经典模板 (82)“因数与倍数”单元疑难问题解答-五年级下册
五年级下第二单元倍数与因数知识点及练习

一、倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。
例如:6是倍数、3和2是因数。
(×)改正:6是3和2的倍数,3和2是6的因数。
练习:(1)8×5=40,()和()是()的因数,()是()和()的倍数。
(2)因为36÷9=4,所以()是()和()的倍数,()和()是()的因数。
(3)在18÷6=3中,18是6的(),3和6是()的()。
(4)在14÷7=2中,()能被()整除,()能整除(),()是()的倍数,()是()的因数。
(5)若A÷B=C(A、B、C都是非零自然数),则A是B的()数,B是A的()数。
(6)如果A、B是两个整数(B≠0),且A÷B=2,那么A是B的,B是A的。
(7)判断并改正:因为7×6=42,所以42是倍数,7是因数。
()因为15÷5=3,所以15和5是3的因数,5和3是15的倍数。
()5是因数,15是倍数。
()甲数除以乙数,商是15,那么甲数一定是乙数的倍数。
()(8)甲数×3=乙数,乙数是甲数的()。
A、倍数B、因数C、自然数【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。
例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。
因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。
是错误的说法。
练习:(1)有5÷2=2.5可知()A、5能被2除尽B、2能被5整除C、5能被2整除D、2是5的因数,5是2的倍数(2)36÷5=7……1可知()A、5和7是36的因数B、5能整除36C、36能被5除尽D、36是5的倍数(3)属于因数和倍数关系的等式是()A、2×0.25=0.5B、2×25=50C、2×0=0【知识点3】没有前提条件确定倍数与因数例如:36的因数有()。
五年级数学下册典型例题系列之第三单元因数与倍数拓展篇(解析版)

2021-2022学年五年级数学下册典型例题系列之第三单元因数与倍数拓展篇(解析版)编者的话:《2021-2022学年五年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第三单元因数与倍数拓展篇。
本部分内容主要是因数与倍数的思维拓展题型,在选题上虽偏向奥数,但契合教学知识,可作为学习进阶知识的门槛,题目综合性强,难度较大,建议根据学生掌握情况选择性进行讲解,一共划分为五个考点,欢迎使用。
【考点一】倍数特征的拓展应用一。
【方法点拨】个位上是0、2、4、6、8的数是2的倍数。
个位上是0或5的数是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
【典型例题】如果五位数□436□是45的倍数,那么这个五位数是多少?解析:我们可以把45分解成9×5,这个五位数要是45的倍数,就一定能被5和9整除,是5的倍数,末尾的数字一定是0或5,还要满足各位数字之和是9的倍数。
当末尾数字填0时,首位数字填5,即54360当末尾数字填5时,首位数字填9,即94365答:这个五位数是54360和94365。
【对应练习1】一个四位数8A1B能同时被5和6整除,这个四位数是多少?解析:8010。
【对应练习2】在358后面补上三个数字组成一个六位数,使它能被4、5、9整除,这个六位数最小是多少?解析:358020。
【对应练习3】一个六位数23A56A是88的倍数,这个数除以88所得的商是多少?解析:A为8或0,所以,商为2620或2711。
【对应练习4】学校买来72只桶,共交了□67.9□元钱,(□内的数字辨认不清)请你算出每只桶要用多少元?解析:我们可以把□67.9□元看成□679□分,因为是72个桶的总价,所以,这个数一定能被72整除,72=8×9,可以根据能被8和9整除的特征求出各□的数。
(2021年整理)人教版五年级下册第二单元因数与倍数知识点与练习题

人教版五年级下册第二单元因数与倍数知识点与练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版五年级下册第二单元因数与倍数知识点与练习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版五年级下册第二单元因数与倍数知识点与练习题的全部内容。
一、因数与倍数1.因数和倍数的意义在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数.因数与倍数是相互依存的.为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)判断:(1)320÷4=80,320是4的倍数()(2)320÷0.4=800,320是0.4的倍数()(3)30÷5=6,30是倍数( )(4)23既是23的倍数,也是23的因数( )2。
找一个数的因数的方法(1)18的因数都有哪些?30的因数有哪些?(2)一个数的最小的因数是( ),最大是()找一个数的因数的方法:用这数除以一个整数,如果除得的商正好是整数且没有余数,那么这个整数就是这个数的因数一个数的因数的特征:一个数的因数的个数是有限的,其中最小的因数是( ),最大的因数是()例:下列数中是36的因数的是:下列数中是25的因数的是:2 , 5 , 4 , 25 , 18 , 6 , 20 , 36 , 13 , 123.找一个数的倍数的方法(1)2的倍数有哪些?3的倍数有哪些?5呢?(2)一个数最小的倍数是()。
有最大的倍数吗?找一个数的倍数的方法:方法一:列乘法算式找。
这个数与非零自然数的乘积都是这个数的倍数方法二:列除法算式找。
第二单元 因数与倍数--2024年五年级数学下册重难点知识点(人教版)

