认识三角形(练习题)

合集下载

认识三角形(练习题)

认识三角形(练习题)

认识三角形一、知识点梳理1、三角形的有关概念(1)三角形的定义:由不在上的三条线段首尾相连所组成的图形。

(2)三角形的基本构造:①组成三角形的三条线段叫做三角形的②两条边相接的点叫做三角形的③相邻两边组成的角叫做三角形的2、三角形的三边关系:(1)三角形任意两边之和第三边(2)三角形任意两边之差第三3、三角形的角平分线、中线、高(1)、在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做(2)、在三角形中,的线段,叫做这个三角形的中线。

(3)、从三角形的一个顶点向它的对边所在直线作垂线,之间的线段叫做三角形的高。

4:三角形按角分类⎧⎪⎨⎪⎩锐角三角形直角三角形钝角三角形5、三角形内角和与外角和定理(1)三角形三个内角的和等于180(2)直角三角形两锐角互余.(3)三角形一个外角大于和它不相邻的任何一个内角。

(4)三角形一个外角等于和它不相邻的两个内角的和。

(5)三角形三个外角的和等于360。

6:认识直角三角形:直角三角形的表示方法、性质:直角三角形两锐角互余。

二、经典例题例1、下面各组数分别表示三条线段的长度,试判断以它们为边是否能组成三角形。

( )(1)1 ;4 ;5 (2)3 ;3 ;5w(3)3x ;5x ;7x(x为正数) (4)三条线段长度之比为4:7:6..例2、 小明要制作一个三角形铁丝架,已知有两根铁丝长度分别是3cm ,5cm(1) 他该如何选择第三根铁丝?你能帮助小明确定它的长度或范围吗? (2) 如果要求第三根铁丝的长度是整数,那么小明有几种选择?例3、 如图所示,在小河的同侧有A,B,C 三个村庄,图中的线段表示道路,某邮递员从A 村送信到B 村,总是走经过C 村的道路,不走经过D 村的道路,这是为什么呢? 请利用你所学的数学知识加以证明。

拓展:1、若设,,a b c 是△ABC 的三边,则a b c a b c +++--= 2、已知,,a b c 是△ABC 的三边,2,5a b ==,且三角形的周长是偶数,(1)求c 的值;(2)判断△ABC 的形状。

认识三角形全面经典大题

认识三角形全面经典大题

认识三角形大题
1.在△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC各内角的度数.
2. 在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多
5cm,AB与AC的和为11cm,求AC的长.
3.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.
4.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm两部分,求这个等腰三角形的底边的长.
5、如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F、已知∠A=30°,∠FCD=80°,求∠D.
6.如图,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.
7.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求
∠DAE的度数.
8.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.
9.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC.
10.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,
求∠BOC的度数.。

(完整)四年级上册数学三角形的认识练习题

(完整)四年级上册数学三角形的认识练习题

(完整)四年级上册数学三角形的认识练习

四年级上册数学三角形的认识练题
1. 以下哪个图形是三角形?
- A. ⬛️正方形
- B. ⬛️长方形
- C. ⬛️三角形
- D. ⬛️正五边形
2. 内角之和与一个三角形内角相等的直角形叫做什么?
- A. 基本图形
- B. 正方形
- C. 正直角形
- D. 二边相等的直角形
3. 一个直角三角形的两条边相等,叫做什么?
- A. 锐角三角形
- B. 直角三角形
- C. 钝角三角形
- D. 等腰三角形
4. 以下哪个图形是等腰三角形?- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
5. 以下哪个图形是等边三角形?- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
6. 以下哪个图形是直角三角形?- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
7. 以下哪个图形是钝角三角形?
- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
8. 在以下哪个图形中,直角的两边长度相等?- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
9. 在以下哪个图形中,一个内角大于90度?- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
10. 以下哪个图形的每一个内角都是锐角?
- A. ⬛️
- B. ⬛️
- C. ⬛️
- D. ⬛️
请注意,以上只是数学三角形的认识练习题,答案可能因具体情况而异。

