单招数学试题2

合集下载

2022年浙江高职单招数学试卷附答案

2022年浙江高职单招数学试卷附答案

2022年浙江省单独考试招生文化考试数学试题卷(满分150分,考试时间120分钟)一、单项选择题(本大题共20小题,1―12小题每小题2分,13―20小题每小题3分)1、若集合A={x1-5<x<2},B={x1-3<x<3},则AI B=()A.{x1-3<x<2}B.{x1-5<x<2}C.{x1-3<x<3}D.{x-5<x<3}2、已知集A={l,2,3},B={1,3},则Al B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}3.若,,则的坐标是A. B. C. D.以上都不对4.在等差数列中,已知,且,则与的值分别为A.,B.,C.,D.,5.设,“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件6.函数的图象如图所示,则最大、最小值分别为A. B.C. D.7.设,,,其中为自然对数的底数,则,,的大小关系是A.B. C. D.8.设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是A. B. C.D.9.命题p :a=1,命题q :2(1)0a -=.p 是q 的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.在△ABC 中,向量表达式正确的是()A.AB BC CA +=B.AB CA BC -=C.AB AC CB-= D.AB BC CA ++= 11.如图,在数轴上表示的区间是下列哪个不等式的解集()A.260x x --≤ B.260x x --≥ C.15||22x -≥D.302x x -+≥12.已知椭圆方程:224312x y +=,下列说法错误的是()A.焦点为(0,-1),(0,1)B.离心率12e =C.长轴在x 轴上D.短轴长为2313.下列函数中,满足“在其定义域上任取x1,x2,若x1<x2,则f (x1)>f (x2)”的函数为()A.3y x=B.32x y =-C.1()2xy -= D.ln y x=14.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为()A.16 B.18 C.19D.51815.已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152pD.15p16.函数y =sin2x 的图像如何平移得到函数sin(23y x p=+的图像()A.向左平移6p个单位 B.向右平移6p个单位C.向左平移3p个单位D.向右平移3p个单位17.设动点M 到1( 0)F 的距离减去它到2F 的距离等于4,则动点M 的轨迹方程为()A.22 1 (2)49x y x -=-≤B.22 1 (2)49x y x -=≥C.221 (2)49y x y -=≥ D.22 1 (x 3)94x y -=≥18.已知函数()3sin f x x x =,则()12f p=()A.B. C. D.19.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有()A.480种B.240种C.180种D.144种20.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是()A.A ′C ⊥平面DBC ′B.平面AB ′D ′//平面BDC ′C.BC ′⊥AB ′D.平面AB ′D ′⊥平面A ′AC二、填空题(本大题共7小题,每小题4分,共28分)21.点A(2,-1)关于点B(1,3)为中心的对称点坐标是__________.22.设3 0 ()32 0x x f x x x ìï=í-ïî,≤,>,求f [f (-1)]=_____.23.已知A(1,1)、B(3,2)、C(5,3),若AB CA l =,则λ为_____.24.双曲线2212516y x -=的两条渐近线方程为_______________.25.已知1sin()3p a -=,则cos2α=_____.26.若x <-1,则函数1()21f x x x =--+的最小值为_____.27.设数列{an}的前n 项和为Sn ,若a1=1,an+1=2Sn (n ∈N*),则S4=_____.三、解答题(本大题共9小题,共74分)28.(本题满分6分)计算:133cos 3)27lg0.012p +-++29.(本题满分7分)等差数列{an}中,a2=13,a4=9.(1)求a1及公差d ;(4分)(2)当n 为多少时,前n 项和Sn 开始为负?(3分)30.(本题满分8分)如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2分)(2)若2)n x 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的数项等于多少?(6分)31.(本题满分8分)如图平行四边形ABCD 中,AB =3,AD =2,AC =4.(1)求cos ∠ABC ;(4分)(2)求平行四边形ABCD 的面积.(4分)32.(本题满分9分)在△ABC 中,3sin 5A =,5cos 13B =.(1)求sinB ,并判断A 是锐角还是钝角;(5分)(2)求cosC.(4分)33.(本题满分9分)如图PC ⊥平面ABC ,AC =BC =2,PC =,∠BCA =120°.(1)求二面角P ‐AB ‐C 的大小;(5分)(2)求锥体P ‐ABC 的体积.(4分)34.(本题满分9分)当前,“共享单车”在某些城市发展较快.如果某公司要在某城市发展“共享单车”出租自行车业务,设一辆自行车(即单车)按每小时x 元(x ≥0.8)出租,所有自行车每天租出的时间合计为y (y >0)小时,经市场调查及试运营,得到如下数据(见表):(1)观察以上数据,在我们所学的一次函数、反比例函数、二次函数、指数函数中回答:y 是x 的什么函数?并求出此函数解析式;(5分)若不考虑其它因素,x 为多少时,公司每天收入最大?(4分)35.(本题满分9分)过点(-1,3)的直线l 被圆O :2242200x y x y +---=截得弦长8.(1)求该圆的圆心及半径;(3分)(2)求直线l 的方程.(6分)36.(本题满分9分)1992年巴塞罗那奥运会开幕式中,运动员安东尼奥·雷波洛以射箭方式点燃主会场的圣火成为历史经典.如图所示,如果发射点A 离主火炬塔水平距离AC =60m ,塔高BC =20m.已知箭的运动轨迹是抛物线,且离火炬塔水平距离EC =20m 处达到最高点O.(1)若以O 为原点,水平方向为x 轴,1m 为单位长度建立直角坐标系.求该抛物线的标准方程;(5分)(2)求射箭方向AD (即与抛物线相切于A 点的切线方向)与水平方向夹角θ的正切值.(4分)答案一、单项选择题1.A 2.C3.B4.A5.A6.D7.C8.C9.A10.C11.D12.C13.B14.A15.D 16.A17.B18.A19.B20.C二、填空题21.(0,7)22.-123.12-24.54y x=±25.7926.527.27三、解答题28.629.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。

