样本序列');axis([0 30 0 1.2])Q1.4修改程序P1.1以产生单位步长序列s[n].运行修改后程序并显示产生的序列。
答:clf;n = 0:30;u = [1.*n];stem(n,u);title('Unit Sample Sequence');axis([0 30 0 30])Q1.5修改程序P1.1,以产生带有超前7个样本的延时单位阶跃序列sd[n]。
运行修改后的程序并显示产生的序列。
答:clf;n = -15:30;s=[zeros(1,8) ones(1,38)];stem(n,s);xlabel('Time index n');ylabel('Amplitude'); title('Unit Sample Sequence');axis([-15 30 0 1.2]);Q1.6 运行程序P1.2,以产生复数值的指数序列。
数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建实验二信号的采样与重建一.实验目的(1)通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。
(2)通过实验,了解数字信号采样转换过程中的频率特征。
(3)对实际的音频文件作内插和抽取操作,体会低通滤波器在内插和抽取中的作用。
二.实验内容(1)采样混叠,对一个模拟信号Va(t)进行等间采样,采样频率为200HZ,得到离散时间信号V(n).Va(t)由频率为30Hz,150Hz,170Hz,250Hz,330Hz的5个正弦信号的加权和构成。
Va(t)=6cos(60pi*t)+3sin(300pi*t)+2cos(340pi*t)+4cos(500pi*t)+10sin(660pi*t)观察采样后信号的混叠效应。
程序:clear,close all, t=0:0.1:20; Ts=1/2; n=0:Ts:20;V=8*cos(0.3*pi*t)+5*cos(0.5*pi*t+0.6435)-10*sin(0.7*pi*t);Vn=8*cos(0.3*pi*n)+5*cos(0.5*pi*n+0.6435)-10*sin(0.7*pi*n); subplot(221)plot(t,V), grid on,subplot(222) stem(n,Vn,'.'), grid on,40200-20-4040200-20-400510152021101520(2)输入信号X(n)为归一化频率f1=0.043,f2=0.31的两个正弦信号相加而成,N=100,按因子M=2作抽取:(1)不适用低通滤波器;(2)使用低通滤波器。
分别显示输入输出序列在时域和频域中的特性。
程序:clear;N=100; M=2;f1=0.043; f2=0.31; n=0:N-1;x=sin(2*pi*f1*n)+sin(2*pi*f2*n); y1=x(1:2:100);y2=decimate(x,M,'fir'); figure(1);stem(n,x(1:N));title('input sequence'); xlabel('n');ylabel('fudu'); figure(2); n=0:N/2-1; stem(n,y1);title('output sequence without LP'); xlabel('n');ylabel('fudu'); figure(3); m=0:N/M-1;stem(m,y2(1:N/M));title('output sequence with LP'); xlabel('n');ylabel('fudu'); figure(4);[h,w]=freqz(x);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the input sequence');xlabel('w');ylabel('fudu'); figure(5);[h,w]=freqz(y1);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu'); figure(6);[h,w]=freqz(y2);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu');input sequence21.510.5fudu0-0.5-1-1.5-202120304050n60708090100output sequence without LP21.510.5fudu0-0.5-1-1.5-20510152025n3035404550output sequence with LP1.510.5fudu0-0.5-1-1.50510152025n3035404550frequency spectrum of the inputsequence5045403530fudu252021105000.511.5wfrequency spectrum of the output sequence without LP3022.533.52520fudu15105000.511.5w22.533.5感谢您的阅读,祝您生活愉快。
数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。
二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。
其延拓周期为采样角频率(T /2π=Ω)。
只有满足采样定理时,才不会发生频率混叠失真。
在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。
公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。
为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。
数字信号处理实验报告格式(1)(1)

《数字信号处理》实验报告实验一、系统响应与系统稳定性专业:通信工程班级:通信1204班实验一、系统响应及系统稳定性一、设计目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析,观察及检验系统的稳定性。