人教版五年级数学下册同步重难点知识点第二单元因数与倍数温馨提示:图片放大更清晰!1.掌握因数、倍数、质数、合数、奇数、偶数的概念,知道有关概念之间的联系和区别。
2.掌握求一个数的因数和倍数的方法。
3.掌握2、5、3的倍数的特征,并会利用特征来判断一个数是不是2、5或3的倍数。
4.能根据质数和合数的概念判断一个数是质数还是合数。
5.会运用数的奇偶性解决一些简单问题。
重点:掌握因数、倍数、质数、合数、奇数、偶数的概念,并能用其解决一些简单问题。
难点:掌握2、5、3的倍数的特征,并会利用特征判断一个数是不是2、5或3的倍数。
知识点一:认识因数和倍数根如果a×b=c(a,b,c都是不为0的自然数),那么a 和b就是c的因数, c就是a和b的倍数。
知识点二:找一个数的因数、倍数找一个数的因数从最小因数找起,一直找到它本身,哪两个数相乘的积等于这个数,那么这两个数就是这个数的因数。
找一个数的倍数,用这个数分别去乘自然数1,2,3,…所得的积都是这个数的倍数。
知识点三:2、5的倍数的特征个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数都是5的倍数。
个位上是0的数既是2的倍数又是5的倍数。
知识点四:3的倍数的特征3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
知识点五:质数和合数判断一个数是合数还是质数的方法:先找出这个数的因数,再根据质数和合数的定义去判断这个数是质数还是合数,1既不是质数也不是合数。
知识点六:奇数和偶数的运算性质奇数与偶数的和的奇偶性:奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数例1:因为8×1=8,8×2=16,8×3=24,8×4=32,…所以8的倍数有( )个,由此可见,一个数的倍数的个数是( )的,其中最小的倍数是( )。
例2:例3:《水浒传》是我国四大著名之一,书中描述写了108位梁山好汉,“108”的最小倍数是( ),108的所有因数中,质数有( )个,合数有( )个。
人教版五年级下学期数学第二单元《因数与倍数》典型题型专项练习(含答案)

第二单元《因数与倍数》典型题型专项一、选择题1.一个数,它既是12的倍数,又是12的因数,这个数是()。
A.6B.12C.24D.144 2.要使4□6是3的倍数,□里可以填()A.1、2、3B.2、4、6C.2、5、8 3.一个两位数,既是2的倍数,又是5的倍数,这个数最大是()。
A.90B.92C.954.一个数,既是40的因数,又是5的倍数,符合条件的数有()个。
A.2B.3C.4D.5 5.在24□中,方框里填上一个数字,使这个数同时是2、3、5的倍数.()A.1B.2C.06.同时是2、3、5的倍数的数是()。
A.奇数B.偶数7.如果a表示自然数,那么下面一定可以表示偶数的是()A.a+1B.a+2C.2a8.几个质数的积一定是()。
A.奇数B.偶数C.无法判断9.从1到2005连续自然数相加的和是()。
A.奇数B.偶数二、填空题10.12的因数有_________个,在这些因数中,质数有_________,合数有_________,奇数有_________,偶数有_________。
11.10的因数有______,其中最大因数是______,最小因数是______。
12.猜数,它是5的倍数,又是50的因数,这个数是( )。
13.个位是( )的自然数,叫做奇数。
两位数中,最小的奇数是( ),最大的偶数是( )。
自然数中最小的奇数是( ),最小的偶数是( )。
14.在自然数1~20中,最小的合数是( ),是偶数又是质数的是( ),是奇数又是合数的是( ),既不是质数又不是合数的是( )。
15.一个六位数,个位上是最小的质数,十位上是最小的合数,万位上的数既是质数又是偶数,十万位上的数是一位数中最大的自然数,其余数位上的数是0,这个六位数是________.16.5×6=30中,( )是( )和( )的倍数;( )和( )是( )的因数。
17.两个质数的积是15,这两个质数分别是_________和_________。
人教版小学数学五年级倍数与因数(经典例题含答案)

