应用多元统计分析课后题解答
合集下载
应用多元统计分析课后习题答案高惠璇

29
第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
应用多元统计分析课后习题答案高惠璇共174页文档

(2)证明(X1 , X2 ) 不是二元正态分布.
证明(1):任给x,当x≤-1时
P { X 2 x } P { X 1 x } ( x )
当x≥1时, P{X2x}
P{X2 1}P{1X2 1}P{1X2 x}
P{X11}P{1X11}P{1X1x}
它的任意线性组合必为一元正态. 但Y= X1-X2 不是正态分布,故(X1 , X2 ) 不是二元正态分布.
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ ,Σ ),Σ >0,X的密度函数记为 f(x;μ ,Σ ).(1)任给a>0,试证明概率密度等高面
5
第二章 多元正态分布及参数的估计
2-3 设X(1)和X(2) 均为p维随机向量,已知
XX X((1 2))~N2p ((1 2)), 1 2 1 2,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立. (2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
故X1 +X2 和X1 - X2相互独立.
3
第二章 多元正态分布及参数的估计
或者记
Y Y Y 1 2 X X 1 1 X X2 2 1 1 1 1 X X 1 2 CX
则 Y ~ N 2 (C ,C C )
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
x14)2
2
X1~N(4,1).
类似地有
应用多元统计分析课后习题答案高惠璇

x1 y2 (2)第二次配方.由于 x y y 1 2 2
14
第二章
2 1 2 2 2 1 2 1 2 2
多元正态分布及参数的估计
2 x x 2 x1 x2 22x1 14x2 65 y y 22 y2 14( y1 y2 ) 65 y 14 y1 49 y 8 y2 16 ( y1 7) ( y2 4)
X 1 X 2 ~ N ( 1 2 ,2 (1 ));
2
X 1 X 2 ~ N ( 1 2 ,2 (1 )).
2
5
第二章
多元正态分布及参数的估计
1 2 , 2 1
2-3 设X(1)和X(2) 均为p维随机向量,已知
3 解三:两次配方法
2 1 2 2 2 (1)第一次配方: 2 x12 2 x1 x2 x2 ( x1 x2 ) 2 x12
2 1 x1 2 1 1 1 1 1 因2 x 2 x1 x2 x ( x1 , x2 ) , 而 BB, 1 1 x2 1 1 1 0 1 0 y1 1 1 x1 x1 x2 2 2 2 2 令y , 则 2 x 2 x x x y y 1 1 2 2 1 2 y x x 1 0 2 1 2
12
第二章
1 2
多元正态分布及参数的估计
2 1
解二:比较系数法 1 1 f ( x , x ) exp 设 ( 2 x 2 2
1 21 2
2 x2 2 x1 x2 22x1 14x2 65)
应用多元统计分析课后习题答案详解北大高惠璇部分习题解答

2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
因2x12
2x1x2
x22
(x1,
x2
)
2 1
11
x1 x2
,
而
2 1
11 11
1011
10 BB,
令y
y1 y2
11
1 0
x1 x2
x1
x2 x1
,
则2
x12
2x1x2
x22
y12
y22
(2)第二次配方.由于
xx12
y2 y1
y2
14
第二章 多元正态分布及参数的估计
2x12 x22 2x1x2 22x1 14x2 65
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
应用多元统计分析课后答案-朱建平版

统计量 拒绝域
均值向量的检验: 在单一变量中 当已知 当未知
(作为的估计量) 一个正态总体 协差阵已知 协差阵未知
() 两个正态总体 有共同已知协差阵 有共同未知协差阵
(其中 ) 协差阵不等 协差阵不等 多个正态总体 单因素方差 多因素方差 协差阵的检验 检验
检验 统计量
3.2 试述多元统计中霍特林