初二认识三角形的练习题

初二认识三角形的练习题

初二认识三角形的练习题1. 已知直角三角形ABC,其中∠B=90°,AB=3cm,BC=4cm,求AC的长度。

2. 在等边三角形ABC中,AB=BC=AC=6cm,求三角形ABC的周长和面积。

3. 在等腰直角三角形ABC中,AB=AC=5cm,求三角形ABC的周长和面积。

4. 在直角三角形ABC中,AC=4cm,BC=3cm,求∠B 的大小。

5. 已知三角形ABC,其中AB=3cm,AC=4cm,BC=5cm,判断三角形ABC的形状(等腰三角形、直角三角形、等边三角形)。

6. 在等腰直角三角形ABC中,∠B=90°,AB=5cm,BC=5cm,求三角形ABC的周长和面积。

7. 已知三角形ABC,其中∠A=70°,∠B=50°,求∠C 的大小。

8. 在等边三角形ABC中,AB=6cm,求三角形ABC的高和面积。

9. 在直角三角形ABC中,∠A=90°,AB=5cm,BC=12cm,求AC 的长度。

10. 在等腰三角形ABC中,AB=AC=8cm,∠A=100°,求∠B 和∠C 的大小。

11. 在等腰直角三角形ABC中,AB=AC=6cm,求三角形ABC的周长和面积。

12. 已知三角形ABC,其中AB=6cm,AC=8cm,BC=10cm,判断三角形ABC的形状(直角三角形、等腰三角形、等边三角形)。

13. 在等边三角形ABC中,AB=8cm,求三角形ABC的高和面积。

14. 在直角三角形ABC中,AC=5cm,BC=12cm,求∠A 和∠B 的大小。

15. 在等腰三角形ABC中,AB=AC=10cm,∠B=30°,求∠A 和∠C 的大小。

以上是初二认识三角形的练习题,通过解答这些题目,可以帮助学生加深对三角形的形状、角度和边长关系的理解。

认识三角形精品练习题

认识三角形精品练习题

认识三角形精品练习题1. 三角形是平面几何中的重要概念,对于理解和运用三角形的性质非常重要。

为了帮助大家更好地认识三角形,以下是一些精品练习题,希望能够帮助大家巩固对三角形的认识。

2. 题目一:已知三边长分别为5 cm、6 cm和8 cm的三角形,求其周长和面积。

3. 题目二:已知三角形的底边长为12 cm,高为9 cm,求其面积。

4. 题目三:已知三角形的一个角为60°,另外两边的长度分别为5 cm和8 cm,求第三边的长度。

5. 题目四:已知三角形的两个角分别为40°和70°,求第三个角的度数。

6. 题目五:已知三角形的三个内角分别是30°、60°和90°,问它是什么三角形。

7. 题目六:已知三角形的三个顶点坐标分别为A(1, 2),B(4, 5)和C(7, 2),求其周长和面积。

8. 题目七:已知三角形的一个顶点坐标为D(3, 4),另外两个顶点的坐标分别为E(6, 7)和F(2, 0),求其周长和面积。

9. 题目八:已知三角形的两边长度分别为3 cm和4 cm,夹角的度数为30°,求其面积。

10. 题目九:已知三角形的两边长度分别为5 cm和6 cm,夹角的度数为45°,求其周长和面积。

11. 题目十:已知三角形的两边长度分别为7 cm和9 cm,夹角的度数为120°,求其周长和面积。

12. 题目十一:已知三角形的两个角分别为90°和45°,求第三个角的度数。

13. 题目十二:已知三角形的两边长度分别为4 cm和6 cm,夹角的度数为60°,求其第三边的长度。

14. 题目十三:已知三角形的三个顶点坐标分别为G(1, 3),H(6, 2)和I(4, 7),求其周长和面积。

15. 题目十四:已知三角形的一个顶点坐标为J(2, -1),另外两个顶点的坐标分别为K(5, 4)和L(3, 7),求其周长和面积。

认识三角形练习题

认识三角形练习题

认识三角形练习题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A.小于直角; B.等于直角; C.大于直角; D.大于或等于直角14.如图:(1)AD⊥BC,垂足为D,则AD是________的高,∠________=∠________=90°;(2)AE平分∠BAC,交BC于点E,则AE叫________,∠________=∠________=∠________,AH叫________;(3)若AF=FC,则△ABC的中线是________;(4)若BG=GH=HF,则AG是________的中线,AH是________的中线.15.如图,∠ABC=∠ADC=∠FEC=90°.(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)在△FEC中,EC边上的高是________;(4)若AB=CD=3,AE=5,则△AEC的面积为________.16.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.17.五段线段长分别为1cm、2cm、3cm、4cm、5cm,以其中三条线段为边长共可以组成________个三角形.18.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.19.一个等腰三角形的周长为5cm,如果它的三边长都是整数,那么它的腰长为________cm.20.在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则∠A=______;∠B=______;∠C=______.21.