广华中学高一上集合测试题(含答案)
高一数学集合练习题及答案(人教版)-百度文库

高一数学集合练习题及答案(人教版)-百度文库一、单选题1.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π2.已知集合{}220A x x x =+-<,{}1e ,R x B y y x -==∈,则A B =( )A .()2,0-B .()2,1-C .()0,1D .()1,+∞3.设全集U =R ,集合{}0,1,2A =,{}2B x x =≥,则()UA B =( )A .{}0,1,2B .{}0,1C .{}2D .{}2x x <4.已知集合{|23}M x x =-≤≤,{|ln 1}N x x =≥,则RMN ( )A .[]2,0-B .[)2,e -C .[]2,e -D .[e,3]5.已知集合{}1|32|22xA x xB x ⎧⎫⎪⎪⎛⎫=-<<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,,则A B =( )A .{}|22x x -<<B .{} |12x x -<<C .{}|32x x -<<-D .{} |31x x -<<-6.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-17.设集合{}220A x x x =--≤,124xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()A B ⋃=R( )A .112x x ⎧⎫-<≤-⎨⎬⎩⎭B .{}1x x <-C .12x x ⎧⎫>-⎨⎬⎩⎭D .{}1x x ≥-8.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8}B .{2,3,6,8}C .{2}D .{2,6,8}9.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}10.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2} B .{1,2}xyC .(1,2)D .{(1,2)}11.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( )A .[]1,3-B .[]2,4-C .{}1,2,3D .{}0,1,2,312.已知集{}23A x x =+≥合,{}3,1,1,3B =--,则A B =( ) A .{}3B .{}1,3C .{}3,1--D .{}1,1,3-13.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( )A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤14.已知集合{}{}21,,3A x x n n Z B ==+∈=,则A B =( ) A .{1,3}B .{1,3,5,7,9}C .{3,5,7}D .{1,3,5,7}15.设集合{}2Z20A x x x =∈--≤∣,{0,1,2,3}B =,则A B =( ) A .{0,1}B .{0,1,2}C .{1,0,1,2,3}-D .{2,1,0,1,2,3}--二、填空题16.已知{}21,,3A a =,{}22,1,1B a a =+-.若A B =,则=a ______.17.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.18.已知a 、R b ∈,若不等式20ax x b -+<的解集为112A x x ⎧⎫=<<⎨⎬⎩⎭,不等式210ax bx +-≤的解集为B ,则()R A B ⋂=______.19.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ; (3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 20.已知集合{}22A x x =-≤≤,若集合{}B x x a =≤满足A B ⊆,则实数a 的取值范围____________.21.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________. 22.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.23.已知集合{}2|1A x x ==,{}|10B x ax =-=,若B A ⊆,则实数=a ______.24.若集合{}3A x x =>,集合{}B x x a =≥,且B A ,则实数a 的取值范围是______. 25.以下各组对象不能组成集合的是______(用题号填空). ①中国古代四大发明 ②地球上的小河流 ③方程210x -=的实数解 ④周长为10cm 的三角形 ⑤接近于0的数三、解答题26.设集合{}2230A x x x =--<,集合{}22B x a x a =-<<+.(1)若2a =,求()RA B ⋃;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.27.已知不等式()x a x a <210-++的解集为M . (1)若2∈M ,求实数a 的取值范围; (2)当M 为空集时,求不等式1x a-<2的解集.28.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.29.已知集合1284xA x ⎧⎫=<<⎨⎬⎩⎭,集合{}()00B x x a a =<<>.(1)当5a =时,求A B ;(2)若A B B =,求实数a 的取值范围.30.设集合{}4U x x =≤,{}12A x x =-≤≤,{}13B x x =≤≤.求: (1)A B ; (2)()U A B ; (3)()()U U A B ⋂.【参考答案】一、单选题 1.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 2.C 【解析】 【分析】化简集合,A B 即得解. 【详解】解: {}{}22021A x x x x x =+-<=-<<,{}{}1e ,R 0x B y y x y y -==∈=>,所以()0,1A B =.故选:C 3.B 【解析】 【分析】根据补集、交集的定义计算可得; 【详解】解:因为{}2B x x =≥,所以{}U 2B x x =<,又{}0,1,2A =; 所以(){}0,1UA B =;故选:B4.B 【解析】 【分析】由对数函数的单调性解不等式求集合N ,再应用集合的交补运算求RM N .【详解】由题设{|e}N x x =≥,则{|e}N x x =<R,所以{|2e}M N x x =-≤<R.故选:B 5.B 【解析】 【分析】先由指数函数的性质求得集合B ,再根据集合的交集运算可求得答案. 【详解】解:因为}{}1{|32,|()212x A x x B x x x ⎧⎫=-<<=<=-⎨⎬⎩⎭,所以A B ={}|12x x -<<, 故选:B. 6.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a⎧=⎨=⎩,且0ab ≠,进而求解即可.【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 7.B 【解析】 【分析】分别化简集合A 与B ,再求A B ,最后求()RA B ⋃【详解】220x x --≤⇒()()120x x +-≤⇒12x -≤≤124x⎛⎫< ⎪⎝⎭222x-⇒<21x ⇒-<12x ⇒>- 即{}|12A x x =-≤≤,1|2B x x ⎧⎫=>-⎨⎬⎩⎭所以{}|1A B x x ⋃=≥- 所以(){}R|1AB x x =<-8.A 【解析】 【分析】由已知,先有集合U 和集合A 求解出UA ,再根据集合B 求解出()UA B ⋂即可.【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8UA =,又因为{}2,6,8B =,所以(){}6,8U A B =. 故选:A. 9.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 10.D 【解析】 【分析】 联立方程求解即可. 【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D. 11.D 【解析】 【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可. 【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=,因为{}14A x x =-≤≤ 所以A B ={}0,1,2,3 故选:D【解析】 【分析】化简集合A ,由交集定义直接计算可得结果. 【详解】化简可得{|1}A x x =≥,又{}3,1,1,3B =-- 所以{1,3}A B =. 故选:B. 13.B 【解析】 【分析】化简集合A 和B ,根据集合并集定义,即可求得答案. 【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B. 14.B 【解析】 【分析】先求出集合[)1,10B =,再根据集合的交集运算求得答案. 【详解】由题意得[){3}1,10B x =<=,其中奇数有1,3,5,7,9 又{}21,Z A x x n n ==+∈,则{}1,3,5,7,9A B ⋂=, 故选:B . 15.B 【解析】 【分析】解一元二次不等式,得到集合A ,根据集合的交集运算,求得答案. 【详解】解不等式220x x --≤得:12x -≤≤ ,故{}2Z20{1,0,1,2}A x x x =∈--≤=-∣, 故{0,1,2}A B ⋂=,二、填空题 16.2【解析】 【分析】根据集合A 与集合B 相等列式即可求解 【详解】 因为A B =所以22213a a a ⎧=+⎨-=⎩解之得:2a =故答案为:2 17.3或-1##-1或3 【解析】 【分析】根据集合相等得到223m m -=,解出m 即可得到答案. 