单招二类数学试题及答案

单招二类数学试题及答案

单招二类数学试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = \frac{1}{x} \)答案:B2. 已知等差数列的前三项分别为2,5,8,该数列的第五项是多少?A. 11B. 14C. 17D. 20答案:B3. 将函数 \( y = \sin(x) \) 的图像向左平移 \( \frac{\pi}{2} \) 个单位,得到的函数是:A. \( y = \sin(x + \frac{\pi}{2}) \)B. \( y = \sin(x - \frac{\pi}{2}) \)C. \( y = \cos(x) \)D. \( y = \cos(x + \frac{\pi}{2}) \)答案:C4. 已知 \( \tan(\alpha) = 2 \),求 \( \tan(2\alpha) \) 的值。

A. 4B. \( \frac{4}{3} \)C. \( \frac{2}{3} \)D. \( \frac{3}{2} \)答案:B二、填空题(每题5分,共20分)5. 计算 \( \sqrt{49} \) 的值是 ________。

答案:76. 已知 \( \cos(\theta) = \frac{3}{5} \),求 \( \sin(\theta) \) 的值是 ________。

答案:\( \pm \frac{4}{5} \)7. 计算 \( \log_2(8) \) 的值是 ________。

答案:38. 已知 \( a = 2 \),\( b = 3 \),求 \( a^2 + b^2 \) 的值是________。

答案:13三、解答题(每题15分,共40分)9. 已知函数 \( f(x) = x^2 - 4x + 3 \),求该函数的最小值。

全国2023年单独招生考试数学卷(答案) (2)

全国2023年单独招生考试数学卷(答案) (2)