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=_______(2)若∠ABC+∠ACB=120°,则∠BIC=________;(3)若∠A=60°,则∠BIC=________;(4)若∠A=100°,则∠BIC=________;(5)若∠A=n°,则∠BIC=________.22.△ABC的周长为16cm,AB=AC,BC边上的中线AD把△ABC分成周长相等的两个三角形.若BD=3cm,求AB的长.23.如图,AB∥CD,BC⊥AB,若AB=4cm,,求△ABD中AB边上的高.24.学校有一块菜地,如下图.现计划从点D表示的位置(BD∶DC=2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D是BC的中点的话,由此点D笔直地挖至点A就可以了.现在D不是BC的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?25.在直角△ABC中,∠BAC=90°,如下图所示.作BC边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD中AB边上的高,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作、、……、.当作出时,图中共有多少个不同的直角三角形?26.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.27.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.28.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.29.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm 两部分,求这个等腰三角形的底边的长.30.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.31.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.32.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),∴∠GMN=∠BMN(),同理∠GNM=∠DNM.∵ AB∥CD(),∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.33.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.34.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.35.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.36.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.。

小学二年级三角形的认识练习题

小学二年级三角形的认识练习题

小学二年级三角形的认识练习题小学数学练习题:二年级三角形的认识一、判断题(每题1分,共10分)1. 三角形的边数多于四边形的边数。

2. 一个三角形有且只有一个直角。

3. 一个等边三角形有三个等边和三个等角。

4. 一个等腰三角形有两个边相等。

5. 三角形的内角和是180度。

6. 一个直角三角形的两条直角边相等。

7. 一个锐角三角形的三个内角都小于90度。

8. 一个钝角三角形的一个角大于90度。

9. 一个等腰直角三角形的两个锐角相等。

10. 一个等腰钝角三角形的两个锐角相等。

二、选择题(每题2分,共20分)1. 以下哪个图形不是三角形?A. 正方形B. 矩形C. 五边形2. 如果一个三角形的三条边长度分别是3cm、4cm、5cm,那么它是哪种三角形?A. 直角三角形B. 锐角三角形C. 钝角三角形3. 以下哪个图形是等边三角形?A. ABCB. BCDC. CDE4. 已知一个三角形的两个角分别为60度和60度,则第三个角是?A. 60度B. 30度C. 90度5. 以下哪个图形是等腰三角形?A. DEFB. EFGC. FGH6. 在一个等腰三角形中,两个锐角的度数分别是?A. 45度B. 90度C. 60度7. 两条边长度相等的三角形是?A. 正方形B. 矩形C. 等腰三角形8. 以下哪个图形是直角三角形?A. GHIB. HIJC. IJK9. 一个钝角三角形的一个角大小是?A. 179度B. 90度C. 100度10. 在一个等边三角形中,每个角的度数是?A. 90度B. 60度C. 45度三、解答题(每题5分,共15分)1. 找一种方法证明三角形的内角和是180度。

2. 画一个立体图形,它的一个面是一个等腰直角三角形。

3. 说明一个等边三角形的特点,并给出一个例子。

试卷答案:一、判断题1. 对2. 错3. 对4. 对5. 对6. 对7. 对8. 对9. 对10. 对二、选择题1. A2. A3. A4. C5. A6. C7. C8. B9. B10. C三、解答题(略)祝你顺利完成练习!。

4.1 认识三角形(分层练习)(解析版)

4.1 认识三角形(分层练习)(解析版)