【详解】由题意,2233m m m -=⇒=或m =-1. 故答案为:3或-1.18.3122x x ⎧-≤≤⎨⎩或}1x =【解析】 【分析】分析可知x 的方程20ax x b -+=的两根分别为12、1,利用韦达定理求出a 、b 的值,然后解不等式210ax bx +-≤可得集合B ,利用补集和交集的定义可求得()A B R . 【详解】由题意可知,关于x 的方程20ax x b -+=的两根分别为12、1,所以11121120a b a a ⎧+=⎪⎪⎪⨯=⎨⎪>⎪⎪⎩,解得2313a b ⎧=⎪⎪⎨⎪=⎪⎩, 不等式210ax bx +-≤即为2211033x x +-≤,即2230x x +-≤,解得312x -≤≤,则312B x x ⎧⎫=-≤≤⎨⎬⎩⎭,因为112A x x ⎧⎫=<<⎨⎬⎩⎭,则R 12A x x ⎧=≤⎨⎩或}1x ≥,因此,()R3122A B x x ⎧⋂=-≤≤⎨⎩或}1x =.故答案为:3122x x ⎧-≤≤⎨⎩或}1x =.19. ⊆ = ⊇ ⊆ 【解析】 【分析】根据集合子集的定义及集合相等的概念求解. 【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆ 20.[2,+∞) 【解析】 【分析】根据A B ⊆结合数轴即可求解. 【详解】∵{}22A x x =-≤≤≠∅,A B ⊆, ∴A 与B 的关系如图:∴a ≥2.故答案为:[2,+∞).21.{}10x x -<<【解析】 【分析】由交集运算求解即可. 【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<<故答案为:{}10x x -<<22.4【解析】 【分析】由题意列举出集合M ,可得集合的个数. 【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:4 23.0,1或1- 【解析】 【分析】根据集合间的关系,运用分类讨论的方法求解参数的值即可. 【详解】根据题意知,{}1,1A =-B A ⊆B ∴=∅①时,0a =;B ≠∅② 时,1B a ⎧⎫=⎨⎬⎩⎭,此时, 11a =或11a =-,解得 1a =或1a =-故答案为:01,或-1.24.3a >【解析】 【分析】解不等式求得结合A ,根据B A 列不等式来求得a 的取值范围. 【详解】3x >⇔3x <-或3x >,所以{|3A x x =<-或}3x >.由于B A ,所以3a >. 故答案为:3a > 25.②⑤ 【解析】 【分析】利用集合元素的基本特征判断. 【详解】①中国古代四大发明是造纸术,指南针,火药和印刷术,是确定的,能构成集合; ②地球上的小河流,不确定,不能构成集合;③方程210x -=的实数解是1或-1,是确定的,能构成集合; ④周长为10cm 的三角形,是确定的,能构成集合; ⑤接近于0的数,不确定,不能构成集合. 故答案为:②⑤三、解答题26.(1){1x x ≤-或}4x ≥ (2)01a <≤ 【解析】 【分析】(1)当2a =时,求出集合A 、B ,利用并集和补集的定义可求得集合()R A B ⋃; (2)根据已知条件可得出B A 且B ≠∅,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.(1) 解:{}{}223013A x x x x x =--<=-<<, 当2a =时,{}04B x x =<<,故{}14A B x x ⋃=-<<, 因此,(){R 1A B x x ⋃=≤-或}4x ≥.(2)解:因为p 是q 成立的必要不充分条件,则B A 且B ≠∅, 所以,212223a a a a -≥-⎧⎪-<+⎨⎪+≤⎩,解得01a <≤, 当1a =时,{}13B x x =<< A ,合乎题意.因此,01a <≤. 27.(1)a >2(2)(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)由已知2∈M 可得,2满足已知不等式,代入即可求解; (2)由M 为空集,可求得a ,然后代入解分式不等式即可求解.(1)由已知2∈M 可得,4-2(a +1)+a <0,解得a >2, 所以实数a 的取值范围为()2,+∞;(2)当M 为空集,则()a a -∆=≤2410+,即()a -≤210; 所以10a -=,即1a =∴1x a -<2,即11x -<2, ∴231x x -->0,解得x >32或x <1. ∴此不等式的解集为(-∞,1)∪3,2⎛⎫+∞ ⎪⎝⎭. 28.(,3]-∞【解析】【分析】求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦, 因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B = 所以(3,5]A B =因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤ 综上可得:实数a 的取值范围是(,3]-∞29.(1){}03A B x x ⋂=<<(2)03a <≤【解析】【分析】(1)求出集合A ,利用交集的定义可求得结果; (2)由题意可得B A ⊆,即可得出实数a 的可能取值.(1)解:当5a =时,{}05B x x =<<, 因为{}128234x A x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,因此,{}03A B x x ⋂=<<. (2)解:因为A B B =,则B A ⊆,所以,03a <≤. 30.(1){|12}A B x x =≤≤;(2)(){|1U B x A x ⋃=<-或14}x ≤≤;(3)()(){|1U U x B x A ⋂=<-或34}x <≤.【解析】【分析】(1)由集合的交集运算可求得答案;(2)先算出U A ,再求()U A B ⋃; (3)先求U B ,再求()()U U A B ⋂.(1)解:∵{|12}A x x =-≤≤,{|13}B x x =≤≤, ∴{|12}A B x x =≤≤;(2)解:{|4}U x x =≤,{}12A x x =-≤≤,所以{|1U A x x =<-或24}x <≤. 又∵{|13}B x x =≤≤,∴(){|1U B x A x ⋃=<-或14}x ≤≤.(3)∵{|4}U x x =≤,{|13}B x x =≤≤,∴{|1U B x x =<或34}x <≤, ∴()(){|1U U x B x A ⋂=<-或34}x <≤.。
高一数学集合练习题及答案-百度文库

高一数学集合练习题及答案-百度文库一、单选题1.已知集合{}23250A x x x =--<,{}B x x a =>,若A B B ⋃=,则实数a 的取值范围为( ) A .5,3⎛⎤-∞ ⎥⎝⎦B .5,3⎛⎫-∞ ⎪⎝⎭C .(],1-∞-D .(),1-∞-2.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( ) A .1πB .2C .1D .π3.已知集合2230{|}A x x x =--≤,{3,1,1,3}B =--,则A B =( ) A .{1}B .{}1-C .{}113-,,D .{3,1,1}--4.设集合{}2260A x Z x x =∈+-≤,{}02B x x =<<,则()R A B ⋂=( )A .[]2,0-B .30,2⎛⎤ ⎥⎝⎦C .{}2,1,0--D .{}2,1--5.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3-6.已知全集{}1,2,3,4,5U =,集合{}1,2,3A =,{}3,4B =,则集合{}4=( ) A .()UA BB .()()U UA BC .()U A B ⋂D .()U A B7.如图,已知集合{A =1-,0,1,2},{|128}xB x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2}8.已知集合{}220A x x x =--≤,{}2log B x x k =>.若A B =∅ ,则实数k 的取值范围为( ) A .02k <≤ B .04k << C .2k ≥D .4k ≥9.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( )A .[]1,3-B .[]2,4-C .{}1,2,3D .{}0,1,2,310.已知集合{}2320A x x x =-+>,{}1,B m =,若A B ⋂≠∅,则实数m 的取值范围是( ) A .()1,2 B .()(),12,-∞+∞C .[]1,2D .()2,+∞11.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-12.已知集合{}{}|2|21A x x B x x =≥-=-≤≤,,则下列关系正确的是( ) A .A B = B .A B ⊆C .B A ⊆D .A B =∅13.设全集U =R .集合{(2)(1)}A x y x x ==-+∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞D .()1,2-14.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,315.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( ) A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,1二、填空题16.集合{}2,A x x k k ==∈Z ,{}25B x x =≤,那么A B =______.17.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________. 