,使总平均损失达到极小。 基本方法: 令,则 若有另一划分, 则在两种划分下的总平均损失之差为
因为在上对一切成立,故上式小于或等于零,是贝叶斯判别的解。 从而得到的划分为 4.5 简述费希尔判别法的基本思想和方法。 答:基本思想:从个总体中抽取具有个指标的样品观测数据,借助方差 分析的思想构造一个线性判别函数 系数可使得总体之间区别最大,而使每个总体内部的离差最小。将新样 品的个指标值代入线性判别函数式中求出值,然后根据判别一定的规 则,就可以判别新的样品属于哪个总体。 4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。 答:① 费希尔判别与距离判别对判别变量的分布类型无要求。二者只 是要求有各类母体的两阶矩存在。而贝叶斯判别必须知道判别变量的分 布类型。因此前两者相对来说较为简单。 ② 当k=2时,若
0 10 210 543 0 876 30 10 9 8 5 2 0 由上表易知
中最小元素是 于是将
, , 聚为一类,记为 计算距离阵
0 30 63 0 85 2 0
中最小元素是 =2 于是将 , 聚为一类,记为 计算样本距离阵
0 30 63 0
中最小元素是 于是将 , 聚为一类,记为 因此,
,其各自的分布密度函数,假设k个总体各自出现的概率分别为,,。设将 本来属于总体的样品错判到总体时造成的损失为,
。 设个总体
均值向量的检验: 在单一变量中 当已知 当未知
(作为的估计量) 一个正态总体 协差阵已知 协差阵未知
() 两个正态总体 有共同已知协差阵 有共同未知协差阵
(其中 ) 协差阵不等 协差阵不等 多个正态总体 单因素方差 多因素方差 协差阵的检验 检验
检验 统计量
3.2 试述多元统计中霍特林
,使总平均损失达到极小。 基本方法: 令,则 若有另一划分, 则在两种划分下的总平均损失之差为
因为在上对一切成立,故上式小于或等于零,是贝叶斯判别的解。 从而得到的划分为 4.5 简述费希尔判别法的基本思想和方法。 答:基本思想:从个总体中抽取具有个指标的样品观测数据,借助方差 分析的思想构造一个线性判别函数 系数可使得总体之间区别最大,而使每个总体内部的离差最小。将新样 品的个指标值代入线性判别函数式中求出值,然后根据判别一定的规 则,就可以判别新的样品属于哪个总体。 4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。 答:① 费希尔判别与距离判别对判别变量的分布类型无要求。二者只 是要求有各类母体的两阶矩存在。而贝叶斯判别必须知道判别变量的分 布类型。因此前两者相对来说较为简单。 ② 当k=2时,若
0 10 210 543 0 876 30 10 9 8 5 2 0 由上表易知
中最小元素是 于是将
, , 聚为一类,记为 计算距离阵
0 30 63 0 85 2 0
中最小元素是 =2 于是将 , 聚为一类,记为 计算样本距离阵
0 30 63 0
中最小元素是 于是将 , 聚为一类,记为 因此,
,其各自的分布密度函数,假设k个总体各自出现的概率分别为,,。设将 本来属于总体的样品错判到总体时造成的损失为,
。 设个总体
应用多元统计分析课后习题答案详解北大高惠璇部分习题解答课件

则
W X X X X ( ( 1 2 ) ) X X ( ( 1 1 ) ) X X ( ( 1 2 ) ) X X ( (2 2 ) ) W W 1 21 1 W W 1 2 2 2 , 即
W 1 1 X ( 1 ) X ( 1 )W ,2 2 X ( 2 ) X ( 2 )
性质4 分块Wishart矩阵的分布:设X(α) ~ Np(0,Σ) (α
=1,…,n)相互独立,其中
又已知随机矩阵
1211
12 r 22pr
W n 1X ()X ( ) W W 1 21 1W W 1 2 2 2p r r~ W p(n , )
因 X H ~ 0 下 N p(0 ,1 n 0 ),n (X 0 )H ~ 0 下 N p(0 , 0 )
所以由§3“一﹑2.的结论1”可知
2ln~2(p).
20
第三章 多元正态总体参数的检验
3-6 (均值向量各分量间结构关系的检验) 设总体
X~Np(μ ,Σ )(Σ >0),X(α) (α =1,…,n)(n>p)为 来自p维正态总体X的样本,记μ =(μ 1,…,μ p)′.C 为k×p常数(k<p),rank(C)=k,r为已知k维向量.试给出 检验H0:Cμ =r的检验统计量及分布.
6
第三章 多元正态总体参数的检验
证明 记rk(A)=r.
