全等三角形总复习知识点基础应用能力提高

合集下载

全等三角形复习提高版

全等三角形复习提高版
角平分线构造全等
A
2
1
C
B
D
思考
二、经典集粹
如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积。
构造两次全等
思考
二、经典集粹
思考
如图,直角梯形ABCD,AD//BC,AD=2,BC=3,等腰直角三角形CDE,CE为斜边,连结AE,求三角形ADE的面积。
如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三条边所对的角的关系是( )
01
A.相等 B.不相等 C.相等或互余 D.相等或互补
02
二、经典集粹
1
2
3பைடு நூலகம்
4
5
答案D
请同学们谈谈这节课的收获!
三角形ABC中,AB=AC,顶角为100度,BE为底角的角平分线,求证:BC=AE+BE。
思考
角平分线构造全等
A
B
C
E
二、经典集粹
已知:如图,在△ABC中, ∠A=90°,AB=AC,∠1=∠2, 求证:BC=AB+AD. (分别用截长法和补短法各证一次)
一、变化中探究全等
一、变化中探究全等
N
B
A
C
E
F

(4).现以AB所在的直线为X轴,以△ACN的高线NO所在的直线为Y轴建立坐标系,如图所示. B,C的坐标分别是(4,0),(2,0). I)求点M的坐标; II)写出直线AM的函数解析式; III)求出△AFB的面积.
D
与后续内容可以再综合
二、经典集粹
二、经典集粹
如图,直角梯形ABCD,AD//BC,AD=2,BC=3,等腰直角三角形CDE,CE为斜边,连结AE,求三角形ADE的面积。

三角形的全等知识点总结

三角形的全等知识点总结

三角形的全等知识点总结在几何学中,全等是一个重要的概念,它意味着两个或多个图形在形状和大小上完全相同。

在三角形中,全等三角形是非常常见的,它们具有相等的边和角。

本文将对三角形的全等知识点进行总结,以帮助读者更好地理解和掌握这一概念。

一、全等三角形的定义全等三角形的定义是:如果两个三角形的对应边相等,对应角相等,那么这两个三角形是全等的。

二、全等三角形的判定条件1. SSS判定法(边边边):如果两个三角形的三条边分别相等,则这两个三角形是全等的。

2. SAS判定法(边角边):如果两个三角形的一条边和这个边上的两个角分别与另一个三角形的一条边和这个边上的两个角相等,则这两个三角形是全等的。

3. ASA判定法(角边角):如果两个三角形的一条角和这个角对应的两边分别与另一个三角形的一条角和这个角对应的两边相等,则这两个三角形是全等的。

4. RHS判定法(直角边斜边):如果两个直角三角形的一条直角边和斜边分别与另一个直角三角形的一条直角边和斜边相等,则这两个直角三角形是全等的。

三、全等三角形的性质1. 全等三角形的对应角相等,即对应顶点的角是相等的。

2. 全等三角形的对应边相等,即对应边的长度是相等的。

3. 全等三角形的对应高线相等。

4. 全等三角形的周长和面积完全相同。

四、全等三角形的性质运用利用全等三角形的性质可以进行各种几何推理和证明。

1. 利用全等三角形可以证明两条线段相等。

2. 利用全等三角形可以证明两个角相等。

3. 利用全等三角形可以证明两个三角形全等。

4. 利用全等三角形可以证明两个四边形全等。

五、全等三角形的应用全等三角形的知识在实际生活和工程中具有广泛的应用。

1. 在建筑工程中,利用全等三角形可以计算高楼房屋的高度,简化测量过程。

2. 在地图测量中,利用全等三角形可以计算两地的距离和高度。

3. 在设计中,利用全等三角形可以保证建筑物的比例和对称性。

4. 在计算机图形学中,利用全等三角形可以进行图形变换和模型重建。

人教版八年级上册第十二章全等三角形知识点总结及复习

人教版八年级上册第十二章全等三角形知识点总结及复习

全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

全等三角形定义 :能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

初二数学上全等三角形知识点总结

初二数学上全等三角形知识点总结

全等三角形 知识梳理一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

全等三角形复习专题

全等三角形复习专题

全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。

全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。

如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。

二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。

2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。

3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。

4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。

5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。

三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。

如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。

四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。

2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。

3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。

4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。

5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。

全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。

全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。

动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。

将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。

全等三角形总复习(知识点+基础应用+能力提高)

全等三角形总复习(知识点+基础应用+能力提高)

全等三角形知识点梳理(一)、基本概念1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形的对应边上的高、中线对应相等。

(4)全等三角形对应角的角平分线相等;(5)全等三角形的周长和面积相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(SSS)(2)两角和它们的夹边对应相等的两个三角形全等.(ASA)(3)两角和其中一角的对边对应相等的两个三角形全等。