18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______.19.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 20.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________. 21.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________.22.若{}231,13a a ∈--,则=a ______.23.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________.24.若集合{}1A x x a =-≤,{}2540B x x x =-+>,A B =∅,则实数a 的取值范围是______.25.用描述法表示被4除余3的自然数全体组成的集合A =______.三、解答题26.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<. (1)求A B ,()A B R ; (2)若A C ⋂≠∅,求a 的取值范围.27.已知集合{}{}|26,|3782A x x B x x x =≤≤=-≥-. (1)求A B ,R()A B ;(2)若{}|44C x a x a =-<≤+,且A ⊆C ,求a 的取值范围.28.已知集合{}230A x x x =-≤,()2lg 14x B x y x ⎧⎫+⎪⎪==⎨⎬-⎪⎪⎩⎭. (1)求A B ; (2)求RAB .29.为了安全和方便,把一批数据分成若干部分储存在6个服务器里,要求其中任意两个服务器发生意外数据受损时,从其余4个服务器中仍然能够提取信息恢复数据.邀你设计既节省储存空间又满足上述要求的数据储存方案.完成后可进一步探究更一般的情形.30.已知集合6|32M x x ⎧⎫=>⎨⎬+⎩⎭,{|53}N x t x t =<<+. (1)当1t =-时,求M N ⋂; (2)若M N ⊆,求实数t 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】先求出A 集合,再根据集合的包含关系求出a 的值即可 【详解】依题意{}{}253250(35)(1)013A x x x x x x x x ⎧⎫=--<=-+<=-<<⎨⎬⎩⎭,而A B B ⋃=,故A B ⊆,得1a ≤-故选:C 2.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 3.C【解析】 【分析】先化简集合A ,再求集合A 与集合B 的交集 【详解】()()2230310x x x x --≤⇒-+≤13x ⇒-≤≤,,即{}|13A x x =-≤≤, 所以{}1,1,3A B ⋂=-, 故选:C. 4.C 【解析】 【分析】求解集合A ,然后进行交集补集运算即可. 【详解】集合()(){}{}|23202,1,0,1A x Z x x =∈-+≤=--,{}02B x x =<<{R|0B x x =≤或}2x ≥,则()R A B ⋂={}2,1,0--故选:C 5.C 【解析】 【分析】先解指数不等式得集合B ,然后由交集定义可得. 【详解】由2139xx -=⎛⎪3⎫⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =.故选:C . 6.C 【解析】 【分析】利用交集,并集和补集运算法则进行计算,选出正确答案. 【详解】{}1,2,3,4A B =,(){}5UA B ⋃=,A 错误;()(){}{}{}4,51,2,51,2,4,5UUA B ==,B 错误;(){}{}{}4,53,44U A B ⋂==,C 正确; (){}{}{}1,2,51,2,31,2UA B ==,D 错误.故选:C 7.B 【解析】 【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可. 【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =, 因为{A =1-,0,1,2}, 所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-. 故选:B 8.D 【解析】 【分析】由于A B =∅ ,B 集合所表示的区间在A 集合之外. 【详解】由220x x --≤ ,解得12x -≤≤ ,即[]1,2A =- ,A B =∅ ,2log 2k ∴≥ ,4k ≥ ;故选:D. 9.D 【解析】 【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可. 【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=,因为{}14A x x =-≤≤ 所以A B ={}0,1,2,3 故选:D 10.B 【解析】 【分析】根据一元二次不等式的解法求出集合A ,结合交集的概念和运算与空集的概念即可得出结果. 【详解】 由题可知,{}()(){}{}232012012A x x x x x x x x x =-+>=-->=或.因为A B ⋂≠∅,所以m A ∈,即1m <或2m >, 所以实数m 的取值范围是()(),12,-∞+∞.故选:B 11.D【分析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 12.C 【解析】 【分析】由子集的定义即可求解. 【详解】解:因为集合{}{}|2|21A x x B x x =≥-=-≤≤,, 所以根据子集的定义可知B A ⊆, 故选:C. 13.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 14.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 15.B 【解析】 【分析】求出定义域得到集合B ,从而求出补集和交集. 【详解】{}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,RA =-∞-⋃+∞,所以()[)1,RA B ∞⋂=+.二、填空题16.{}2,0,2-【解析】 【分析】根据集合A 的含义,直接求解A B ⋂即可. 【详解】因为集合A 表示元素为偶数的集合,又{}2|5{|B x x x x =≤=≤≤,故{}2,0,2A B ⋂=-. 故答案为:{}2,0,2-.17.(){}2,5【解析】 【分析】由方程组可求得交点坐标,由此可得交集. 【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=.故答案为:(){}2,5.18.±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解,所以280a ∆=-=,解得a =±故答案为:± 19.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Zx =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣,所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5. 20.1,1,22⎧⎫-⎨⎬⎩⎭【解析】 【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 故答案为:1,1,22⎧⎫-⎨⎬⎩⎭21.3 【解析】 【分析】根据集合相等的概念得到方程组,解之即可求出结果. 【详解】 ∵A B =,∴325a a =⎧⎨+=⎩,解得3a =, 或523a a =⎧⎨+=⎩,无解 所以3a =. 故答案为:3.22.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 23.{x |2<x <3} 【解析】【分析】解二次不等式可得集合B ,再求交集即可. 【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3}24.[]2,3【解析】 【分析】先根据不等式的解法化简两个集合A 、B ,再根据A B =∅确定a 的取值范围. 【详解】因为{}1{|11}{|11}A x x a x x a x a x a =-≤=-≤-≤=-≤≤+, {}2540{|(4)(1)0}{|4B x x x x x x x x =-+>=-->=>或1}x <,因为A B =∅,所以1114a a -≥⎧⎨+≤⎩,解得23a ≤≤,即实数a 的取值范围是[]2,3. 故答案为:[]2,3.25.{}|43,N n n k k =+∈【解析】 【分析】用数学式子表示出自然语言即可. 【详解】被4除余3的自然数即为4的整数倍加3, 因此{|43,N}A n n k k ==+∈. 故答案为:{}|43,N n n k k =+∈.三、解答题26.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<;(2)()3,+∞. 【解析】 【分析】(1)直接利用集合并集、交集和补集的定义求解; (2)分析A C ⋂≠∅即得解. (1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<. (2)解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.27.(1)[]()()R 3,6,(),36,A A B B ⋂=-∞⋃+∞⋂(2)[)2,6【解析】【分析】(1)解不等式求得集合B ,由此求得A B ,进而求得R ()A B . (2)根据A 是C 的子集列不等式组,由此求得a 的取值范围.(1)3782,515,3x x x x -≥-≥≥,所以{}|3B x x =≥, 所以[]()()R 3,6,(),36,A A B B ⋂=-∞⋃+∞⋂.(2)由于{}|44C x a x a =-<≤+,且A ⊆C ,所以422646a a a -<⎧⇒≤<⎨+≥⎩, 所以a 的取值范围是[)2,6.28.(1){}23A B x x =<≤(2){}3R A B x x =≤【解析】【分析】 (1)分别求两个集合,再求交集;(2)先求B R ,再求R A B .(1) 230x x -≤,解得:03x ≤≤,即{}03A x x =≤≤,21040x x +>⎧⎨->⎩,解得:2x >,即{}2B x x =>, {}23A B x x ∴=<≤;(2) {}2R B x x =≤ {}03A x x =≤≤,{}3R A B x x ∴=≤.29.【解析】【详解】略30.(1){}|20x x -<<(2)23,5⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)解不等式得M ,再求,M N 交集(2)由题意列不等式组求解(1)由632x >+化简得302x x <+,解得20x -<<,故{}|20M x x =-<<, 当1t =-时,{}52N x x =-<<,因此{}|20MN x x =-<<.(2) 因{}|20M x x =-<<,{}53N x t x t =<<+,M N ⊆, 所以355230t t t t +>⎧⎪≤-⎨⎪+≥⎩, 经计算得235t -≤≤-, 故实数t 的取值范围是23.5⎡⎤--⎢⎥⎣⎦,。