第四章 三角形4.1 认识三角形精选练习一、单选题1.(2023秋·河南开封·八年级统考期末)如图,在上网课时把平板放在三角形支架上用到的数学道理是( )A .三角形的稳定性B .对顶角相等C .垂线段最短D .两点之间线段最短【答案】A 【分析】利用三角形的稳定性直接回答即可.【详解】解:把平板电脑放在一个支架上面,就可以非常方便的使用它上网课,这样做的数学道理是三角形具有稳定性,故选:C .【点睛】考查了三角形的稳定性,解题的关键是从图形中抽象出三角形模型,难度不大.2.(2023秋·广东惠州·八年级统考期末)一个三角形两边长分别为3cm 和6cm ,则该三角形的第三边可能是( )A .1cmB .3cmC .7cmD .10cm 【答案】C【分析】根据三角形的三边关系,确定第三边的范围,进行判断即可.【详解】解:∵一个三角形两边长分别为3cm 和6cm ,∴63-<第三边63<+,即:3cm <第三边9cm <,选项中满足题意的,只有7cm ;故选C .【点睛】本题考查三角形的三边关系.熟记三角形任意两边之和大于第三边,任意两边之差小于第三边,是解题的关键.3.(2023春·全国·七年级专题练习)如图,下列说法不正确的是( )A .直线m ,n 相交于点PB .PA PB QA QB +>+C .PA PB QA QB+<+D .直线m 不经过点Q 【答案】B 【分析】根据三角形的三边关系,结合图形判断即可.【详解】解:A.直线m ,n 相交于点P ,本选项说法正确,不符合题意;B.在ABQ V 中,AB QA QB <+,故PA PB QA QB +<+,本选项说法不正确,符合题意;C.在ABQ V 中,AB QA QB <+,故PA PB QA QB +<+,本选项说法正确,不符合题意;D.直线m 不经过点Q ,本选项说法正确,不符合题意.故选:B .【点睛】本题主要考查了点与直线的位置关系、三角形的三边关系,解题的关键是掌握三角形的两边之和大于第三边.4.(2023春·全国·七年级专题练习)已知线段a ,b ,c 首尾顺次相接组成三角形,若4a =,2b =,则c 的值不可能是( )A .3B .4C .5D .6【答案】D【分析】根据构成三角形的条件进行求解即可.【详解】解:由题意得,a b c a b -<<+,即4242c -<<+,∴26c <<,∴四个选项中只有选项D 符合题意,故选D .【点睛】本题主要考查了构成三角形的条件,熟知三角形中任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.5.(2023春·全国·七年级专题练习)如图,在ABC V 中,D 是BC 延长线上一点,40B Ð=°,120ACD Ð=°,则A Ð=( )A .40°B .60°C .80°D .120°【答案】C 【分析】由AC B D A =ÐÐ-Ð,直接可得答案.【详解】解:∵40B Ð=°,120ACD Ð=°,∴1204080A ACD B Ð=Ð-Ð=°-°=°,故选C .【点睛】本题考查的是三角形的外角的性质,掌握“三角形的一个外角等于和其不相邻的两个内角之和”是解本题的关键.6.(2023秋·浙江湖州·八年级统考期末)将下列长度的三根木棒首尾顺次连接,能组成三角形的是( )A .1,2,3B .3,4,5C .2,3,5D .3,5,9【答案】B【分析】根据三角形的三边关系逐项判断即可.【详解】解:A 、123+=,不能组成三角形,故不符合题意;B 、3475+=>,能组成三角形,故符合题意;C 、235+=,不能组成三角形,故不符合题意;D 、3589+=<,不能组成三角形,故不符合题意.故选:B .【点睛】本题考查三角形的三边关系,掌握三角形任意两边之和大于第三边这一关系是解答本题的关键.二、填空题7.(2022秋·广东惠州·八年级统考期中)已知三角形的两边长分别是2和5,则第三边长c 的取值范围是___________.【答案】37c <<【分析】根据三角形的第三边大于两边之差,小于两边之和,即可解决问题.【详解】解:∵三角形的两边长分别是2和5,∴第三边长c 的取值范围是5252c -<<+,即37c <<.故答案为:37c <<.【点睛】本题考查三角形三边关系的运用,熟记三角形的第三边大于两边之差,小于两边之和是解题的关键.8.(2023春·广西南宁·八年级南宁市第二十六中学校考阶段练习)在日常生活中,我们通常采用如图的方法(斜钉上一块木条)来修理一张摇晃的椅子,请用数学知识说明这样做的依据是:______.【答案】三角形具有稳定性【分析】根据三角形具有稳定性即可求解.