2023年全国单独招生考试数学卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分)1.正项等比数列{a n }满足:a 2·a 4=1,S 3=13,b n =log 3a n ,则数列{b n }的前10项的和是()A.65B.-65C.25D.-252.椭圆2222by a x =1(a >b >0)的长轴被圆x 2+y 2=b 2与x 轴的两个交点三等分,则椭圆的离心率是()A.21 B.22 C.33 D.3223.甲、乙、丙投篮一次命中的概率分别为51、31、41,现三人各投篮一次至少有1人命中的概率为()A.601 B.6047 C.53 D.60134.正四面体棱长为1,其外接球的表面积为()A.3π B.23π C.25π D.3π5.如图,正四棱柱ABCD —A 1B 1C 1D 1,底面边长为1,侧棱长为2,E 为BB 1中点,则异面直线AD 1与A 1E 所成的角为()A.arccos510 B.arcsin 510C.90° D.arccos 10106.已知,命题p :x +x 1的最小值是2,q :(1-x )5的展开式中第4项的系数最小,下列说法正确的是()A.命题“p 或q ”为假B.命题“p 且q ”为真C.命题“非p ”为真D.命题q 为假7.E,F 是随圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠EPF 的最大值是()A.15°B.30°C.60°D.45°8.已知角β终边上一点(4,3)P -,则cos β=()A.35- B.45 C.34- D.549.已知两点(2,5),(4,1)M N --,则直线MN 的斜率k =()A.1B.1-C.12D.12-10.函数2sin cos 2y x x =+的最小值和最小正周期分别为()A.1和2πB.0和2πC.1和πD.0和π二、填空题:(本题共2小题,每小题10分,共20分.)1、在∆ABC 中,AC=1,BC=4,cosA=则cos B=_____.2、已知函数有最小值8,则a=_____.三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.已知函数f(x)=|x﹣a|﹣|x+3|,a∈R.(1)当a=﹣1时,解不等式f(x)≤1;(2)若x∈[0,3]时,f(x)≤4,求a 的取值范围.2.在△ABC 中,角A,B,C 所对的边分别为a,b,c,且acosB=(3c﹣b)cosA.(1)求cosA 的值;(2)若b=3,点M 在线段BC 上,=2,||=3,求△ABC 的面积.3.在如图所示的圆台中,AB,CD 分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE 为圆台的一条母线,且与底面ABE 成角.(Ⅰ)若面BCD 与面ABE 的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.参考答案:一、选择题1-5题答案:DDCBA6-10题答案:CBBBD二、填空题1、2、2三、解答题1.已知函数f(x)=|x﹣a|﹣|x+3|,a∈R.(1)当a=﹣1时,解不等式f(x)≤1;(2)若x∈[0,3]时,f(x)≤4,求a的取值范围.【解答】解:(1)当a=﹣1时,不等式为|x+1|﹣|x+3|≤1;当x≤﹣3时,不等式转化为﹣(x+1)+(x+3)≤1,不等式解集为空集;当﹣3<x<﹣1时,不等式转化为﹣(x+1)﹣(x+3)≤1,解之得;当x≥﹣1时,不等式转化为(x+1)﹣(x+3)≤1,恒成立;综上所求不等式的解集为.(2)若x∈[0,3]时,f(x)≤4恒成立,即|x﹣a|≤x+7,亦即﹣7≤a≤2x+7恒成立,又因为x∈[0,3],所以﹣7≤a≤7,所以a的取值范围为[﹣7,7].2.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c﹣b)cosA.(1)求cosA的值;(2)若b=3,点M在线段BC上,=2,||=3,求△ABC的面积.【解答】(本题满分为12分)解:(1)因为acosB=(3c﹣b)cosA,由正弦定理得:sinAcosB=(3sinC﹣sinB)cosA,即sinAcosB+sinBcosA=3sinCcosA,可得:sinC=3sinCcosA,在△ABC中,sinC≠0,所以.…(5分)(2)∵=2,两边平方得:=4,由b=3,||=3,,可得:,解得:c=7或c=﹣9(舍),所以△ABC的面积.…(12分)3.在如图所示的圆台中,AB,CD分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE为圆台的一条母线,且与底面ABE成角.(Ⅰ)若面BCD与面ABE的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.【解答】(Ⅰ)证明:如图,在圆台OO′中,∵CD⊂圆O′,∴CD∥平面ABE,∵面BCD∩面ABE=l,∴l∥CD,∵CD⊂平面CDE,l⊄平面CDE,∴l∥面CDE;(Ⅱ)解:连接OO′、BO′、OE,则CD∥OE,由AB⊥CD,得AB⊥OE,又O′B在底面的射影为OB,由三垂线定理知:O′B⊥OE,∴O′B⊥CD,∴∠O′BO就是求面BCD与底面ABE所成二面角的平面角.设AB=4,由母线与底面成角,可得OE=2O′D=2,DE=2,OB=2,OO′=,∴cos∠O′BO=.。