高一数学集合练习题及答案-百度文库

高一数学集合练习题及答案-百度文库一、单选题1.已知集合{}2A =-,{}22B x x =≤,则A B =( )A .{-B .{}1,0-C .{D .{}2.已知集合{}23250A x x x =--<,{}B x x a =>,若A B B ⋃=,则实数a 的取值范围为( ) A .5,3⎛⎤-∞ ⎥⎝⎦B .5,3⎛⎫-∞ ⎪⎝⎭C .(],1-∞-D .(),1-∞-3.记集合{}22M x x x =><-或,{}2|30N x x x =-≤,则MN =( )A .{|23}x x <≤B .或{}02}x x x ><-或C .{|02}x x ≤<D .{}|23x x -<≤4.已知集合{}{}2,,,,M y y x x x N y y x x y ==-∈==∈∈R R R ,则MN =( )A .∅B .{(0,0),(2,2)}C .}{0,2D .1[,)4-+∞5.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9B .[)4,9C .[]4,6D .[]0,96.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x <<B .{}32x x -<<C .{}35x x -<<D .{}3x x <-7.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( )A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<8.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-19.已知集合{}24A x x =≤,{B y y ==,则A B =( )A .∅B .[]22-,C .[)0,2D .[)2,2-10.已知集合{}{}2230,1A x x x B x x =--<=≤,则R()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)-11.若集合{}220A x x x =--<,{}24B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,212.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( )A .[]1,3-B .[]2,4-C .{}1,2,3D .{}0,1,2,313.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)-14.已知集合{}0,1,2,A B x y⎧===⎨⎩∣,则A B ⋃=( )A .{}0,1,2B .{}1,2C .()0,∞+D .[)0,∞+15.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______. 17.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________.18.已知集合{}2|210A x ax x =+-=,若集合A 中只有一个元素,则实数a 的取值的集合是______19.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.20.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______21.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.22.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________. 23.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 24.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.25.若集合{}1A x x a =-≤,{}2540B x x x =-+>,A B =∅,则实数a 的取值范围是______.三、解答题26.已知U =R 且{}2|560A x x x =--<,{|3B x x =≥或1}x ≤.求:(1)A B ,A B ; (2)()()U U A B .27.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.28.在①A B A ⋃=,②A B ⋂≠∅,③B A ⊆R这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由. 已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a ,b 的值; (2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分).29.已知集合{}22|430A x x ax a =-+<,集合{}2|560B x x x =-+≤.(1)当1a =时,求A B ,A B ;(2)设0a >,若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.30.已知集合A 的元素全为实数,且满足:若a A ∈,则11aA a+∈-. (1)若3a =-,求出A 中其他所有元素;(2)0是不是集合A 中的元素?请你设计一个实数a A ∈,再求出A 中的元素【参考答案】一、单选题 1.A 【解析】 【分析】解一元二次不等式化简集合B ,再利用交集的定义计算作答. 【详解】解不等式22x ≤得:x ≤{|B x x =≤,因{}2A =-,所以{A B ⋂=-. 故选:A 2.C 【解析】 【分析】先求出A 集合,再根据集合的包含关系求出a 的值即可 【详解】依题意{}{}253250(35)(1)013A x x x x x x x x ⎧⎫=--<=-+<=-<<⎨⎬⎩⎭,而A B B ⋃=,故A B ⊆,得1a ≤-故选:C 3.A 【解析】 【分析】先求出集合N ,再由交集的定义即可得出答案. 【详解】{}{}2|30|03N x x x x x =-≤=≤≤,所以MN ={|23}x x <≤.故选:A 4.D 【解析】 【分析】根据二次函数、一次函数的性质求出其值域,然后由交集定义可得. 【详解】因为22111()244y x x x =-=--≥-,所以1{|}4M y y =≥-易知N =R ,所以1{|}4M y N y ≥=-,即1[,)4-+∞故选:D 5.A 【解析】【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 6.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<.故选:A 7.B 【解析】 【分析】解不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B. 8.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 9.C 【解析】 【分析】根据一元二次不等式的解法求出集合A ,根据函数值域的求法求出集合B , 进而求出A B 即可. 【详解】对于集合{}24A x x =≤求的是x 的取值范围,{}22A x x ∴=-≤≤对于集合{B y y ==求的是y20x >,20x ∴-<,424x ∴-<,02∴≤{}02B y y ∴=≤<[)0,2A B ∴=故选:C . 10.B 【解析】 【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤, 所以1{|1}A B x x =-<≤,则R(){|1A B x x ⋂=≤-或1}x >.故选:B 11.A 【解析】 【分析】分别求出集合A 和B 求的解集,交集运算即可. 【详解】集合{}{}22012A x x x x x =--<=-<<,{}22B x x =-<<,所以A B A =.故选:A . 12.D 【解析】 【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可. 【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=,因为{}14A x x =-≤≤ 所以A B ={}0,1,2,3 故选:D 13.D 【解析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)M N =-.