二、实验原理和方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。
系统的稳态输出是指当n→∞时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零三、实验内容和分析实验内容编程如下:(1)给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号 x1(n)=R8(n), x2(n)=u(n)① 分别求出x 1(n)=R 8(n)和x 2(n)=u(n)的系统响应,并画出其波形。
② 求出系统的单位脉冲响应,画出其波形。
数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
数字信号处理实验报告 (实验四)

实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。
2. 运用MA TLAB 验证离散时间傅立叶变换的性质。
二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。
由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。
在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。
为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。
例3.1 运用MA TLAB 画出以下系统的频率响应。
y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理作业提交日期:2016年7月15日实验一 维纳滤波器的设计第一部分设计一维纳滤波器。
(1)产生三组观测数据,首先根据()(1)()s n as n w n =-+产生信号()s n ,将其加噪(信噪比分别为20,10,6dB dB dB ),得到观测数据123(),(),()x n x n x n 。
(2)估计()i x n ,1,2,3i =的AR 模型参数。
假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。
1 实验原理滤波技术是信号分析、处理技术的重要分支,无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传递是至关重要的。
信号分析检测与处理的一个十分重要的内容就是从噪声中提取信号,实现这种功能的有效手段之一是设计一种具有最佳线性过滤特性的滤波器,当伴有噪声的信号通过这种滤波器的时候,它可以将信号尽可能精确地重现或对信号做出尽可能精确的估计,而对所伴随噪声进行最大限度地抑制。
维纳滤波器就是这种滤波器的典型代表之一。
维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。
这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。
设一线性系统的单位样本响应为()h n ,当输入以随机信号()x n ,且()()()x n s n v n =+,其中()s n 表示原始信号,即期望信号。
()v n 表示噪声,则输出()y n 为()=()()my n h m x n m -∑,我们希望信号()x n 经过线性系统()h n 后得到的()y n 尽可能接近于()s n ,因此称()y n 为估计值,用ˆ()sn 表示。
则维纳滤波器的输入-输出关系可用下面表示。
设误差信号为()e n ,则ˆ()()()e n s n sn =-,显然)(n e 可能是正值,也可能是负值,并且它是一个随机变量。
因此,用它的均方误差来表达误差是合理的,所谓均方误差最小即它的平方的统计期望最小:222ˆ[|()|][|()()|][|()()|]E e n E s n sn E s n y n =-=-=min 。
而要使均方误差最小,则需要满足2[|()|]jE e n h ∂=0.进一步导出维纳-霍夫方程为:()()()()*(),0,1,2...xs xx xx iR m h i R m i R m h m m =-==∑写成矩阵形式为:xs xx R R h =,可知:1xs xx h R R -=。
表明已知期望信号与观测数据的互相关函数以及观测信号的自相关函数时,可以通过矩阵求逆运算,得到维纳滤波器的最佳解。
2 实验及分析(1)根据公司产生原始信号()()()1s n as n w n =-+,并分别加入不同信噪比的噪声,从而得到三组观测数据()()()123,,x n x n x n 。
幅度原始信号幅度X 1信噪比为20db幅度X 2信噪比为10db幅度X 2信噪比为6db(2)滤波前后信号对比误差a.首先讨论信号长度L对实验结果的影响信噪比为10db的噪声,AR模型阶数N=10,当L=50时信噪比为10db的噪声,AR模型阶数N=10,当L=100时滤波前后信号对比误差信噪比为10db的噪声,AR模型阶数N=10,当L=150时滤波前后信号对比误差通过对比可以看出,当滤波器的阶数一定时,观测数据长度的增加,可以减少输出信号与期望信号间的差值。
因此,观测信号的长度L对实验有着重要的影响,输入样本的个数增加可以提高维纳滤波的性能。
b.讨论AR模型的阶数N对实验结果的影响信噪比为10db的噪声,信号长度为L=100,当AR模型阶数N=5时滤波前后信号对比误差信噪比为10db的噪声,信号长度为L=100,当AR模型阶数N=10时滤波前后信号对比误差信噪比为10db的噪声,信号长度为L=100,当AR模型阶数N=15时滤波前后信号对比误差通过对比可以看出数据长度一定时,可以通过改变滤波器的阶数来减小最小均方误差,从而达到改变整体滤波的效果。
因此可知滤波器的阶数对实验结果有很大影响,增加阶数可以提高滤波器的性能。
3 结论综上所述,我们可以看到,增加输入信号的长度L 和增加滤波器的阶数N ,都可以显著的提高滤波器的性能。
因此,在设计维纳滤波器时需要注意以上两点,考虑其对实验结果的最终影响,慎重选择。