若r=n,由AB=O,知B= On×n,于是 X′AX与X′BX
若r=0时,则A=0,则两个二次型也是独 立的. 以下设0<r<n.因A为n阶对称阵,存在正 交阵Γ,使得
7
第三章 多元正态总体参数的检验
其中λi≠0为A的特征值(i=1,…,r).于是
应用多元统计分析课后习题答案高惠璇部分习题解答(00004)市公开课金奖市赛课一等奖课件

2( 2 )2
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量分子为
L(aˆ0
, ˆ 0 2
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
第5页
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
第18页 18
第四章 回归分析
第19页 19
第四章 回归分析
等号成立 C(ˆ ) 0 (CC)1C • C(ˆ ) 0 ˆ.
第20页 20
第四章 回归分析
第21页 21
第四章 回归分析
第22页 22
第四章 回归分析
见附录P394定理7.2(7.5)式
第23页 23
第四章 回归分析
证实:(1)预计向量为 Yˆ Cˆ C(CC)1CY HY
yˆ
1 n
n i 1
yˆi
1 n
1n
Yˆ
1 n
1n
HY
1 n
(H1n )Y
1 n
1n
Y
y.
(因1n C张成的空间,这里有H1n 1n )
(2) 因 n ( yi y)( yˆi yˆ ) n ( yi yˆi yˆi y)( yˆi y)
0
ln
L
2
n
2
2
1
2( 2 )2
(Y
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量分子为
L(aˆ0
, ˆ 0 2
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
第5页
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
第18页 18
第四章 回归分析
第19页 19
第四章 回归分析
等号成立 C(ˆ ) 0 (CC)1C • C(ˆ ) 0 ˆ.
第20页 20
第四章 回归分析
第21页 21
第四章 回归分析
第22页 22
第四章 回归分析
见附录P394定理7.2(7.5)式
第23页 23
第四章 回归分析
证实:(1)预计向量为 Yˆ Cˆ C(CC)1CY HY
yˆ
1 n
n i 1
yˆi
1 n
1n
Yˆ
1 n
1n
HY
1 n
(H1n )Y
1 n
1n
Y
y.
(因1n C张成的空间,这里有H1n 1n )
(2) 因 n ( yi y)( yˆi yˆ ) n ( yi yˆi yˆi y)( yˆi y)
0
ln
L
2
n
2
2
1
2( 2 )2
(Y
应用多元统计分析课后题答案

c) c)2
2( x1
a)( x2
c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
2 2
1
(x
μ)
。
2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
μ)
1 n 1
n i 1
E(Xi
-
μ)(
X i
-
μ)
nE(X
μ)(X
μ)
Σ
。
故 S 为 Σ 的无偏估计。 n 1
2.9.设 X(1) , X(2) , ..., X(n) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本,试求 S
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
36573750.00 -199875.00
-736800.00
-35.80
Байду номын сангаас
-199875.00
16695.10
注:利用
X
p1
1 n
X
1n
,
S
X (In
1 n
1 1 nn
)
X
1
0
其中
In
0
1
在 SPSS 中求样本均值向量的操作步骤如下:
1. 选择菜单项 Analyze→Descriptive Statistics→Descriptives,打开 Descriptives 对话框。
1 2
(xp
p )2
2 p
p i 1
i
1 2
exp
(
xi i
2
2 i
)2
f (x1)... f (xp )
则其分量是相互独立。
2.5 由 于 多 元 正 态 分 布 的 数 学 期 望 向 量 和 均 方 差 矩 阵 的 极 大 似 然 分 别 为
n
μˆ X Xi n i 1
2 2
1
(x
μ)
。
2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
a)( x2
c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
第二章
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况, X ( X1, X 2 , X p ) 的 联合分布密度函数是一个 p 维的函数,而边际分布讨论是 X ( X1, X 2 , X p ) 的子向量的
概率分布,其概率密度函数的维数小于 p。
2.2 设二维随机向量 ( X1 X 2 ) 服从二元正态分布,写出其联合分布。
解:设 ( X1
X 2 ) 的均值向量为 μ 1
2
,协方差矩阵为
2 1
21
12
2 2
,则其联
合分布密度函数为
f
(x)
1 2
2
12 21
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
Bivariate Correlations 对话框。将三个变量移入右边的 Variables 列表框中,如图
2.3。
图 2.3 Bivariate Correlations 对话框
2.