【详解】解:这样做的依据是:三角形具有稳定性,故答案为:三角形具有稳定性.【点睛】本题考查了三角形具有稳定性,掌握三角形具有稳定性是解题的关键.9.(2022秋·浙江温州·八年级校考期中)如图,ACD Ð是ABC V 的一个外角,若110,45ACD B Ð=°Ð=°,则A Ð=______.【答案】65°##65度【分析】根据三角形外角等于不相邻两个内角的和解答即可.【详解】解:∵110,45ACD B Ð=°Ð=°,ACD Ð是ABC V 的外角,∴1104565A ACD B Ð=Ð-Ð=°-°=°故答案为:65°.【点睛】此题考查三角形的外角性质;关键是根据三角形的一个外角等于和它不相邻的两个内角的和解答.10.(2023春·江苏·七年级专题练习)如图,AB CD ∥,点E 在AD 上,50A Ð=°,60C Ð=°,则AEC Ð的度数是 __.【答案】110°##110度【分析】先根据平行线的性质得ADC Ð,然后根据外角即可求出.【详解】解:∵AB CD ∥,∴50ADC A Ð=Ð=°,∵60C Ð=°,∴6050110AEC C ADC Ð=Ð+Ð=°+°=°.故答案为:110°.【点睛】本题考查了平行线的性质,三角形外角等知识点,熟练运用平行线的性质是解题关键.三、解答题11.(2022秋·八年级课时练习)四根木棒的长度分别为12cm 8cm 5cm 6cm ,,,.从中取三根,使它们首尾顺次相接组成一个三角形.一共有多少种取法?把它们都列出来.【答案】一共有3种取法:取12cm 8cm 5cm ,,这三根木棒,取12cm 8cm 6cm ,,这三根木棒,取8cm 6cm 5cm ,,这三根木棒【分析】根据构成三角形的条件进行求解即可.【详解】解:当取12cm 8cm 5cm ,,时,∵1258125-<<+,∴12cm 8cm 5cm ,,这三根木棒可以组成三角形;当取12cm 8cm 6cm ,,时,∵1268126-<<+,∴12cm 8cm 6cm ,,这三根木棒可以组成三角形;当取12cm 6cm 5cm ,,时,∵5612+<,∴12cm 6cm 5cm ,,这三根木棒不可以组成三角形;当取8cm 6cm 5cm ,,时,∵85685-<<+,∴8cm 6cm 5cm ,,这三根木棒可以组成三角形;综上所述,一共有3种取法:取12cm 8cm 5cm ,,这三根木棒,取12cm 8cm 6cm ,,这三根木棒,取8cm 6cm 5cm ,,这三根木棒.【点睛】本题主要考查了构成三角形的条件,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.12.(2022秋·八年级课时练习)两根木棒的长分别是5cm 和7cm .要选择第三根木棒,将它们首尾相接钉成一个三角形.若第三根木棒的长为偶数,则第三根木棒长的取值情况有几种?【答案】第三根木棒长的取值情况有4种.【分析】设第三根木棒长度为cm x ,根据三角形的三边关系可得7575x -<<+,可得到x 的取值范围,即可求解.【详解】解:设第三根木棒长度为cm x ,根据题意得:7575x -<<+ ,即212x <<,∵第三根木棒的长为偶数,∴x 可取4,6,8,10,有4种情况.答:第三根木棒长的取值情况有4种.【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.一、填空题1.(2023春·江苏·七年级专题练习)如图,A B C D E F ÐÐÐÐÐÐ+++++=____度.【答案】360【分析】先由三角形的外角的性质得出AHG A B Ð=Ð+Ð,=DNG C D ÐÐ+Ð,EGN E F Ð=Ð+Ð,继而利用三角形外角和等于360°即可得出答案.【详解】解:如图所示,∵AHG A B Ð=Ð+Ð,=DNG C D ÐÐ+Ð,=EGN E F ÐÐÐ+,∴=AHG DNG EGN A B C D E F ÐÐÐÐÐÐÐÐÐ+++++++,又∵AHG ∠、DNG Ð、EGN Ð是GHN △的三个不同的外角,∴=360AHG DNG EGN ÐÐÐ++°,∴=360A B C D E F ÐÐÐÐÐÐ+++++°.故答案为:360.【点睛】本题考查了三角形外角的性质和内角和定理,熟练掌握知识点是解题的关键.2.(2023秋·浙江金华·八年级统考期末)如图,ABC V 的三条中线AD ,BE ,CF 交于点O ,若ABC V 的面积为20,那么阴影部分的面积之和为______.【答案】10【分析】由三角形的中线得△△S A O F S B O F =,△△S B O D S C O D =,△△S A O E S C O E = 即可得出结论.3.