高职2023年单招考试《数学》样卷二及参考答案

高职2023年单招考试《数学》样卷二及参考答案

2023年单独招生考试《数学》试卷(样卷)一、单项选择题(本题共15小题,每题3分,共45分) 1.下列属于必然事件的是( )A.三角形中,任意两边之和大于第三边B.明天下雨C.任意买一张电影票,座位号是单号D.公鸡下蛋 2.=︒60cos ( ) A.0 B.21 C.23 D.1 3.数集N 表示( )A.有理数集B.实数集C.自然数集D.整数集 4.大于2且小于11的偶数组成的集合( ) A.}10,8,6{B.}8,64{,C.}8,6{D.}10,8,64{, 5.函数3)(x x f =的奇偶性是( )A.奇函数B.偶函数C.非奇非偶函数D.不确定 6.不等式92>x 的解集为( ) A.}3|{<x xB.}33|{>-<x x x 或C.}3|{->x xD.}33|{<<-x x7.不等式3||≤x 的解集为( ) A.}3|{≤x xB.}3|{-≥x xC.}33|{≤≤-x xD.}33|{≥-≤x x x 或 8.下列选项中,最小的数是( )A.-3B.-πC.-3.14D.-4139.等差数列:-6、-18、 、-42、…,则空白处应填( )A.-27B.-30C.-24D.-3610.下列为对数函数的是( )A.x y 2=B.2x y =C.x y πlog =D.x y 3= 11.圆柱的俯视图是( )A.长方形B.三角形C.梯形D.圆 12.三角函数诱导公式:=+)sin(πα( )A.αsinB.αsin -C.αcosD.αcos - 13.已知 ()0 ,2-=→a ,()1 ,2=→b ,则 =⋅→→b a ( )A.1-B. 2-C.3-D.4- 14.5log 25( )=A.2B.3C.4D.5 15.下列调查中,须用普查的是( )A.了解某市学生的视力情况B.了解我某中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况 二、是非判断题(正确写A ,错误写B ,本题共10小题,每题3分,共30分) 16.两点之间直线最短。

2022年单招考试数学卷(含答案+解析)

2022年单招考试数学卷(含答案+解析)

2022年单独招生考试招生文化考试数学试题卷(满分150分,考试时间120分钟)一、选择题:本题共25小题,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的. 二、填空题:本题共2小题,共30分.三、解答题:本题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.四、附加题,本题共2小腿,第1题15分,第2题10分.解答应写出文字说明、证明过程或演算步骤,带解析。