单击 Options 按钮,打开 Options 子对话框。选择
Cross-product deviations and covariances 复选框,即计算样本离差阵和样本协差
2.4 设 X ( X1, X 2 , X p ) 服从正态分布,已知其协方差矩阵为对角阵,证明其分量是相
互独立的随机变量。
解: 因为 X ( X1, X 2 , X p ) 的密度函数为
f
(
x1
,
...,
x
p
)
1 2
p
Σ
1/
2
exp
1
(x
μ)Σ1
(x
μ)
2
12
又由于
Σ
2 2
2 p
n
Σˆ (Xi X)(Xi X) n i 1
35650.00
μˆ
X
12.33
17325.00
152.50
201588000.00
Σˆ
38900.00 83722500.00
-736800.00
38900.00 13.067 16710.00 -35.800
83722500.00 16710.00
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
fx1 (x1)
d 2[(d c)(x1 a) (b a)(x2 c) 2(x1 a)(x2 c)] dx
c
(b a)2 (d c)2
2(d c)(x1 a)x2 (b a)2 (d c)2
d
c
d c
3. 单击 OK 按钮,执行操作。则在结果输出窗口中给出样本均值向量,如表 2.1,即 样本均值向量为(35.3333,12.3333,17.1667,1.5250E2)。
表 2.1 样本均值向量
在 SPSS 中计算样本协差阵的步骤如下:
1.
选择菜单项 Analyze→Correlate→Bivariate,打开
(b a)2 (d c)2
(b a)2 (d c)2
ba
c
0
所以
由于
X
1
服从均匀分布,则均值为
b
2
a
b a2
,方差为
12
。
1
同理,由于
X2
服从均匀分布
f x2
(x2 )
d
0
c
x1 c, d ,则均值为 d c ,
其它
2
d c2
方差为
。
12
(2)解:随机变量 X1 和 X 2 的协方差和相关系数;
cov(x1, x2 )
d c
b a
x1
a
2
b
x2
d
2
c
2[(d
c)(
x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2(
x1
a)(
x2
c)] dx1dx2
(c d )(b a) 36
cov(x1, x2 ) 1
x1 x2
3
(3)解:判断 X1 和 X 2 是否相互独立。 X1 和 X 2 由于 f (x1, x2 ) fx1 (x1) fx2 (x2 ) ,所以不独立。
2[(b
a)( x2 (b
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
0
(b a)2 (d c)2
c
2(d c)(x1 a)x2 d [(b a)t 2 2(x1 a)t2 ] dc 1
将待估计的四个变量移入右边的 Variables 列表框中,如图 2.1。
图 2.1 Descriptives 对话框
2.
单击 Options 按钮,打开 Options 子对话框。在对话
框中选择 Mean 复选框,即计算样本均值向量,如图 2.2 所示。单击 Continue 按
钮返回主对话框。
图 2.2 Options 子对话框
Σ
12
2 2
2 p
1
2 1
1
Σ1
2 2
1
2 p
则 f (x1,..., xp )
1
2 1
1 p 2
Σ
12
2 2
2 p
1/ 2
exp
1 2
(x
μ)Σ1
1
2 2
(x
μ)
1
2 p
1 2
p
1 2 p
1
exp
1 2
( x1
1)2 12
1 2
( x2
3)2
2 2
...