(2023春·江苏泰州·七年级泰州市姜堰区第四中学校考周测)已知,,a b c 为ABC V 的三边,化简:2a b c a b c +----= ______4.(2022秋·安徽马鞍山·八年级校考期中)在ABC V 中,AB AC =,AC 边上的中线BD 把ABC V 的周长分为12cm 和21cm 两部分,求BC 长_________.【答案】5cm ##5厘米【分析】先根据题意画出示意图,然后再利用三角形的中线定义及三角形周长和三角形的三边关系求得三角形三边的长即可.【详解】解:如图,设cm cmAB AC x BC y ==2=,∵BD 是中线∴cmAD CD x ==若21cm 12cmAB AD BC CD +=+=,即22112x x x y +=ìí+=î解得:=7x ,5y =此时,14cm 5cmAB AC BC ===,若12cm 21cmAB AD BC CD +=+=,即21221x x x y +=ìí+=î解得:=4x ,17y =∵此时8cm 17cm AB AC BC AB AC BC===+,,<∴=4x ,17y =不合题意,舍去综上所述,5cm =BC .故答案为5cm .【点睛】本题主要考查了等腰三角形的性质、三角形的三边关系等知识点,熟练掌握有关等腰三角形边的分类讨论及三边关系的确定是解决本题的关键.5.(2021春·内蒙古包头·七年级包头市第二十九中学校考期中)如图,在ABC V 中,点D 是BC 的中点,点E 是AD 上的一点,2AE ED =,且122ABC S =△,则AEC S =V ___________.二、解答题6.(2022秋·广东广州·八年级校考阶段练习)如图,在ABC V 中(AC AB >),2AC BC =,BC 边上的中线AD 把ABC V 的周长分成60和40两部分,求AC 和AB 的长.【答案】48AC =,28AB =【分析】根据AD 是BC 边上的中线,可以得到BD CD =,设BD CD x ==,AB y =,则2BC x =,4AC x =.分两种情况讨论:当60AC CD +=,40AB BD +=时,求出x y 、的值,即可确定AC 和AB 的值;当40AC CD +=,60AB BD +=时,同理可求出AC 和AB 的值,注意检验所得到的答案是否满足三角形的三边关系.【详解】解:因为AD 是BC 的中线,所以BD CD =,设BD CD x ==,AB y =,则2BC BD CD x =+=,24AC BC x ==,分两种情况讨论:①60AC CD +=,40AB BD +=,则460x x +=,40x y +=,解得12x =,28y =,即448AC x ==,28AB =;②40AC CD +=,60AB BD +=,则440x x +=,60x y +=,解得8x =,52y =,即432AC x ==,52AB =,216BC x ==,此时AC BC AB +<,不符合三角形三边关系定理,不符合题意.综上所述,48AC =,28AB =.【点睛】本题主要考查了三角形中线的定义、三角形的周长和三角形三边关系等知识,解题的关键是利用中线的定义结合三角形周长公式分析问题,并进行分类讨论.7.(2023春·江苏·七年级泰州市姜堰区第四中学校考周测)一个零件的形状如图中阴影部分.按规定A Ð应等于90°,B Ð、C Ð应分别是29°和21°,检验人员度量得141BDC Ð=°,就断定这个零件不合格.你能说明理由吗?【答案】见解析【分析】连接AD 并延长,根据三角形的一个外角等于和它不相邻的两个内角的和求出1B BAD Ð=Ð+Ð,2C CAD Ð=Ð+Ð,然后求出12Ð+Ð的度数,根据零件规定数据,只有140°才是合格产品.【详解】解:如图,连接AD 并加以延长至E ,记1,2CDE BDE Ð=ÐÐ=Ð,则1C CAD Ð=Ð+Ð,2DAB B Ð=Ð+Ð,又∵B Ð、C Ð应分别是29°和21°∴12BDC Ð=Ð+ÐC CAD B DAB=Ð+Ð+Ð+ÐC CAB B=Ð+Ð+Ð140=°.而实际测量141BDC Ð=°,∴可以判定这个零件不合格.【点睛】本题考查三角形外角的性质,合理画辅助线是解题关键.8.(2022秋·广西崇左·八年级统考期中)已知a b c 、、为ABC V 的三条边,则化简:a b c a b c a b c +---++--.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