一、选择题:(本题共25小题,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、已知集{1,2,3},B {1,3}A ,则A B =( ) A.{2,3} B.{1,3} C.{1,2} D.{1,2,3}2、已知集合A={1,2,3,4,5},B={4,5},则( ) A.B A = B.=B A ∅ C.B A ⊆ D.A B ⊆3、若集合{}1,1M =-,{}2,1,0N =-,则M N = ( ) A.{-1} B.{1} C.{0} D.{-2,1,-1,0}4、设A,B 是两个集合,则“A B A =”是“A B ⊆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( ) A .6 B .8 C .2 D .56.设集合A= {x|-2<x<4}. B = {2,3,4,5},则A ∩B=( ) A.{2} B.{2,3}C.{3,4,}D.{2,3,4}7.已知z=2-i ,则( z(z ⃗+i) =( )A. 6-2iB. 4-2iC. 6+2iD. 4+2i8.已知圆锥的底面半径为 √2 ,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A.2 B.2√2 C.4 D.4 √29.下列区间中,函数f(x)=7sin( x −π6 )单调递增的区间是( )A.(0, π2)B.( π2,π)C.(π , 3π2)D.(3π2,2π)10.已知F1,F2是椭圆C : x 29+y 24=1 的两个焦点,点M 在C 上,则|MF1|·|MF2|的最大值为( )A. 13B. 12C. 9D. 611、已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗⃗+BC ⃗⃗⃗⃗⃗⃗=( ) A. BD ⃗⃗⃗⃗⃗⃗ B. DB ⃗⃗⃗⃗⃗⃗ C. AC ⃗⃗⃗⃗⃗⃗ D. CA ⃗⃗⃗⃗⃗⃗ 12. 下面函数以π为周期的是( )A.y =sin (x −π8) B. y =2cos x C. y =sin x D. y =sin 2x13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法总数是( ) A. 420 B. 200 C. 190 D. 240 14. 已知直线的倾斜角为60°,则此直线的斜率为( ) A. −√33B. −√3C. √3D. √3315. 若sin α>0且tan α<0,则角α终边所在象限是( )A. 第一象限B. 第二象限C. 第三象限D.第四象限 16、在等比数列{}n a 中, 543=⋅a a ,那么=⋅61a a ( ) A 、5 B 、10 C 、15 D 、2517、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )A 、172B 、192 C 、10 D 、1218、在等差数列}{n a 中,若,2,442==a a 则=6a ( ) A 、-1 B 、0 C 、1 D 、619、设n S 是等差数列{}n a 的前项和,若1353a a a ++=,则5S =( ) A 、5 B 、7 C 、9 D 、1120、下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A 、)22cos(π+=x yB 、)22sin(π+=x yC 、x x y 2cos 2sin +=D 、x x y cos sin += 21、若,且为第四象限角,则的值等于( )A 、B 、C 、D 、22、下列命题中正确的是( )A 、第一象限角必是锐角B 、终边相同的角相等C 、相等的角终边必相同D 、不相等的角其终边必不相同n 5sin 13α=-αtan α125125-512512-23、-870°角的终边所在的象限是( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限24、函数x x y cos 3sin 4+=的最小值为 ( )A .0B .3-C .5-D .13-25、已知角α的终边上有一点()43,-P ,则=αcos ( )A 、0B 、 53-C 、0.1D 、0.2二、填空题:(共30分.)1、设α,β,γ是三个平面,有下面四个命题: ①若αβ⊥,βγ⊥,则αγ⊥; ②若//αβ,//βγ,则//αγ; ③若αβ⊥,//βγ,则αγ⊥; ④若//αβ,βγ⊥,则//αγ. 其中所有真命题的序号是______.2、已知椭圆的一个焦点为()1,0F ,离心率为12,则椭圆的标准方程为_______.三、解答题:(本题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.)1、由这些数据,推测出植物每天高度增长量是温度的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实y x验室的温度应该在哪个范围内选择?请算出结果.2、求经过点),(24-,且与直线033=+-y x 平行的直线方程。