第二部分设计一维纳滤波器1)任选一幅图片,采用运动模糊函数使图片模糊,然后用维纳滤波进行图像复原,并计算出图像复原后的输出图象与原图象的误差(可根据每个象素点上的灰度值差来计算)。
2)任选一幅由于照相技术而产生的模糊图片,采用维纳滤波进行图像复原,并计算出图像复原后的输出图象与原图象的误差(可根据每个象素点上的灰度值差来计算)。
1 维纳滤波的基本原理维纳(Wiener)滤波是用来解决从噪声中提取信号问题的一种过滤(或滤波)的方法。
实际上这种线性滤波问题,可以看成是一种估计问题或一种线性估计问题。
一个线性系统,如果它的单位样本响应为()h n ,当输入一个随机信号()x n ,且=)(n x )(n s )(n v + (1)其中)(n s 表示信号,)(n v 表示噪声,则输出)(n y 为)(n y ∑-=mm n x m h )()( (2)我们希望()x n 通过线性系统()h n 后得到的()y n 尽量接近于()s n ,因此()y n 称为()s n 的估计值,用()s n ∧表示,即=)(n y )(n s ∧(3)图1 维纳滤波器的输入一输出关系如图3-1所示。
这个线性系统()h n 称为对于()s n 的一种估计器。
实际上,式(2-2)的卷积形式可以理解为从当前和过去的观察值)(n x ,)1(-n x ,)2(-n x …)(m n x -,…来估计信号的当前值)(n s ∧。
因此,用)(n h 进行过滤的问题可以看成是一个估计问题。
由于我们现在涉及的信号是随机信号,所以这样一种过滤问题实际上是一种统计估计问题。
一般,从当前的和过去的观察值)(n x ,)1(-n x ,)2(-n x …估计当前的信号值=)(n y )(n s ∧称为过滤或滤波;从过去的观察值,估计当前的或将来的信号值=)(n y )(N n s +∧ )0(≥N 称为预测或外推;从过去的观察值,估计过去的信号值=)(n y )-(N n s ∧)1(≥N 称为平滑或内插。
因此维纳过滤又常常被称为最佳线性过滤与预测或线性最优估计。
这里所谓最佳与最优是以最小均方误差为准则的。
这里只讨论过滤与预测问题。
如果我们以:与s 分别表示信号的真值与估计值,而用)(n e 表示它们之间的误差,即=)(n e -)(n s )(n s ∧(4)显然,)(n e 可能是正的,也可能是负的,并且它是一个随机变量。
因此,用它的均方值来表达误差是合理的,所谓均方误差最小即它的平方的统计平均值最小:[]m in 2)(n e E min2^)()(⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-=n s n s E (5)采用最小均方误差准则作为最佳过滤准则的原因还在于它的理论分析比较简单,不要求对概率的描述。
并且在这种准则下导出的最佳线性系统对其它很广泛一类准则而言也是最佳的。
2 维纳滤波对退化图像的恢复维纳滤波是一种有约束的复原恢复,它综合了退化图像和噪声统计特性两个方面进行了复原处理。
维纳滤波,它是使原图像),(y x f 及其恢复图像),(^y x f 之间的均方差最小的复原方法,即:min ),(),(2^=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-y x f y x f E (6) 式中,{}.E 为数学期望算子。
因此,维纳滤波器通常又叫最小均方差滤波器。
很容易推到出原始图像的傅里叶变换估计为: ),(),(),(^v u G v u H v u F w ==),(.),(),(),(),(.),(122v u G v u p v u p v u H v u H v u H f uγ+ (7)上式也称作约束复原恢复通用的表达式,它的传递函数为:),(v u H w ),(.),(),(),(),(.),(122v u G v u p v u p v u H v u H v u H f uγ+= (8)3.实验结果及分析模糊图像维纳滤波复原图像(NSR=0)维纳滤波复原图像(NSR=0.002)维纳滤波复原图像(NSR=0.005)维纳滤波复原图像(NSR=0.008)维纳滤波复原图像(NSR=0.015)维纳滤波复原图像(NSR=0.015)维纳滤波复原图像(NSR=0.015)维纳滤波复原图像(NSR=0.015)图2 使用维纳滤波进行图片复原模糊图像维纳滤波复原图像(NSR=0)NSR=0时的灰度差值维纳滤波复原图像(NSR=0.002)NSR=0.002时的灰度差值维纳滤波复原图像(NSR=0.005)维纳滤波复原图像(NSR=0.008)维纳滤波复原图像(NSR=0.015)NSR=0.015时的灰度差值图3 对由于拍照技术造成的运动模糊图像进行处理原图像退化并加高斯白噪声后的图象逆滤波恢复后的图象维纳滤波恢复后的图象图4 对图像加噪后进行滤波复原图2所示是对西安市钟楼的照片加噪后进行维纳滤波,从结果来看,随着信噪比的增大,滤波效果越来越好。
滤波后的图像与原图像每个像素点的差值之和明显减小。
图3所示是用维纳滤波对由于拍照技术产生的模糊图片进行处理的结果,处理结果表明,维纳滤波对运动模糊图像的复原效果很好,图2中第6幅图与原图相比明显清晰了许多。
图2中后三幅图是三种信噪比下,滤波后的图像与原图像每个像素点的差值绘制出的图像。
从三幅图中明显可以看出,信噪比较大时复原的图像与原图像的像素点的差值明显减小。
实验二 卡尔曼滤波器的设计第一部分 1 实验题目假设一个点目标在x ,y 平面上绕单位圆做圆周运动,由于外界干扰,其运动轨迹发生了偏移。
其中,x 方向的干扰为均值为0,方差为0.05的高斯噪声;y 方向干扰为均值为0,方差为0.06的高斯噪声。
1)产生满足要求的x 方向和y 方向随机噪声500个样本; 2)明确期望信号和观测信号;3)试设计一FIR 维纳滤波器,确定最佳传递函数:1opt xx xs h R R -=,并用该滤波器处理观测信号,得到其最佳估计。
(注:自行设定误差判定阈值,根据阈值确定滤波器的阶数或传递函数的长度)。
4)要求3中,也可以选择Kalman 滤波器进行滤波处理,采用哪种滤波器可以自由选择。
5)分别绘制出x 方向和y 方向的期望信号、噪声信号、观测信号、滤波后信号、误差信号的曲线图;6)在同一幅图中绘制出期望信号、观测信号和滤波后点目标的运动轨迹。