认识三角形一、知识点梳理1、三角形的有关概念(1)三角形的定义:由不在 上的三条线段首尾 相连所组成的图形。

(2)三角形的基本构造:①组成三角形的三条线段叫做三角形的 ②两条边相接的点叫做三角形的 ③相邻两边组成的角叫做三角形的 2、三角形的三边关系:(1)三角形任意两边之和 第三边 (2)三角形任意两边之差 第三 3、三角形的角平分线、中线、高(1)、在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做 (2)、在三角形中, 的线段,叫做这个三角形的中线。

(3)、从三角形的一个顶点向它的对边所在直线作垂线, 之间的线段叫做三角形的高。

4:三角形按角分类⎧⎪⎨⎪⎩锐角三角形直角三角形钝角三角形 5、三角形内角和与外角和定理 (1)三角形三个内角的和等于180 (2)直角三角形两锐角互余。

(3)三角形一个外角大于和它不相邻的任何一个内角。

(4)三角形一个外角等于和它不相邻的两个内角的和。

(5)三角形三个外角的和等于360.6:认识直角三角形:直角三角形的表示方法、性质:直角三角形两锐角互余。

二、经典例题例1、下面各组数分别表示三条线段的长度,试判断以它们为边是否能组成三角形。

( ) (1)1 ;4 ;5 (2)3 ;3 ;5(3)3x ;5x ;7x (x 为正数) (4)三条线段长度之比为4:7:6 例2、 小明要制作一个三角形铁丝架,已知有两根铁丝长度分别是3cm ,5cm(1) 他该如何选择第三根铁丝你能帮助小明确定它的长度或范围吗 (2) 如果要求第三根铁丝的长度是整数,那么小明有几种选择例3、 如图所示,在小河的同侧有A,B,C 三个村庄,图中的线段表示道路,某邮递员从A 村送信到B 村,总是走经过C 村的道路,不走经过D 村的道路,这是为什么呢 请利用你所学的数学知识加以证明。

拓展:1、若设,,a b c 是△ABC 的三边,则a b c a b c +++--= 2、已知,,a b c 是△ABC 的三边,2,5a b ==,且三角形的周长是偶数,(1)求c 的值;(2)判断△ABC 的形状。

例4、 (1)如图1,D 为S △ABC 的变BC 边的中点,若S △ADC =15, 那么S △ABC =(2)如图2,已知AD 、BE 分别是△ABC 中BC 、AC 边上的高,若0070,120,2C ∠=∠=∠=那么D CBA21ECBA图1 图2变式训练:如图在△ABC 中,BD 平分0,66,24,ABC C ABD A ∠∠=∠=∠那么=EDCBAA例5、 如图,已知在△AB C 中,ABC ACB ∠∠与的平分线交于点O ,试说明:(1)01180()2BOC ABC ACB ∠=-∠+∠ (2)01902BOC A ∠=+∠变式训练:如图在△A BC 中,已知I 是△ABC 三个内角平分线的交点,0130BIC BAC ∠=∠,则为( )A 、40°B 、50°C 、65°D 、80°例6、 如图,已知在△ABC 中,CF 、BE 分别是AB 、AC 边上的中线,若AE=2,AF=3,且△ABC 的周长为15,求BC 的长。

变式训练:如图,在△ABC 中,AB=AC ,AC 边上的中线BD 把三角形的周长分为12和15两部分,求△ABC 各边的长。

拓展:1、(1)如图,若AD 为△ABC 底边BC 的中线,则ABDS ==12; (2)两个等底(同底)三角形面积之比等于它们的 之比;两个等高(同高)三角形OCBAOFE C BADCBAFEDCBAICBA面积之比等于它们的 之比;(3)如图,在四边形ABCD 中,点E 、F 分别在BC 、CD 上,DF=FC,CE=2EB 。

已知,SDFAECF S m S n==四边形(其中n>m ),则ABCD S 四边形=2、如图1在△ABC 中,AD ⊥BC 于点D ,AE 平分()BAC C B ∠∠>∠ (1)试探究,EAD C B ∠∠∠与的关系;(2)若F 是AE 上一动点①若F 移动到AE 之间的位置时,FD ⊥BD ,如图2所示,此时EFD C B ∠∠∠与与的关系如何②当F 继续移动到AE 延长线上时,如图3所示FD ⊥BC ,①中的结论是否还成立,如果成立说明理由,如果不成立,写出新的结论。