江苏单招数学试题及答案

江苏单招数学试题及答案

江苏单招数学试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2-2x+1的最小值是()。

A. 0B. -1C. 1D. 22. 已知集合A={1,2,3},B={2,3,4},则A∩B=()。

A. {1,2}B. {2,3}C. {1,3}D. {3,4}3. 直线y=2x+1与x轴的交点坐标是()。

A. (0,1)B. (1,0)C. (-1,0)D. (0,-1)4. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()。

A. 5B. 9C. 11D. 135. 若cosθ=3/5,且θ为锐角,则sinθ的值为()。

A. 4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)二、填空题(每题4分,共20分)6. 函数f(x)=x^3-3x+2的导数为_________。

7. 已知向量a=(1,2),b=(3,-1),则向量a与b的数量积为_________。

8. 一个等比数列的首项为2,公比为3,其第4项的值为_________。

9. 一个圆的半径为5,圆心在坐标原点,则该圆的方程为_________。

10. 已知函数f(x)=x^2-4x+3,若f(a)=0,则a的值为_________。

三、解答题(每题15分,共30分)11. 解不等式:x^2-5x+6≤0。

12. 已知函数f(x)=x^2-6x+8,求证:对于任意实数x,都有f(x)≥2。

四、综合题(每题30分,共30分)13. 已知函数f(x)=x^3-3x^2+2x-1,求:(1)函数f(x)的单调区间;(2)函数f(x)的极值点;(3)函数f(x)的极值。

答案:一、选择题1. C2. B3. C4. B5. C二、填空题6. 3x^2-6x+28. 489. x^2+y^2=2510. 1或3三、解答题11. 解:x^2-5x+6=(x-2)(x-3)≤0,解得2≤x≤3。

12. 证明:f(x)=(x-3)^2-1,因为(x-3)^2≥0,所以f(x)≥-1,即对于任意实数x,都有f(x)≥2。

普通单招数学试题及答案

普通单招数学试题及答案

普通单招数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = \sin(x) \)C. \( y = e^x \)D. \( y = \ln(x) \)答案:B2. 计算 \( \int_{0}^{1} x^2 dx \) 的值是多少?A. 1/3B. 1/2C. 2/3D. 1答案:A3. 以下哪个选项不是等比数列?A. 2, 6, 18, 54, ...B. 1, 3, 9, 27, ...C. 1, 1/2, 1/4, 1/8, ...D. 2, 4, 6, 8, ...答案:D4. 已知 \( a \) 和 \( b \) 是实数,且 \( a^2 + b^2 = 1 \),那么 \( a + b \) 的最大值是多少?A. 1B. \( \sqrt{2} \)C. 2D. \( \sqrt{3} \)答案:B5. 以下哪个选项是二项式定理的展开式?A. \( (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \)B. \( (x - y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} (-y)^k \)C. \( (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} \)D. \( (x - y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \)答案:A6. 计算 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B7. 已知 \( \cos(\theta) = \frac{3}{5} \),那么 \( \sin(\theta) \) 的值是多少?A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{5} \)D. \( -\frac{3}{5} \)答案:A8. 以下哪个选项是函数 \( y = x^3 - 3x^2 + 2 \) 的极值点?A. \( x = 0 \)B. \( x = 1 \)C. \( x = 2 \)D. \( x = 3 \)答案:B9. 计算 \( \sum_{n=1}^{10} n^2 \) 的值是多少?A. 385B. 385C. 385D. 385答案:A10. 以下哪个选项是函数 \( y = e^x \) 的导数?A. \( y' = e^x \)B. \( y' = -e^x \)C. \( y' = \ln(e^x) \)D. \( y' = x \cdot e^x \)答案:A二、填空题(每题4分,共20分)11. 计算 \( \sqrt{49} \) 的结果是 ________。

高职单独招生考试数学试(答案解析) (2)

高职单独招生考试数学试(答案解析) (2)