-736800.00
-35.80
Байду номын сангаас
-199875.00
16695.10
注:利用
X
p1
1 n
X
1n
,
S
X (In
1 n
1 1 nn
)
X
1
0
其中
In
0
1
在 SPSS 中求样本均值向量的操作步骤如下:
1. 选择菜单项 Analyze→Descriptive Statistics→Descriptives,打开 Descriptives 对话框。
1 2
(xp
p )2
2 p
p i 1
i
1 2
exp
(
xi i
2
2 i
)2
f (x1)... f (xp )
则其分量是相互独立。
2.5 由 于 多 元 正 态 分 布 的 数 学 期 望 向 量 和 均 方 差 矩 阵 的 极 大 似 然 分 别 为
n
μˆ X Xi n i 1
2 2
1
(x
μ)
。
2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
a)( x2
c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
第二章
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况, X ( X1, X 2 , X p ) 的 联合分布密度函数是一个 p 维的函数,而边际分布讨论是 X ( X1, X 2 , X p ) 的子向量的
概率分布,其概率密度函数的维数小于 p。
2.2 设二维随机向量 ( X1 X 2 ) 服从二元正态分布,写出其联合分布。
解:设 ( X1
X 2 ) 的均值向量为 μ 1
2
,协方差矩阵为
2 1
21
12
2 2
,则其联
合分布密度函数为
f
(x)
1 2
2
12 21
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
Bivariate Correlations 对话框。将三个变量移入右边的 Variables 列表框中,如图
2.3。
图 2.3 Bivariate Correlations 对话框
2.
单击 Options 按钮,打开 Options 子对话框。选择
Cross-product deviations and covariances 复选框,即计算样本离差阵和样本协差
2.4 设 X ( X1, X 2 , X p ) 服从正态分布,已知其协方差矩阵为对角阵,证明其分量是相
互独立的随机变量。
解: 因为 X ( X1, X 2 , X p ) 的密度函数为
f
(
x1
,
...,
x
p
)
1 2
p
Σ
1/
2
exp
1
(x
μ)Σ1
(x
μ)
2
12
又由于
Σ
2 2
2 p
n
Σˆ (Xi X)(Xi X) n i 1
35650.00
μˆ
X
12.33
17325.00
152.50
201588000.00
Σˆ
38900.00 83722500.00
-736800.00
38900.00 13.067 16710.00 -35.800
83722500.00 16710.00
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
fx1 (x1)
d 2[(d c)(x1 a) (b a)(x2 c) 2(x1 a)(x2 c)] dx
c
(b a)2 (d c)2
2(d c)(x1 a)x2 (b a)2 (d c)2
d
c
d c
3. 单击 OK 按钮,执行操作。则在结果输出窗口中给出样本均值向量,如表 2.1,即 样本均值向量为(35.3333,12.3333,17.1667,1.5250E2)。
表 2.1 样本均值向量
在 SPSS 中计算样本协差阵的步骤如下:
1.
选择菜单项 Analyze→Correlate→Bivariate,打开
(b a)2 (d c)2
(b a)2 (d c)2
ba
c
0
所以
由于
X
1
服从均匀分布,则均值为
b
2
a
b a2
,方差为
12
。
1
同理,由于
X2
服从均匀分布
f x2
(x2 )
d
0
c
x1 c, d ,则均值为 d c ,
其它
2
d c2
方差为
。
12
(2)解:随机变量 X1 和 X 2 的协方差和相关系数;
cov(x1, x2 )
d c
b a
x1
a
2
b
x2
d
2
c
2[(d
c)(
x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2(
x1
a)(
x2
c)] dx1dx2
(c d )(b a) 36
cov(x1, x2 ) 1
x1 x2
3
(3)解:判断 X1 和 X 2 是否相互独立。 X1 和 X 2 由于 f (x1, x2 ) fx1 (x1) fx2 (x2 ) ,所以不独立。
2[(b
a)( x2 (b
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
0
(b a)2 (d c)2
c
2(d c)(x1 a)x2 d [(b a)t 2 2(x1 a)t2 ] dc 1
将待估计的四个变量移入右边的 Variables 列表框中,如图 2.1。
图 2.1 Descriptives 对话框
2.
单击 Options 按钮,打开 Options 子对话框。在对话
框中选择 Mean 复选框,即计算样本均值向量,如图 2.2 所示。单击 Continue 按
钮返回主对话框。
图 2.2 Options 子对话框
Σ
12
2 2
2 p
1
2 1
1
Σ1
2 2
1
2 p
则 f (x1,..., xp )
1
2 1
1 p 2
Σ
12
2 2
2 p
1/ 2
exp
1 2
(x
μ)Σ1
1
2 2
(x
μ)
1
2 p
1 2
p
1 2 p
1
exp
1 2
( x1
1)2 12
1 2
( x2
3)2
2 2
...