故选:D 14.D 【解析】 【分析】先解出集合B ,再求A B . 【详解】{}0B x y xx⎧===>⎨⎩∣∣. 因为{}0,1,2A =,所以A B ⋃=[)0,+∞. 故选:D 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题 16.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3. 17.{2,3}##{3,2} 【解析】由交集的运算求解 【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3}18.{}0,1-【解析】 【分析】分0a =和0a ≠两种情况保证方程2210ax x 只有一个解或重根,求出a 的值即可. 【详解】当0a =时,2210ax x 只有一个解12x =, 则集合2{|210}A x ax x =+-=有且只有一个元素,符合题意; 当0a ≠时,若集合A 中只有一个元素, 则一元二次方程2210ax x 有二重根, 即440a ∆=+=,即 1.a =-综上,0a =或1-,故实数a 的取值的集合为{}0,1.- 故答案为:{}0,1.- 19.2 【解析】 【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解. 【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =.故答案为:2. 20.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥21.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147222.{}34x x ≤<【解析】 【分析】求出{}24A x x =<<与{}3B x x =≥,进而求出A B . 【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤<故答案为:{}34x x ≤< 23.②③⑤ 【解析】 【分析】根据集合与集合的关系,元素与集合的关系确定正确答案. 【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误. ④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤24.a B ∈【解析】 【分析】根据元素与集合关系即可判断. 【详解】因为2a =,满足123-<<,所以a B ∈. 故答案为:a B ∈.25.[]2,3【解析】 【分析】先根据不等式的解法化简两个集合A 、B ,再根据A B =∅确定a 的取值范围. 【详解】因为{}1{|11}{|11}A x x a x x a x a x a =-≤=-≤-≤=-≤≤+, {}2540{|(4)(1)0}{|4B x x x x x x x x =-+>=-->=>或1}x <,因为A B =∅,所以1114a a -≥⎧⎨+≤⎩,解得23a ≤≤,即实数a 的取值范围是[]2,3. 故答案为:[]2,3.三、解答题26.(1){|11A B x x ⋂=-<≤或36}x ≤<;A B R ⋃= (2)∅ 【解析】 【分析】(1)先求解集合A ,再根据交集和并集的概念写出结论即可; (2)先分别求解集合A 和集合B 的补集,再根据交集的概念写出答案. (1)根据{}2|560A x x x =--<可知,{}|16A x x =-<<又{|3B x x =≥或1}x ≤ {|11A B x x ∴⋂=-<≤或36}x ≤<;A B R ⋃=.(2) 根据题意,{|1UA x x =≤-或6}x ≥;{|13}UB x x =<<所以()()U U A B ⋂=∅.27.(1){11A B xx =-≤≤∣或}45x ≤≤ (2)()0,1 【解析】 【分析】(1)借助数轴即可确定集合A 与集合B 的交集(2)由于A R B ,根据集合之间的包含关系即可求解(1)当3a =时,集合{}|22A x a x a =-≤≤+{}15xx =-≤≤∣, {|1B x x =≤或}4x ≥ ,{11A B x x ∴=-≤≤∣或}45x ≤≤(2)若0a >,且 “x A ∈”是“R x B ∈”充分不必要条件,{}{}22(0),14R A x a x a a B x x =-≤≤+>=<<∣∣因为A R B ,则21240a a a ->⎧⎪+<⎨⎪>⎩解得01a <<.故a 的取值范围是:()0,128.(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =;(3)若选①:2m ≥;若选②:1m <或2m >;若选③:12m ≤≤.【解析】【分析】(1)由题可知x =1是方程2320ax x -+=的解,由此即可求出a ,从而求出b ;(2)根据a 、b 的值即可分类讨论求解不等式,从而得到B ;(3)若选①,则B ⊆A ,分类讨论m 的范围即可;若选②,则根据题意分类讨论即可;若选③,则先求出A R ,分类讨论即可.(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b , ∴0,31,21,a b a b a ⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<;m =2时,不等式无解;m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =.(3)由(1)知{1A x x =<或}2x >,若选①:A B A ⋃=,则B A ⊆,当2m <时,(),2B m =,不满足;当2m =时,B =∅,满足;当2m >时,()2,B m =,满足;∴选①,则实数m 的取值范围是2m ≥; 若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <;当2m =时,B =∅,不满足;当2m >时,()2,B m =,满足;∴选②,则实数m 的取值范围是1m <或2m >; 若选③:B A ⊆R ,A R []1,2=,当2m <时,(),2B m =,则m ≥1,∴12m ≤<; 当2m =时,B =∅,满足;当2m >时,()2,B m =,不满足.∴选③,则实数m 的取值范围是12m ≤≤. 29.(1)[)2,3A B =, (]1,3A B ⋃=(2)()1,2【解析】【分析】(1)先解出集合AB ,再求A B ,A B ; (2)利用集合法列不等式组求出a 的范围.(1)当1a =时,{}{}()222|430|4301,3A x x ax a x x x =-+<=-+<=. {}[]2|5602,3B x x x =-+≤=.所以()[][)1,32,32,3A B ⋂=⋂=, ()[](]1,32,31,3A B ⋃=⋃=.(2)当0a >时,{}()22|430,3A x x ax a a a =-+<=.[]2,3B =. 因为“x A ∈”是“x B ∈”的必要不充分条件,所以B A , 只需233a a <⎧⎨>⎩,解得:1 2.a << 故实数a 的取值范围为()1,2.30.(1)11223-,, (2)0不是集合A 中的元素;可以取a =3,则A 中的元素还有:2-,13-,12【解析】【分析】(1)根据定义直接计算即可得到A 中其他所有元素;(2)先假设0A ∈,依定义判断即可;取3a =,根据定义直接计算即可得到A 中其他所有元素.(1)由题意可知:3A -∈,则()()131132A +-=-∈--,11()12131()2A +-=∈--,1132113A +=∈-,12312A +=-∈-, 所以A 中其他所有元素为11223-,,; (2)假设0A ∈,则10110A +=∈-,而当1A ∈时,11a a +-不存在,假设不成立, 所以0不是A 的元素,取3a =,则13213A +=-∈-,1(2)11(2)3A +-=-∈--,11()13121()3A +-=∈--,1123112A +=∈-, 所以当3A ∈,A 中的元素是:3,2-,13-,12;。
(完整版)集合测试题及答案,推荐文档

A.35. B.25 C.28. D.15.
9.集合 A={a²,a+1,-3},B={a-3,2a-1,a²+1},若 A∩B={-3},则 a 的值是( )
A.0
B. -1
C.1
D.2
10. 若集 A {x | kx2 4x 4 0} 合中有且仅有一个元素,则实数 k 的值为(
A. {x|x<0} B.{x|-2≤x<0} C.{x|x>3}
D.{x|-2≤x<3}
5.若集合 M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则 M∩N=( )
A.{-1}
B.{0} C. {-1,0}
D. {-1,0,1}
6.设 U={n|n 是小于 9 的正整数},A={n∈U|n 是奇数},B={n∈U|n 是 3 的倍数},则∁U(A∪B)
15.(8 分)已知集合 M={-2,3x2+3x-4,x2+x-4},若 2∈M,求 x.
16. (8 分)已知全集 U=R,集合 A={x|3≤x<7},B={x|2<x<10},求∁U (A∪B)、∁U (A∩B)
17.(7 分)某班有学生 55 人,其中体育爱好者 43 人,音乐爱好者 34 人,还有 4 人既不爱
17.解:设该班既爱好体育又爱好音乐的有人数为 x 人,则(43—x)+x+(34—x)=55,
X=26. 答:该班既爱好体育又爱好音乐的有人数为 26 人。
18. 解:∵B⊆A,∴m2=2m-1, m2-2m+1=0, m=1.
3
13. {1,2,3,4}
高一数学上学期集合练习题及答案