例7、在△ABC 中,已知∠A =21∠B =31∠C ,请你判断三角形的形状。

例8、. 已知在△ABC 中,∠A =62°,BO 、CO 分别是∠ABC 、∠ACB 的平分线,且BO 、CO 相交于O ,求∠BOC 的度数。

A图1E DCBAF图2E DCBAF图3EDC BA作业一、填空题1、在△ABC中,∠A=40°,∠B=∠C,则∠C=.2、小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是_3、如果等腰三角形的一个底角是40°,它的顶角是()。

4、三角形的一边为5 cm,一边为7 cm,则第三边的取值范围是5、△ABC中,若∠A=350,∠B=650,则∠C=();若∠A=1200,∠B=2∠C,则∠C=()。

6、三角形三个内角中, 最多有()个直角,最多有()个钝角,最多有()个锐角,至少有()个锐角。

7、三角形按角的不同分类,可分为()三角形,()三角形和()三角形。

8.三角形的三条中线,三条角平分线,三条高_____,其中直角三角形的高线交点为直角三角形的_____,钝角三角形三条高的交点在_____.9、一个三角形三个内角度数的比是2∶3∶4,那么这个三角形是三角形。

10、在△ABC中,∠A-∠B=36°,∠C=2∠B,则∠A=,∠B=,∠C=。

11.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.12.在△ABC中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.13.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______.14.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=_______度.15.已知△AB C为等腰三角形,①当它的两个边长分别为8 cm和3 cm时,它的周长为_____;②如果它的一边长为4cm,一边的长为6cm,则周长为_____.二、判断题。

1、有一个角是钝角的三角形就是钝角三角形。

()2、一个等腰三角形的顶角是80°,它的两个底角都是60°。

()3、两个内角和是90°的三角形是直角三角形。

()4、一个三角形最多只能有一个钝角或一个直角。

()5、在锐角三角形中,任意的两个锐角之和一定要大于90°。

()6、一个三角形,已知两个内角分别是85°和25°,这个三角形一定是钝角三角形。

()三、选择题:(1.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形;C.直角三角形D.钝角或直角三角形2.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60°3.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )°°°°4.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形5.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ中 ( )A.有两个锐角、一个钝角B.有两个钝角、一个锐角C.至少有两个钝角D.三个都可能是锐角6.在△ABC中,∠A=∠B=∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.等腰三角形的底边BC=8 cm,且|AC-BC|=2 cm,则腰长AC的长为( )A.10 cm或6 cmB.10 cmC.6 cmD.8 cm或6 cm 8.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是().(A)4cm (B)5cm (C)9cm (D)13cm9.在下图中,正确画出AC边上高的是().BAA BA BCA BEE(A ) (B ) (C ) (D ) 10.已知ΔABC 的三个内角∠A、∠B、∠C 满足关系式∠B+∠C=3∠A,则此三角( ) A 、一定有一个内角为45 B .一定有一个内角为60 C .一定是直角三角形 D .一定是钝角三角形11.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=900-∠B,④∠A=∠B=12 ∠C 中,能确定△ABC 是直角三角形的条件有( )A 、1个B 、2个C 、3个D 、4个 12、已知三角形的三边分别为2,a 、4,那么a 的范围是( )A 、1<a <5B 、2<a <6C 、3<a <7D 、4<a <6三、解答题。

1、画一画 如图,在△ABC 中: (1).画出∠C 的平分线CD (2).画出BC 边上的中线AE (3).画出△ABC 的边AC 上的高BF2、在三角形ABC 中,∠A=60°,∠B 比∠A 小15°,∠C 是多少度3.在△ABC 中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.4 (2001·天津)如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 则∠EDF=________度.BAC5、如图,已知∠B =40°,∠C =59°,∠DEC =47°,求∠F 的度数。

6、在△ABC 中,∠A =40°,∠B -∠C =60°,则∠C = ,按角分,这是 三角形。

7、如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P 的度数.8、如图所示,将△ABC 沿EF 折叠,使点C 落到点C ′处,试探求∠1,∠2与∠C 的关系.B D CAEF。

相关文档
最新文档