(AAS)(4)两边和它们的夹角对应相等的两个三角形全等。

(SAS)(5)斜边和一条直角边对应相等的两个直角三角形全等。

(HL)4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找:①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找: ①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASA AAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边 注意:判定两个三角形全等必须具备的三个条件中“边"是不可缺少的,边边角(SSA)和角角角(AAA )不能作为判定两个三角形全等的方法.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2。

全等三角形的判定复习与总结

全等三角形的判定复习与总结教学目标:1.复习和巩固全等三角形的判定方法;2.总结全等三角形判定的规律和技巧;3.小组合作,培养学生的合作能力和思维能力。

教学准备:1.教学素材:全等三角形判定题目,活动卡片;2.教学工具:黑板、彩色粉笔、计算器。

教学过程:一、引入课题(5分钟)1.引入话题:今天我们要来复习和总结全等三角形的判定方法。

2.引发思考:请回顾一下,全等三角形的判定条件是什么?二、复习全等三角形的判定法(15分钟)1.复习SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。

2.复习SAS判定法:如果两个三角形的一边和两个角度分别相等(这个边是两个角的夹边),则这两个三角形全等。

3.复习ASA判定法:如果两个三角形的两个角度和一边分别相等(这个边是两个角的边),则这两个三角形全等。

4.复习AAS判定法:如果两个三角形的两个角度和一边分别相等(这个边不是两个角的边),则这两个三角形全等。

三、总结全等三角形判定的规律和技巧(15分钟)1.全等三角形判定的基本规律:要判断两个三角形是否全等,只需对应两边相等且夹角相等即可。

2.技巧一:当给出两个三角形的三个边的长度时,先比较三边的长度是否相等,再比较夹角是否相等。

3.技巧二:当给出两个三角形的两边和夹角时,先比较两边的长度是否相等,再比较夹角是否相等。

四、小组合作活动(30分钟)1.分成若干小组,每组3-4个学生,每组发放一组活动卡片。

2.活动内容:每组成员轮流拿一张卡片,上面写有一组给定的边长和角度。

学生根据卡片上的数据,判断这两个三角形是否全等,并给出理由。

其他组员通过提问和讨论来验证判断的正确性。

3.活动要求:每个学生都要积极参与,提出问题和表达自己的观点;每个小组要有一个组长,负责组织小组讨论和总结。

五、展示与总结(20分钟)1.每个小组派出一位学生上台展示他们分析判断的过程,并给出判断的结果和理由。

2.全班一起讨论和比较不同小组的判断结果和理由,总结全等三角形判定的规律和技巧。

人教版八年级上册第十二章全等三角形知识点复习


A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )

17《三角形》全章复习与巩固—知识讲解(提高)