高一数学上学期《集合》练习一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 103、若{1,2}⊆A ⊆{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 94、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4}5、方程组 11x y x y +=-=- 的解集是 ( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0⊇∅,Q ∉3.0, N ∈0, {}{},,a b b a ⊂ ,{}2|20,x xx Z -=∈是空集中,错误的个数是 ( )A 4B 3C 2D 17、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集C. 第一、第三象限内的点集D. 不在第二、第四象限内的点集8、设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 ( )A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 410、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( )A a b P +∈B a b Q +∈C a b R +∈D a b +不属于P 、Q 、R 中的任意一个 二、填空题(每题3分,共18分)11、若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ⊂A ,则a=__________13、设全集U={}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。
高一数学必修一集合练习题及单元测试(含答案及解析)

高一数学必修一集合练习题及单元测试(含答案及解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A。
{x|x≥3} B。
{x|x≥2} C。
{x|2≤x<3} D。
{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A。
{3,5} B。
{3,6} C。
{3,7} D。
{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A。
{x|x≥-1} B。
{x|x≤2} C。
{x|0<x≤2} D。
{x|-1≤x≤2}4.满足M⊆{1,2,3,4},且M∩{2,3}={3}的集合M的个数是()A。
1 B。
2 C。
3 D。
45.集合A={0,2,a},B={1,4},若A∪B={0,1,2,4,16},则a 的值为()A。
1 B。
4 C。
2 D。
166.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A。
Ø B。
{x|x5/3} D。
{x|-1/2<x<5/3}7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为15.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是2.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是(-∞,1]。
10.已知集合A={-4,2a-1},B={a-5,1-a,9},若A∩B={9},则a的值为7.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},则x=2,A∩B={1}。
12.已知A={x|2a≤x≤a+3},B={x|x5},若A∩B=Ø,则a的取值范围为(-∞,-1)∪(5,∞)。
13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组。
湖北江汉油田广华中学高一物理上册第一学期11月月考考试题附答案解析
一、选择题1.如图所示,甲同学用手拿着一把长50cm的直尺,并使其处于竖直状态;乙同学把手放在直尺0刻度线位置做抓尺的准备.某时刻甲同学松开直尺,直尺保持竖直状态下落,乙同学看到后立即用手抓直尺,手抓住直尺位置的刻度值为20cm;重复以上实验,乙同学第二次用手抓住直尺位置的刻度值为10cm.直尺下落过程中始终保持竖直状态.若从乙同学看到甲同学松开直尺,到他抓住直尺所用时间叫“反应时间”,取重力加速度g=10m/s2。
则下列说法中不正确的是()A.若将尺子上原来的长度值改为对应的“反应时间”值,则可用上述方法直接测出“反应时间”B.若某同学的“反应时间”大于0.4s,则用该直尺将无法用上述方法测量他的“反应时间”C.乙同学第一次抓住直尺的瞬间,直尺的速度约为4m/sD.乙同学第一次的“反应时间”比第二次长2.如图所示,物体B叠放在物体A上,A、B的质量均为m,且上、下表面均与斜面平行,它们以共同速度沿倾角为θ的固定斜面C匀速下滑,则()A.A、B间没有静摩擦力B.A受到B的静摩擦力方向沿斜面向上C.A受到斜面的滑动摩擦力大小为2mgsin θD.A与B间的动摩擦因数μ=t an θ3.关于力、重力和弹力,下列说法正确的是A.在画力的图示时,力的作用点可不画在受力物体上B.把一木块放在水平桌面上保持静止,木块对桌面的压力就是木块受的重力C.把一木块放在水平桌面上保持静止,木块对桌面的压力,是由于木块发生形变而产生的D.形状规则的任何物体的重心都在它的几何中心上4.如图所示,此时表演者静止在弯曲倾斜的竹竿上,则下列说法正确的是()A.表演者对竹竿的弹力是由竹竿形变产生的B.表演者对竹竿的力竖直向下C.表演者对竹竿的摩擦力一定为零D.表演者对竹竿的力大于竹竿对表演者的力5.拿一个长约1.5m的玻璃筒,一端封闭,另一端有开关,把金属片和小羽毛放到玻璃筒里.把玻璃筒倒立过来,观察它们下落的情况,然后把玻璃筒里的空气抽出,再把玻璃筒倒立过来,再次观察它们下落的情况,下列说法正确的是A.玻璃筒充满空气时,金属片和小羽毛下落一样快B.玻璃筒充满空气时,金属片和小羽毛均做自由落体运动C.玻璃筒抽出空气后,金属片和小羽毛下落一样快D.玻璃筒抽出空气后,金属片比小羽毛下落快6.下列说法正确的是A.物体作自由落体运动时没有惯性B.亚里士多德认为力是维持物体运动的原因C.伽利略通过逻辑推理和实验认为,重物比轻物下落的快D.研究月球绕地球运动轨迹时不能把月球看成质点7.一辆汽车由车站开出,沿平直公路做初速度为零的匀变速直线运动,至第10 s末开始刹车,再经5 s便完全停下.设刹车过程汽车也做匀变速直线运动,那么加速和减速过程车的加速度大小之比是A.1∶2 B.2∶1C.1∶4 D.4∶18.下列情况中的运动物体,不能被看作质点的是A.欣赏某位舞蹈演员的舞姿B.用GPS确定远洋海轮在大海中的位置C.天文学家研究地球的公转D.计算男子400米自由泳金牌得主孙杨的平均速度9.如图所示,竖直平面内固定的半圆弧轨道两端点M、N连线水平,将一轻质小环套在轨道上,一细线穿过轻环,一端系在M点,另一端系一质量为m的小球,不计所有摩擦,重力加速度为g,小球恰好静止在图示位置,下列说法疋确的是()A.轨道对轻环的支持力大小为mg B.细线对M点的拉力大小为3mgC.细线对轻环的作用力大小为32 mgD.N点和轻环的连线与竖直方向的夹角为30°10.2018年8月26日,在雅加达亚运会男子田径100米决赛中,我国运动员苏炳添以9秒92打破亚运会记录夺冠。
(word版)高一数学集合练习题及答案
高一数学集合的练习题及答案一、、知点:本周主要学集合的初步知,包括集合的有关概念、集合的表示、集合之的关系及集合的运算等。
在行集合的运算要注意使用Venn。
本章知构集合的概念列法集合的表示法集合特征性描述法真子集包含关系子集相等集合与集合的关系交集集合的运算并集集1、集合的概念集合是集合中的不定的原始概念,教材中集合的概念行了描述性明:“一般地,把一些能确定的不同的象看成一个整体,就个整体是由些象的全体构成的集合〔或集〕〞。
理解句,把握4个关:象、确定的、不同的、整体。
象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一一象的,它关注的是些象的全体。
确定的――集合元素确实定性――元素与集合的“附属〞关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意有限集和无限集是非空集合来的。
我理解起来并不困。
我把不含有任何元素的集合叫做空集,做Φ。
理解它不妨思考一下“0与Φ〞及“Φ与{Φ}〞的关系。
几个常用数集N、N*、N+、Z、Q、R要牢。
3、集合的表示方法1〕列法的表示形式比容易掌握,并不是所有的集合都能用列法表示,同学需要知道能用列法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素多但呈一定的律的有限集,如{1,2,3,⋯,100}③呈一定律的无限集,如{1,2,3,⋯,n,⋯}●注意a与{a}的区●注意用列法表示集合,集合元素的“无序性〞。
2〕特征性描述法的关是把所研究的集合的“特征性〞找准,然后适当地表示出来就行了。
但关点也是点。
学多加就可以了。
另外,弄清“代表元素〞也是非常重要的。
如{x|y=x2},{y|y=x2},{〔x,y〕|y=x2}是三个不同的集合。
4、集合之的关系●注意区分“附属〞关系与“包含〞关系“附属〞关系是元素与集合之的关系。
“包含〞关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“〞等符号,会用Venn图描述集合之间的关系是根本要求。
湖北江汉油田广华中学高一 物理第一学期10月月月考考试卷
湖北江汉油田广华中学高一物理第一学期10月月月考考试卷一、选择题1.在轻绳的两端各拴一个小球,一人用手拿着上端的小球站在三楼的阳台上,放手让小球自由下落,两小球相继落地的时间差为t0.如果站在四楼的阳台上,放手让小球自由下落,则两小球相继落地的时间差将()A.不变B.变大C.变小D.无法判断2.下列说法正确的是( )A.运动越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B.同一物体在地球上不同的位置受到的重力是不同,所以它的惯性也随位置的变化而变化C.一个小球竖直上抛,抛出后能继续上升,是因为小球运动过程中受到了向上的推力D.物体的惯性大小只与本身的质量有关,质量大的物体惯性大,质量小的物体惯性小3.下列各组物理量中,都属于矢量的是()A.位移和路程B.时间和时刻C.力和加速度D.平均速度和速率4.如图所示,一架无人机执行航拍任务时正沿直线朝斜向下方向匀速运动.用G表示无人机重力,F表示空气对它的作用力,下列四幅图中能表示此过程中无人机受力情况的是( )A.B.C.D.5.如图所示为某医院体检中心的身高测量仪。