倍数与因数经典例题答案班级小组姓名成绩(满分120)一、认识倍数和因数(共4小题,每题3分,共计12分)例1.判断。
(1)因为42÷7=6,所以42是倍数,7是因数。
(×)(2)51是17的倍数,17是51的因数。
(√)(3)1是1,2,3,4,5,…的因数。
(√)(4)4的倍数有无数个,4的因数只有2和4。
(×)(5)因为4×8=32,所以32是8的倍数,8是32的因数。
(√)(6)一个数的倍数一定比这个数大。
(×)(7)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
(√)例1.变式1.根据算式填数。
(1)10×2=20(10)和(2)是(20)的因数,(20)是(2)和(10)的倍数。
(2)28÷7=4(28)是(7)和(4)的倍数,(4)和(7)是(28)的因数。
(3)3×18=54(54)是(3)和(18)的倍数,(3)和(18)是(54)的因数。
(4)95÷5=19(5)和(19)是(95)的因数,(95)是(5)和(19)的倍数。
找一个数的倍数的方法例1.变式2.把4的倍数用“○”圈起来。
例1.变式3.小蜜蜂采蜜。
(连一连)二、倍数与因数(共4小题,每题3分,共计12分)例2.判断。
(1)0不是自然数。
(×)(2)自然数都是整数。
(✓)(3)8是倍数,1是因数。
(×)(4)32既是4的倍数,又是8的倍数。
(✓)(5)1是1,2,3的因数。
(✓)(6)12是12的倍数。
(✓)例2.变式1.体育课上,王老师为五年级(1)班的同学安排了一次有趣的跳绳活动,王老师将全班学生分成5个小组,每组7人。
跳绳的规则是这样的:每人只跳60秒,跳的次数是7的倍数的有效,否则无效。
下面表格展示了两组同学的成绩,找一找哪些成绩是有效的,填在表格里。
例2.变式2.爸爸每4天休息一次,妈妈每3天休息一次,5月6日爸爸、妈妈都休息,下一次爸爸、妈妈共同休息将在几月几日?4+1=5(天)3+1=4(天)4x5=206+20=26(日)答:下一次爸爸、妈妈共同休息将在5月26日.组数成绩有效成绩第一组14,43,56,70,85,62,42第二组39,63,78,98,47,90,9114567042639891例2.变式3.老师的年龄在20岁到40岁之间,既是6的倍数,又是9的倍数,请猜猜老师今年几岁。
第二单元《因数与倍数》(单元解读)五年级数学下册人教版

第二单元因数与倍数单元解读一、链接课标《义务教育数学课程标准(2022年版)》在学段目标的第三学段中提出:在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果会独立思考,体会一些数学的基本思想经历与他人合作交流解决问题的过程,尝试解释自己的思考过程能回顾解决问题的过程,初步判断结果的合理性在运用数学知识和方法解决问题的过程中,认识数学的价值。
在课程内容的第三学段中提出:知道2,3,5的倍数的特征,在100的自然数中,能找出10 以内自然数的所有倍数,了解自然数、整数、奇数、偶数、质数和合数的含义。
在本单元教学中要注重概念的建立,关注由具体到抽象、由特殊到一般的概括、归纳过程,加强对概念间相互关系的梳理,促进学生从本质上理解与记忆概念,给予学生独立思考、交流合作的机会,让学生经历探究、发现、总结的完整过程,掌握在这一单元的内容中,2、5、3 的倍数的特征,100 以内的质数表,以及两数之和的奇偶性等知识。
二、单元目标本单元让学生在前面所学的整数知识基础上,进一步探索整数的性质。
本单元涉及到的因数、倍数、质数、合数以及第四单元中的最大公因数、最小公倍数都属于初等数论的基本内容。
数论是一个历史悠久的数学分支,它是研究整数的性质的一门学问,以严格、简洁、抽象著称。
数学一直被认为是“科学的皇后”,而数论则更被誉为“数学的皇后”,可见数论在数学中的地位。
本单元的知识作为数论知识的初步,一直是小学数学教材中的重要内容。
通过这部分内容的学习,可以使学生获得一些有关整数的知识,另一方面,有助于发展他们的抽象思维。
基于教材分析理解和新课程标准要求与学生经验、认知基础水平,结合数学课程标准提出的落实“四基”、发展增强“四能”要求,我将本课教学目标整合定位(确立)如下:1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3 的倍数的特征。
五年级数学下册试题因数和倍数重难点讲解(质数和合数、分解质因数)+答案