17《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.【典型例题】类型一、三角形的三边关系1.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( ).A .6个B .5个C .4个D .3个【答案】D【解析】x 的取值范围:511x <<,又x 为偶数,所以x 的值可以是6, 8, 10,故x 的值有3个.【总结升华】不要忽略“x 为偶数”这一条件.举一反三:【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x 为 时,所组成的三角形周长最大.【答案】三;8 (由三角形两边之和大于第三边,两边之差小于第三边,有4-2<x-3<4+2,解得5<x<9,因为x 为整数,故x 可取6,7,8;当x=8时,组成的三角形周长最大为11).2.如图,O 是△ABC 内一点,连接OB 和OC .(1)你能说明OB+OC <AB+AC 的理由吗?(2)若AB =5,AC =6,BC =7,你能写出OB+OC 的取值范围吗?【答案与解析】解:(1)如图,延长BO 交AC 于点E ,根据三角形的三边关系可以得到,在△ABE 中,AB+AE >BE ;在△EOC 中,OE+EC >OC ,两不等式相加,得AB+AE+OE+EC >BE+OC .由图可知,AE+EC =AC ,BE =OB+OE .所以AB+AC+OE >OB+OC+OE ,即OB+OC <AB+AC .(2)因为OB+OC >BC ,所以OB+OC >7.【总结升华】充分利用三角形三边关系的性质进行解题.类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.举一反三:【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初二全等三角形所有知识点总结和常考题1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形 .⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边 .⑸对应角:全等三角形中互相重合的角叫做对应角 .2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等 .⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程 .一.选择题(共14小题)1.使两个直角三角形全等的条件是()A. 一个锐角又t应相等B.两个锐角对应相等C. 一条边对应相等D.两条边对应相等2.如图,已知AE=CF /AFD=/ CEB那么添加下列一个条件后,仍无法判定△AD陷4CBE的是()A. /A=/ CB. AD=CBC. BE=DFD. AD // BC3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA4.到三角形三条边的距离都相等的点是这个三角形的(A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点5.如图,△ AC阴NA CB'/BCB =30°则/ ACA的度数为(A. 20°B. 300C. 350D. 40°6.如图,直线11、12、13表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A. 1处B. 2处C. 3处D. 4处7.如图,AD是4ABC中/ BAC的角平分线,D已AB于点E, S AABC=7, DE=ZAB=4,则AC长是()8.如图,在△ ABC和4DEC中,已知AB=DE还需添加两个条件才能使△ ABCDEC不能添加的一组条件是()A. BC=EC /B=/ EB. BC=EC AC=DCC. BC=DC /A=/DD. / B=/ E,/ A=/ D9.如图,已知在△ ABC中,CD是AB边上的高线,BE平分/ ABC,交CD于点E, BC=5 DE=2,贝BCE的面积等于()A. 10B. 7C. 5D. 410.要测量河两岸相对的两点A, B的距离,先在AB的垂线BF上取两点C, D, 使CD=BC再定出BF的垂线DE,使A, C, E在一条直线上(如图所示),可以说明△ED8 AABC,彳3ED=AB因此测得ED的长就是AB的长,判定△ ED8 △ ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角11.如图,4ABC的三边AB, BC, CA长分别是20, 30, 40,其三条角平分线将△ ABC分为三个三角形,则S A ABO):S A BCO:S A CAO等于()BC AA. 1:1:1B. 1: 2: 3C. 2: 3: 4D. 3: 4: 512.尺规作图作/ AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA, OB于C, D,再分别以点C, D为圆心,以大于tCD长为半径画弧,两弧交于点P,作射线OP由作法得^ OC国4ODP的根据是()A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为 30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等14.如图,已知/ 1=/2, AC=AD,增加下列条件:① AB=AE ②BC=ED ③C C= /D;④/ B=/ E.其中能使△ AB ®ZXAED 的条件有( )A. 4个B. 3个C. 2个D. 1个二.填空题(共11小题)15 .如图,在△ ABC 中,/C=90°, AD 平分/CAB BC=8cm, BD=5cm,那么点 D 到线段AB 的距离是 cm.16 .如图,△ ABC 中,/ C=90°, AD 平分/BAC AB=5, CD=2,则△ ABD 的面积17 .如图为6个边长等的正方形的组合图形,则/ 1+/ 2+/3=19 .如图所示,某同学把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配 一块完全一样的玻璃,那么最省事的办法是带 去玻璃店.18.如图,△AB ®ADEF5请根据图中提供的信息,写出* F x= ______是 _______20.如图,已知AB// CF, E为DF的中点,若AB=9cm, CF=5cm 贝U BD=cm.B C21.在数学活动课上,小明提出这样一个问题:/ B=Z C=90°, E是BC的中点, DE 平分/ADC, /CED=35,如图,则/ EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是度.D C22.如图,/XABeAADEE, / B=100°, / BAC=30,那么/ AED=度.23.如图所示,将两根钢条AA', BB'的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形总复习知识点基础应用能力提高集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]全等三角形知识点梳理(一)、基本概念1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形的对应边上的高、中线对应相等。

(4)全等三角形对应角的角平分线相等;(5)全等三角形的周长和面积相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(SSS)(2)两角和它们的夹边对应相等的两个三角形全等。

(ASA)(3)两角和其中一角的对边对应相等的两个三角形全等。

(AAS)(4)两边和它们的夹角对应相等的两个三角形全等。

(SAS)(5)斜边和一条直角边对应相等的两个直角三角形全等。

(HL)4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找: ①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找: ①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)注意:判定两个三角形全等必须具备的三个条件中“边”是不可缺少的,边边角(SSA)和角角角(AAA)不能作为判定两个三角形全等的方法。

证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

常见考法:(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等;(2)利用判定公理来证明两个三角形全等;(3)题目开放性问题,补全条件,使两个三角形全等。