测量仪顶部向下发射波速为340m/s的超声波,超声波遇到障碍物后反射回来,被测量仪接收,测量仪记录发射和接收的时间间隔。
已知测量仪没有站人时,顶部距离台面3.0m,当一学生站在台面规定位置后,测量仪记录的时间间隔为0.01s,则该学生的身高最接近()A.110cmB.130cmC.150cmD.170cm6.已知物理量λ的单位为“m”、物理量v的单位为“m/s”、物理量f的单位为“s-1”,则由这三个物理量组成的关系式正确的是( )A.v=fB.v=λf C.f=vλD.λ=vf7.有下列几种情形,正确的是()A.点火后即将升空的火箭,因为火箭还没运动,所以加速度一定为零B.高速公路上沿直线高速行驶的轿车为避免事故紧急刹车,因紧急刹车,速度变化很快,所以加速度很大C.高速行驶的磁悬浮列车,因速度很大,所以加速度一定很大D.100米比赛中,甲比乙跑的快,说明甲的加速度大于乙的加速度8.下列叙述中不符合历史事实的是()A.古希腊哲学家亚里士多德认为物体越重,下落得越快B.伽利略发现亚里士多德的观点有自相矛盾的地方C.伽利略认为,如果没有空气阻力,重物与轻物应该下落得同样快D.伽利略用实验直接证实了自由落体运动是初速度为零的匀速直线运动9.如下图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面的弹簧.在这个过程中,下面木块移动的距离为( )A.11m gk B.22m gk C.12m gk D.21m gk10.以下各物理量属于矢量的是A.质量B.时间间隔C.摩擦力D.动摩擦因数11.关于位移和路程,下列说法中正确的是A.位移与路程都用来反映运动的路径长短B.在单向直线运动中位移就是路程C.某一运动过程中位移大小可能大于路程D.位移既有大小又有方向,路程只有大小没有方向12.汽车进行刹车试验,若速率从8m/s匀减速至零,需用时间1s,按规定速率为8m/s的汽车刹车后拖行路程不得超过5.9m,那么上述刹车试验的拖行路程是否符合规定A.拖行路程为4m,符合规定B.拖行路程为8m,不符合规定C.拖行路程为8m,符合规定D.拖行路程为4m,不符合规定13.放在水平地面上的一石块重10N,使地面受到10N的压力,则()A.该压力就是重力,施力者是地球B.该压力就是重力,施力者是石块C.该压力是弹力,是由于地面发生形变产生的D.该压力是弹力,是由于石块发生形变产生的14.如图所示,一个大人(甲)跟一个小孩(乙)站在水平地面上手拉手比力气,结果大人把小孩拉过来了.对这个过程中作用于双方的力的关系,下列说法正确的是A.大人拉小孩的力一定比小孩拉大人的力大B.只有在大人把小孩拉动的过程中,大人的力才比小孩的力大,在可能出现的短暂相持过程中,两人的拉力一样大C.大人拉小孩的力与小孩拉大人的力大是一对平衡力D.大人拉小孩的力与小孩拉大人的力大小一定相等15.在大枣红了的时候,几个小朋友正在大枣树下用石块投向枣树,若某个小朋友从看到石块击中枣树树枝到听到大枣落地声最少需要0.7 s,估算一下这课枣树的高度至少是()A.1.5 m B.2.5 mC.5 m D.7 m16.如图为一个做直线运动物体的v-t图象,则A.0~3s物体做匀速直线运动B.3~6s物体做匀速直线运动C.2 s和4s时刻的速度方向相反D.第3s时刻物体速度方向发生改变17.一个物体从某一高度做自由落体运动,已知它在第1s内的位移恰为它在最后1s内位移的三分之一,则高度为(10m/s2)()A.15m B.20m C.11.25m D.31.25m18.如图,光滑斜劈A上表面水平,物体B叠放在A上面,斜面光滑,AB静止释放瞬间,B的受力图是()A.B.C.D.19.杂技运动员在训练时的照片如图所示.有一小球自由落下,碰到水平桌面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力不计,则下列v--t图像中正确的是( )A.B.C.D.20.某同学用如图所示方法做共点力平衡实验.M、N为摩擦不计的定滑轮,O点是轻质细绳OA、OB和OC的结点,桌上有若干相同的钩码,他已经在A点和C点分别挂了3个和4个钩码,为使O 点在两滑轮间某位置受力平衡,在B 点挂的钩码数可能是( )A .1个B .3个C .5个D .7个二、多选题21.如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,用手拉住绳的另一端N .初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α(2πα>).现将重物向右上方缓慢拉起,并保持夹角α不变.在OM 由竖直被拉到水平的过程中( )A .MN 上的张力逐渐增大B .MN 上的张力先增大后减小C .OM 上的张力逐渐增大D .OM 上的张力先增大后减小22.如图所示,光滑斜面A E 被分成四个相等的部分,一物体由A 点从静止释放,则下列说法正确的是( )A .物体到达各点的速率:::232BCDE v v v v = B .物体到达各E 点、B 点所经历的时间3E B t t = C .物体从A 到E 的平均速度B v v =D .物体通过每一部分时,时间之比为:::1:3:5:7AB BC CD DE t t t t =23.如图所示,A 、B 、C 三个物体静止叠放在水平桌面上,物体A 的质量为2m ,B 和C 的质量都是m ,A 、B 间的动摩擦因数为μ,B 、C 间的动摩擦因数为4μ,B 和地面间的动摩擦因数为8μ.设最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平向右的拉力F ,则下列判断正确的是A .若A 、B 、C 三个物体始终相对静止,则力F 不能超过32μmg B .当力F =μmg 时,A 、B 间的摩擦力为34mg μ C .无论力F 为何值,B 的加速度不会超过34μg D .当力F >72μmg 时,B 相对A 滑动 24.物体沿一直线运动,在t 时间通过的路程为s ,在中间位置2s处的速度为v 1,在中间时刻2t时速度为v 2,则v 1与v 2关系为( ) A .当物体做匀速直线运动时v 1=v 2 B .当物体做匀加速直线运动时v 1>v 2 C .当物体做匀减速直线运动时v 1>v 2 D .当物体做匀减速直线运动时v 1<v 225.如图所示,水平面上等腰三角形均匀框架顶角30BAC ∠=︒,一均匀圆球放在框架内,球与框架BC 、AC 两边接触但无挤压,现使框架以顶点A 为转轴在竖直平面内顺时针方向从AB 边水平缓慢转至AB 边竖直,则在转动过程中( )A .球对AB 边的压力先增大后减小 B .球对BC 边的压力先增大后减小 C .球对AC 边的压力一直增大D .球的重心位置一直升高26.如图所示,一根很长且不可伸长的柔软轻绳跨过光滑定滑轮,绳两端系着三个小球A 、B 、C ,三小球组成的系统保持静止,A 球质量为m ,B 球质量为3m ,C 球离地面高度为h .现突然剪断A 球和B 球之间的绳子,不计空气阻力,三个小球均视为质点,则( )A.剪断绳子瞬间,A球的加速度为3 5 gB.剪断绳子瞬间,C球的加速度为gC.A球能上升的最大高度为2hD.A球能上升的最大高度为1.6h27.汽车刹车后做匀减速直线运动,经3s后停止,对这一运动过程,下列说法正确的有()A.这连续三个1s32B.这连续三个1s的平均速度之比为3:2:1C.这连续三个1s发生的位移之比为5:3:1D.这连续三个1s的速度改变量之比为1:1:128.一物体做加速度不变的直线运动,某时刻速度的大小为4 m/s,1 s后速度的大小变为10 m/s,在这1 s内该物体的( )A.速度变化的大小可能小于4 m/sB.速度变化的方向可能与原速度方向反向C.加速度的方向可能与原速度方向反向D.加速度的大小可能大于10 m/s2三、实验题29.某同学利用图(a)所示的实验装置探究物块速度随时间的变化。
高中必修一集合测试题(含答案)(K12教育文档)
(完整word版)高中必修一集合测试题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)高中必修一集合测试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)高中必修一集合测试题(含答案)(word版可编辑修改)的全部内容。
集合单元测试姓名: 得分: 一.填空题(每题5分,共70分) 1.已知集合{1378},{2368}A B ==,,,,,,,则A B = 。
2.集合2{4,,}A y y x x N y N ==-+∈∈的真子集的个数为 .3.如果集合2{|210}A x ax x =++=中只有一个元素,则a 的值是 。
4。
设S 是全集,集合M P 、是它的子集,则图中阴影部分可表示为 .5.已知含有三个元素的集合2{,,1}{,,0},b a a a b a=+则20042005=a b + 。
6.设集合{|12},B {|}A x x x x a =<<=<,且A B ⊆,则实数a 取值范围是 .7.已知2{1,},{1,}M y y x x R P x x a a R ==-∈==-∈,则集合M P 与的关系是8。
已知集合2{|230}P x x x =--=,{|20}S x ax =+=,若S P ⊆,则实数a 的取值集合为 。