数学学科专属辅导讲义学员姓名教师姓名班主任上课日期上课时间年级课时教学内容因数与倍数2教学目标1、理解掌握质数和合数2、学会分解质因数教学重难点1、理解掌握质数和合数2、学会分解质因数教学内容1、理解掌握2、3、5的倍数的特征1、把55个橘子分给甲、乙、丙三人,甲得到的橘子数是乙的2 倍,且甲、乙得到的橘子数都比丙多,丙得到的橘子数比10 多,则甲、乙、丙三人各得多少个?2、一个数加3是5的倍数,减去3是6的倍数,这个数最小是多少?【课前导入1】写出3、5、7、8、10、12、13、15这7个数的所有因数观察以上数的因数,他们有什么特点。
总结:像2、3、5这几个数,只有1和它本身两个因数,这样的数叫作质数,也称为素数;像6,8、9这几个数,除了1和它本身还有别的因数,也就是有两个以上因数,这样的数叫作合数。
练习1:(1)质数只有( )个因数,合数至少有( )个因数。
(2) 自然数中,最小的质数是( ),最小的合数是( )。
(3) 比10小的数里,质数有( )个,合数有( )个。
(4) 20的因数有( ),其中是质数的有( )。
问题1:1是质数还是合数?说说想法。
问题2:可以将大于O的自然数还可以按什么分类,分成几类?问题3:按质数和合数的分类和偶数、奇数的分类比较,有什么不同?总结:20以内的质数是:2、3、5、7、1 1、1 3、1 7、19。
质数不都是奇数,因为2是质数。
【课前导入2】请把5和28分别写成两个数相乘的形式。
77=53+17+7再任取一个奇数461,那么461=449+7+5也是三个素数之和.461还可以写成257+199+5仍然是三个素数之和.这样,我就发现:任何大于5的奇数都是三个素数之和.1、30的所有因数有( )A.1、2、3、5和10B. 2、3、5、10和15C. 1、2、3、5、6、10、15和302、当两个数互质时,它们的最大公因数是( )。
A. 1B. 2C. 无法确定3、把20分解质因数应该写成()A. 20=1×2×2×5B. 2×2×5=20C. 20=2×2×54、14和28的公倍数()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典知识,经典范文
“因数与倍数”单元疑难问题解答-五年级下册
二、“因数与倍数”单元中,在第12页中指出“注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)”,而在17页又指出“0也是偶数”,质数与合数中,对0的问题又没有加以说明。
这是为什么?究竟在这一单元的研究中,到底包括0还是不包括0?
(1)本单元是有关数论的内容,主要研究整数的性质。
就数论这门学科而言,研究的数的范围是整数(0是整数),而且其主要概念都是在整除(见与本册教材相配套的教师教学用书的说明)的基础上定义的,具体的某个概念又会限定在特定的数的范围内(如0×5=0,可以说5是0的因数,0是5的倍数;但不能说0是0的因数,在数论里讨论的因数与一般乘法算式中的因数的概念是不同的,数论里的因数不能为0)。
(2)虽然本单元的内容应该在整数范围内研究,但是,由于0是任何非0自然数的倍数,任何非0自然数是0的因数;这种由于0的特殊性导致在研究具体问题时经常要注意说明0是否包含在内,给研究问题带来很多麻烦。
(如虽然0是任何非0自然数的倍数,但最小公倍数指的是一切公倍数中的最小正数”)。
因此,限于小学生的认知水平,在小学阶段进行特殊约定,一般只在非0的自然数范围内加以研究,教材对此在第12页进行了说明。
(3)奇数、偶数的概念是在整除的基础上定义的,研究的范围是整数,因为0能被2整除(或者说0是2的倍数),因此,0也是偶数。
为此,教材对“0也是偶数”进行了补充说明,概念是科学的定义,这与前面对本单元数的范围的特殊约定并不矛盾。
(4)与因数和倍数不同,质数和合数在正整数范围内研究,因此讨论质数与合数时不包括0。
相应地,如果把正整数分类,应分为:1、质数和合数。
综上所述,由于质数与合数、因数与倍数、奇数与偶数等概念的研究范围不同,为此教材对于0依据不同情况进行特殊处理。
1
经典模板。