2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分) 1、函数 的定义域是 ( ) A. B.C.D.2. 展开式中不含 项的系数的和为 ( )A. -1B. 0C. 1D. 23、设b a ,为正实数,则“1>>b a ”是“0log log 22>>b a ”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件4、0=b 是直线b kx y +=过原点的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、方程的解为( ). . . .6、已知集{1,2,3},B {1,3}A ,则A B =( ) A 、{3} B 、{1,2} C 、{1,3} D 、{1,2,3}7、已知集合{}{}3,2,3,2,1==B A ,则( ) A 、A=B B 、=B A ∅ C 、B A ⊆D 、A B ⊆43)22(log =x A 4=x B 2=x C 2=x D 21=x8、若集合{}1,1M =-,{}2,1,0N =-,则M N = ( ) A 、{0,-1} B 、{1} C 、{-2} D 、{-1,1}9、设A,B 是两个集合,则“A B A =”是“A B ⊆”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件10、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( ) A 、0 B 、1 C 、2 D 、5 11、“1=x ”是“0122=+-x x ”的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 12、 “2)1(+=n n a n ”是“0)2(log 21<+x ”的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件13、设b a ,为正实数,则“1>>b a ”是“0log log 22>>b a ”的( ) A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 14、0=b 是直线b kx y +=过原点的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 15、方程的解为( )A. B. C. D.43)22(log =x 4=x 2=x 2=x 21=x16、设b a ,是实数,则“0>+b a ”是“0>ab ”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件17、已知,则与的积为( )A 、5B 、3C 、10D 、818、“ααcos sin =”是“02cos =α”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件19、函数)32(log )(22-+=x x x f 的定义域是( ) A 、[]1,3-B 、()1,3-C 、(][)+∞-∞-,13,D 、()()+∞-∞-,13,20、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是( )A 、c b a <<B 、b c a <<C 、c a b <<D 、a c b <<二、填空题(共10小题,每小题3分;共计30分)1.设函数f (x )=x|x ﹣a|,若对于任意的x1,x2∈[2,+∞),x1≠x2,不等式0恒成立,则实数a 的取值范围是_______.2.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_______. 3、已知函数()f x =x x x f 2)(2+=)2(f )21(f223,1lg(1),1x x x x x ⎧+-≥⎪⎨⎪+<⎩,则((3))f f -=______.4、不等式2340x x --+>的解集为______.(用区间表示)5、不等式422<-xx的解集为______..(用区间表示)6、函数()35lg -=x y 的定义域是 ______. (用区间表示)7、函数y =)9(log 2-x 的定义域是 ______.(用集合表示)8、不等式062<--x x 的解集是 ______. (用集合表示)9、不等式0125>--x 的解集为 ______.(用集合表示) 10、已知函数)1(log )(2-=x x f ,若f(α)=1,则α=______. 三、大题:(满分30分)1、如下图,四棱锥P ABCD -中侧面PAB 为等边三角形且垂直于底面ABCD ,AB BC ⊥,//BC AD ,12AB BC AD ==,E 是PD 的中点.(1)证明:直线//CE 平面PAB ; (2)求二面角B PC D --的余弦值.2、在平面直角坐标系xOy 中,己知点 F 1 (- √1 7,0), F 2 ( √1 7,0),点M 满足|MFt|-|MF2|=2.记M 的轨迹为C. (1)求C 的方程;(2)设点T 在直线 x =12 上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA|·|TB|=|TP|·|TQ| ,求直线AB 的斜率与直线PQ 的斜率之和参考答案:一、选择题:1-5题答案:BBACA6-10题答案:CDBCD11-15题答案:ABACA16-20题答案:DCADC选择题解析:1、答案. B【解析】由可得.答案:B【解析】令,得所有项的系数和为,再减去项系数,即为所求.二、填空题:参考答案1、(﹣∞,2];2、[√7−√32,√7+√32];3、0;4、(-4,1);5、(-1,2);6、⎪⎭⎫⎢⎣⎡∞+,54;7、}9{>x x ; 8、{}32<<-x x ; 9、}32{><x x x 或; 10、3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三高职类高考模拟试卷