9.已知集合2{10},A x x mx =++=若A R ⋂=∅,则实数m 的取值范围是 .10.定义集合运算{|(),,}A B z z xy x y x A y B ⊗==+∈∈,设A={0,1},B={2,3},则集合A B ⊗中所有元素之和为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广华中学2013年预科班数学练习题(集合)一.选择题1.已知集合A =⎩⎨⎧⎭⎬⎫x |x =k 3,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x |x =k 6,k ∈Z ,则 ( ).A .A ⊆B B .B ⊆AC .A =BD .A 与B 关系不确定解析 对B 集合中,x =k 6,k ∈Z ,当k =2m 时,x =m 3,m ∈Z ;当k =2m -1时,x =m 3-16,m ∈Z ,故按子集的定义,必有A ⊆B .2.满足{1,3}∪A ={1,3,5}的所有集合A 的个数是 ( ).A .1B .2C .3D .4解析 由于{1,3}∪A ={1,3,5},所以A ⊆{1,3,5},且A 中至少有一个元素为5,从而A 中其余的元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A 的个数是4,它们分别是{5},{1,5},{3,5},{1,3,5}.3.设全集U =R ,A ={x |0≤x ≤6},则∁R A = ( ).A .{0,1,2,3,4,5,6}B .{x |x <0或x >6}C .{x |0<x <6}D .{x |x ≤0或x ≥6} 解析 ∁R A ={x |x <0或x >6}.4.已知全集U ={2,5,8},且∁U A ={2},则集合A 的真子集个数为 ( ).A .3B .4C .5D .6解析 由∁U A ={2},则A ={5,8}∴集合A 的真子集为∅,{5},{8},共3个.5.若A 为全体正实数的集合,B ={-2,-1,1,2},则下列结论中正确的是( ).A .A ∩B ={-2,-1}B .(∁R A )∪B ={-2,- 1,1}C .A ∪B ={1,2}D .(∁R A )∩B ={-2,-1}解析 ∵∁R A ={x |x ≤0},∴(∁R A )∩B ={-2,-1}.6.已知U 为全集,集合M 、N 是U 的子集,若M ∩N =N ,则 ( ).A .(∁U M )⊇(∁U N )B .M ⊆(∁U N )C .(∁U M )⊆(∁U N )D .M ⊇(∁U N )解析 利用韦恩图,如图所示:可知(∁U M )⊆(∁U N ).7.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是 ( ).A .a ≤2B .a <1C .a ≥2D .a >2解析 ∵B ={x |1<x <2},∴∁R B ={x |x ≥2或x ≤1}.如图,若要A ∪(∁R B )=R ,必有a ≥2.8.同时满足①M ⊆{1,2,3,4,5};②若a ∈M ,则6-a ∈M 的非空集合M 有( )A .16个B .15个C .7个D 6个9.(江苏卷)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有 ( )(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A解:因为A A B C B C ⊆⊆ 且A B C B = 由题意得A C ⊆所以选A二.填空题9.用列举法表示集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ∈Z ,86-x ∈N =________. 解析 ∵x ∈Z ,86-x∈N ,∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.10,设-5∈{x |x 2-ax -5=0},则集合{x |x 2+ax +3=0}中所有元素之和为________.解析 由题意知,-5是方程x 2-ax -5=0的一个根,∴(-5)2+5a -5=0,解得a =-4.则方程x 2+ax +3=0即为x 2-4x +3=0,解得x =1或x =3.∴{x |x 2-4x +3=0}={1,3},所以元素之和为1+3=4.,11.若集合A ={(x ,y )|x +y =2,x ,y ∈N }, 则A 的子集有 个.解 ∵A ={(x ,y )|x +y =2,x ,y ∈N },∴A ={(0,2),(1,1),(2,0)}.∴A 的子集有:∅,{(0,2) },{(1,1)},{(2, 0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.12.设全集U =A ∪B ={x ∈N * |0<x <10},若A ∩(∁U B )={m |m =2n +1,n =0,1, 2,3,4},则集合B =________.解析 由题意,得U =A ∪B ={1,2,3,4,5,6,7,8,9},A ∩(∁UB )={1,3,5,7,9},∴B ={2,4,6,8}.13.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________. 解析 ∵∁U A ={1,2},∴A ={0,3},∴0,3是方程x 2+mx =0的两根,∴m =-3.14..设全集U =R ,集合A ={x |x ≥0},B ={y |y ≥1},则∁U A 与∁U B 的包含关系是________.解析 先求出∁U A ={x |x <0},∁U B ={y |y <1}={x |x <1}.∴∁U A ∁U B .15.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个.解:依题意可知,“孤立元”必须是没有与k 相邻的元素,因而无“孤立元”是指在集合中有与k 相邻的元素.故所求的集合可分为如下两类:符合题意的集合是:{}{}{}{}{}{}1,2,3,2,3,4,3,4,5,4,5,6,5,6,7,6,7,8共6个.故应填6.6.(2009天津卷文)设全集{}1lg |*<∈=⋃=x N x B A U ,若{}4,3,2,1,0,12|=+==⋂n n m m B C A U ,则集合B=_____________.解:}9,8,7,6,5,4,3,2,1{=⋃=B A U }9,7,5,3,1{=⋂B C A U }8,6,4,2{=B .三.解答题16.已知集合M ={0,2,4},定义集合P ={x |x =ab ,a ∈M ,b ∈M },求集合P . 解 ∵a ∈M ,b ∈M ,∴a =0,2,4,b =0,2,4.当a ,b 至少有一个为0时,x =ab =0;当a =2且b =2时,x =ab =4;当a =2且b =4时,x =ab =8;当a =4且b =2时,x =ab =8;当a =4且b =4时,x =ab =16.根据集合中元素的互异性,知P ={0,4,8,16}.17.已知M ={a -3,2a -1,a 2+1},N ={-2,4a -3,3a -1},若M =N ,求实数a 的值.解 因为M =N ,所以(a -3)+(2a -1)+(a 2+1)=-2+(4a -3)+(3a -1),即a 2-4a +3=0.解得a =1或a =3.当a =1时,M ={-2,1,2},N ={-2,1,2},满足M =N ;当a =3时,M ={0,5,10},N ={-2,9,8},不满足M =N ,舍去.故所求实数a 的值为1.18.已知集合A ={x |-1≤x <4},B ={x |2x -4ax +32a =0}.(1)若B ⊂≠A ,求实数a 的取值范围; (2)若A ∩B =Φ,求实数a 的取值范围.解:∵2x -4ax +32a =0,∴x =a 或x =3a .当a =0时,B ={0};当a ≠0时,B ={a ,3a }.(1)若B ⊂≠A 时,a =0或⎪⎩⎪⎨⎧<≤-<≤-≠431410a a a ,∴-31≤a <34. (2)若A ∩B =Φ时,⎩⎨⎧≥>40a a 或⎩⎨⎧-<<10a a ,∴a ≥4或a <-1.19..已知集合A ={x |x 2-2x -3≤0,x ∈R},B ={x |m -2≤x ≤m +2}.(1)若A ∩B =[1,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.解:A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[1,3],∴⎩⎨⎧m -2=1,m +2≥3,得m =3. (2)∁R B ={x |x <m -2或x >m +2}.∵A ⊆∁R B ,∴m -2>3或m +2<-1.∴m >5或m <-3.20.已知集合A ={x ∈R|ax 2-3x +2=0,a ∈R}.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来.解:集合A 是方程ax 2-3x +2=0在实数范围内的解组成的集合.(1)A 是空集,即方程ax 2-3x +2=0无解,得⎩⎨⎧ a ≠0,Δ=(-3)2-8a <0,∴a >98.即实数a 的取值范围是(98,+∞).(2)当a =0时,方程只有一解,方程的解为x =23;当a ≠0且Δ=0,即a =98时,方程有两个相等的实数根,A 中只有一个元素43.∴当a =0或a =98时,A 中只有一个元素,分别是23和43.21.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)若x ∈Z ,求A 的非空真子集的个数;(3)当x ∈R 时,若没有元素使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 解 (1)当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,则⎩⎨⎧m +1≥-2,2m -1≤5,解得-3≤m ≤3,则2≤m ≤3. 综上可得m ≤3时,有B ⊆A .(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},所以A 的非空真子集的个数为28-2=254.(3)由于x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且没有元素使x∈A 与x ∈B 同时成立,①若B =∅,则由m +1>2m -1,得m <2,满足条件; ②若B ≠∅,则要满足条件⎩⎨⎧ m +1≤2m -1,m +1>5或⎩⎨⎧ m +1≤2m -1,2m -1<-2. 解得m >4.综上,m <2或m >4.。