老师误区提醒:(1)忽略题目中的隐含条件;(2)不能正确使用判定公理。

全等三角形常见题型分类练习全等三角形性质的应用类型一.全等三角形的基本性质应用1.下列命题正确的是( )A.全等三角形是指形状相同的两个三角形 B.全等三角形是指面积相同的两个三角形C.两个周长相等的三角形是全等三角形 D.全等三角形的对应边相等、对应角相等2.如图1,ΔABD≌ΔCDB,且AB、CD是对应边;下面四个结论中不正确的是:( )A.ΔABD和ΔCDB的面积相等B.ΔABD和ΔCDB的周长相等C.∠A+∠ABD =∠C+∠CBD /BC,且AD = BC340 B C BA C 3.(2009海南)如图所示,已知图中的两个三角形全等,则∠α度数是( )° ° ° °第2题 第3题4.(2009陕西)如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A .20°B .30°C .35°D .40°5.如图,△ABC ≌△AEF ,AB 和AE ,AC 和AF 是对应边,那么∠BAE 等于 ( )A .∠ACBB .∠BAFC .∠FD .∠CAF .6.已知△ABC ≌△EFG ,有∠B=70°,∠E=60°,则∠C=( )A . 60°B . 70°C . 50°D . 65° 7.(2009清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .8.△ABC 中,∠A∶∠B∶∠C=4∶3∶2,且△ABC≌△DEF,则∠E=______.第4题第5题第7题9.(2009邵阳)如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角最小等于( )0 0 0第9题第12题 10.一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x +y =__________.11.已知△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm 则AB =________,BC =______,AC =_______.12.如图,在正方形网格上有一个△ABC .⑴在网格中作一个与它全等的三角形;⑵如每一个小正方形的边长为1,则△ABC 的面积是 .全等三角形的证明ABC CABC ABDA 【基础应用】1.(2009年江苏省)如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组2.如图,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )A.∠B=∠E,BC=EF =EF ,AC=DF C.∠A=∠D ,∠B=∠E D.∠A=∠D ,BC=EF3.(2009广西)如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( )A .2对B .3对C .4对D .5对第1、2题 第3题4.如图:AB=DC ,BE=CF ,AF=DE 。

求证:△ABE ≌△DCF 。

5.如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。

求证:MB=MC6.如图,∠1=∠2,∠ABC=∠DCB 。

求证:AB=DC 。

7. 已知BE=ED ,∠1=∠2,求证:△ABE ≌△CDE8.如图;AB=AC ,BF=CF 。

求证:∠B=∠C 。

9.如图:在△ABC 中,AD ⊥BC 于D ,AD=BD ,CD=DE ,E 是AD 上一点,连结BE 并延长交AC 于点F 。

求证:(1)BE=AC ,(2)BF ⊥AC 。

【能力提高】类型一、平行线性质的应用1.如图:AC ∥EF ,AC=EF ,AE=BD 。

求证:△ABC ≌△EDF 。

2.如图(8)A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

3.(2009武汉)如图,已知点E 、C 在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F .求证:ABC DEF △≌△.4.如图,AC 和BD 相交于点O ,OA=OC,OB=OD.求证DC ∥AB.E DC BADBCMAF EAB CD12F(图17)E CAF(图19)EDCBAA B C FE D5.如图,点B,E,C,F 在一条直线上,FB=CE,AB ∥ED,AC ∥FD.求证6.(2009黄石)如图,C 、F 在BE 上,∠A=∠D ,AC ∥DF,BF=EC7.如图(16)AD ∥BC ,AD=BC ,AE=CF 。

求证:(1)DE=DF ,(2CD 。

类型三、角平分线性质应用 1.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC ⊥AB 于E ,若AC = 10cm ,则BD+DE=( )A .10cmB .8cmC .6cmD .9cm2.尺规作图作∠AOB 的平分线方法:以为O 圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( )A .SASB .ASAC .AASD .SSS3.如图, ∠C=90°,AD 平分∠BAC 交BC 于D,若BC=5cm,BD=3cm,则点D 到AB 的距离为( )A. 5cmB. 3cmC. 2cmD. 不能确定第1题 第2题 第3题 4.如图,OP 平分∠AOB ,PA ⊥OA ,PB ⊥OB 垂足分别为A ,B .下列结论中不一定成立的是( )A .PA=PB B .PO 平分∠APBC .OA=OBD .AB 垂直平分OP5.如图,在△ABC 中,AC=BC ,∠ACB=90°.AD 平分∠BAC ,BE ⊥AD 交AC 的延长线于F ,E 为垂足.则结论:①AD=BF ;②CF=CD ;③AC+CD=AB ;④BE=CF ;⑤BF=2BE ,其中正确结论的个数是( )A .1 C .3 D .46.如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB 于E,且AB=5cm,则△DEB 的周长为 __第4题 第5题 第6题 APA B C DEEF (图16)DCBAAD CE B 7.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F 。

求证:DE =DF .8.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA9.已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE10.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B类型四、垂直平分线性质应用1.如图,在Rt △ABC 中,∠B=90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE=10°,则∠C 的度数为( )A . 30B . 40C . 50D .602.如图,在△ABC 中,AD 为BC 边上的中线,若AB=5,AC=3,则AD 的取值范围是 。

第1题第2题3.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD4.如图:A 、E 、F 、B 四点在一条直线上,AC ⊥CE ,BD ⊥DF ,AE=BF ,AC=BD 。

相关文档
最新文档