姓名 班级 学号
一、选择题(本大题共15小题,每题只有一个正确答案,请将其序号填在答题卡上,每小题
5分,满分75分)
1、已知全集U =R ,M={x|x 21+≤,x ∈R},N ={1,2,3,4},则C U M ∩N= ( )
A. {4}
B. {3,4}
C. {2,3,4}
D. {1,2,3,4}
2、“G =ab ±”是“a,G,b 成等比数列”的 ( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
3、函数y=)32(log 3-x 的定义域为区间 ( ) A. ),23(+∞ B. ),2
3[+∞ C. ),2(+∞ D. ),2[+∞
4、函数y=sin3xcos3x 是 ( )
A. 周期为
3π的奇函数 B. 周期为3π的偶函数 C. 周期为32π的奇函数 D. 周期为3
2π的偶函数 5、已知平面向量AC 与的夹角为90°,且AC =(k,1),=(2,6),则k 的值为
( ) A. -31 B. 3
1 C. -3 D. 3 6、在等差数列{a n }中,若S 9=45,则a 5= ( )
A. 4
B. 5
C. 8
D. 10
7、已知抛物线y=mx 2的准线方程为y=-1,则m = ( ) A. -4 B. 4 C. 41 D. -4
1 8、在△ABC 中,内角A 、B 所对的边分别是a 、b ,且bcosA=acosB ,则△ABC 是( )
A. 等腰三角形
B. 直角三角形
C. 等边三角形
D. 等腰直角三角形
9、函数y=sin3x 的图像平移向量后,新位置图像的解析式为y=sin(3x-
4π)-2,则平移向量= ( ) A. (6π,-2) B. (12π,2) C. (12π,-2) D. (6
π,2) 10、设项数为8的等比数列的中间两项与2x 2+7x+4=0的两根相等,则该数列的各项的积为
( )
A. 8
B. 16
C. 32
D. 64
11、过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第二象限,则该直线的方程是 ( ) A. y=x 3 B. y=-x 3 C. y=
x 33 D. y=-x 33 12、函数y=3sinx+cosx ,x ∈[-6π,6
π]的值域是 ( ) A. [-3,3] B. [-2,2] C. [0,3] D. [0,2]
13、已知tan α=5,则sin α·cos α= ( ) A. -526 B. 526 C. -265 D. 26
5 14、椭圆4x 2+y 2=k 上任意两点间的最大距离为8,则k 的值为 ( )
A. 4
B. 8
C. 16
D. 32
15、若α、β都是锐角,且sin α=
734,cos(α+β)=1411-,则β= ( ) A. 3π B. 8π C. 4π D. 6
π 第二部分(非选择题,共75分)
二、填空题(本大题共5小题,每小题5分,满分25分)
16、第四象限点A(2,y)到直线3x+4y-5=0的距离为3,则y 的值为 .
17、顶点在圆x 2+y 2=16上,焦点为F(±5,0)的双曲线方程为 .
18、向量a 与b 的夹角为60°,|a |=2,|b |=3,则|a +b |= .
19、经过点M(1,0),且与直线x-2y+3=0垂直的直线方程为y= .
20、若log 3x+log 3y=4,则x+y 的最小值为 .
三、解答题(21、22小题各10分,23、24小题各15分,满分50分)
21、解不等式 8x 2+2ax-3a 2≤0 (a ≠0)
22、求以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116
92
2=-y x 的渐近线相切的圆的方程.
高三高职类高考模拟考试
一、选择题
BBDAC BCACB DCDCA
二、选择题(5×5´=25´)
16、 -4 17、 19
162
2=-y x 18、 19 19、 -2x+2 20、 18
三、解答题(21、22小题各10分,23、24小题各15分,共50分)
21、解:原不等式可化为 (4x+3a)(2x-a)≤0
∴x 1=a 43-,x 2=a 21 (1)当a>0时,则a 21>a 4
3- 故原不等式的解集为[a 43-,a 21] (2)当a<0时,则a 21<a 43- 故原不等式的解集为[a 21,a 4
3-] 22、解:椭圆1144
1692
2=+y x 的右焦点为(5,0) 令016
92
2=-y x ,则双曲线的渐近线方程为:x y 34±= 即4x+3y=0及4x-3y=0
由题意知,所求圆的圆心坐标为(5,0)
半径为 r=2234|
0354|+⨯+⨯=4,故所求圆的方程为(x-5)2+y 2=16。

相关文档
最新文档