2010年考研数学一真题及解析(公式及答案修正版)
2010年考研数学一真题及答案详解

一、选择题(1-8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合 题目要求,把所选项前的字母填在题后的括号内.)
x2 (1)极限 lim = x ( x a )( x b)
(A)1 (C) e a b (B) e (D) eb a
T
第 3 页 共 18 页
列为 (
2 2 T , 0, ) . 2 2
(1)求 A. (2)证明 A E 为正定矩阵,其中 E 为 3 阶单位矩阵. (22)(本题满分 11 分) 设 二 维
2
随
机
变
量
(X Y)
的
概
率
密
度
为
f ( x, y ) A e 2 x
2 xy y 2
, x , y , 求常数及 A 条件概率密度 fY | X ( y | x).
0
(7)设随机变量 X 的分布函数 F ( x)
1 1 (B) 1 0 1 1 (D) 1 0
x0 1 0 x 1, 则 P{ X 1} = 2 1 e x x 2
(B)1 (D) 1 e 1
2
0
x cos xdy =
(11)已知曲线 L 的方程为 y 1 x {x [ 1,1]}, 起点是 (1, 0), 终点是 (1, 0), 则曲线积分
L
xydx x 2 dy =
2 2
. .
(12)设 {( x, y, z) | x y z 1}, 则 的形心的竖坐标 z =
2010年全国硕士研究生入学统一考试数学一试题解析

2010年全国硕士研究生入学统一考试数学一试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) 1. (10年,4分) 极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( ) (A ) 1. (B ) e . (C ) a be -. (D ) b ae-.【考查分析】“1∞”型极限的计算. 【详解】本题属于未定式求极限,极限为1∞型,故可以用“e 的抬起法”求解.()()2lim xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦()()2lnlim x x x a x b x e ⋅-+→∞=()()2lim lnx x x x a x b e→∞⋅-+=,其中又因为()()2222()()lim ln lim ln 1()()()()lim()()()lim()()x x x x x x x a x b x x x a x b x a x b x x x a x b x a x b a b x abxx a x b a b→∞→∞→∞→∞--+⋅=+-+-+⎡⎤--+⎣⎦=-+-+=-+=-⎡⎤⎣⎦故原式极限为a be-,所以应该选择(C).2. (10年,4分) 设函数(,)z z x y =,由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A ) x . (B ) z . (C ) x -. (D ) z -. 【考查分析】隐函数偏导数的计算. 【详解】122212122221x z y z y zF F F F F yF zF z x x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z x y z x y F F F ''''+⋅∂∂+=-==∂∂'''.选(B ). 3. (10年,4分) 设,m n 是正整数,则反常积分()20ln 1mnx dx x-⎰的收敛性 ( )(A ) 仅与m 的取值有关. (B )仅与n 的取值有关.(C ) 与,m n 取值都有关. (D ) 与,m n 取值都无关. 【考查分析】判断反常积分的敛散性. 【详解】0x =与1x =都是瑕点.应分成()()()22211212ln 1ln 1ln 1mm mnnnx x x xxx---=+⎰⎰,用比较判别法的极限形式,对于()2120ln 1m nx x-,由于121012[ln (1)]lim 1mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim m x nx x+→-存在,此时()2120ln 1m n x x -实际上不是反常积分,故收敛. 故不论,m n 是什么正整数,dx 总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).【评注】(1)当210m m-≥时,⎰是定积分.(2) 0,0αβ∀>>,有lim ln 00x x x βα+=→. 4. (10年,4分) ()()2211limnnn i j nn i n j →∞===++∑∑ ( ) (A )()()120111xdx dy x y ++⎰⎰. (B ) ()()100111x dx dy x y ++⎰⎰. (C )()()11111dx dy x y ++⎰⎰. (D ) ()()1120111dx dy x y ++⎰⎰. 【考查分析】利用积分和式求极限. 【详解】()()222211111()nnnn i j i j n nn i n jn i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j→∞==+∑1(lim )nn i nn i →∞=+∑ 1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. 【评注】本题易认为是二重积分或误认为逐次极限.实际上,对i 求和时与j 无关,对j 求和时与i 无关,所以这是一道两个和得乘积的极限题.5. (10年,4分) 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB E =,则 ( )(A ) 秩()r A m =,秩()r B m =. (B ) 秩()r A m =,秩()r B n =. (C ) 秩()r A n =,秩()r B m =. (D ) 秩()r A n =,秩()r B n =. 【详解】由于AB E =,故()()r AB r E m ==.又由于()(),()()r AB r A r AB r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A .6. (10年,4分) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A ) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B ) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭. (C ) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D ) 1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭. 【考查分析】对称矩阵相似于对角矩阵.【详解】设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0.由于A 为实对称矩阵,故A 可相似对角化,即A Λ ,()()3r A r =Λ=,因此,1110-⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭. 【评注】看清题目,说清每个已知条件的作用.即可得出结论.7. (10年,4分) 设随机变量X 的分布函数0,01(),0121,1x x F x x e x -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,则{}1P X == ( ) (A ) 0. (B )12. (C ) 112e --. (D ) 11e --. 【考查分析】本题主要考查分布函数的概念及随机事件概率的计算.已知分布函数,【详解】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中()F x 的形式,得到随机变量X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-,故本题选(C). 【评注】已知分布函数,求随机事件的概率是基本题,但需注意题中的随机变量既不是离散型也不是连续型.由于分布函数在1x =处不连续,故利用{1}(1)(10)P X F F ==--来计算.8. (10年,4分) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上均匀分布的概率密度,若12(),0()(),0af x x f x bf x x ≤⎧=⎨>⎩,(0,0)a b >>为概率密度,则,a b 应满足 ( ) (A ) 234a b +=. (B ) 324a b +=. (C ) 1a b +=. (D ) 2a b +=. 【详解】根据题意知,()2212x f x e π-=(x -∞<<+∞),()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质:()1f x dx +∞-∞=⎰,故()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞=+=+=+=⎰⎰⎰⎰⎰所以整理得到234a b +=,故本题应选(A).二、填空题(9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) 9. (10年,4分) 设()20,ln 1,t tx e y u du -⎧=⎪⎨=+⎪⎩⎰ 求220t d y dx == . 【详解】因为 ()()22ln 1ln 1tttdy t e dx e -+==-+-,()()()()22222ln 12ln 11tt t td te d y dt t e t e e dx dt dx t -+⎡⎤=⋅=-⋅-+⋅-⎢⎥+⎣⎦,所以220t d y dx == 10. (10年,4分)2π=⎰.【考查分析】用变量变换与分部计算定积分.【详解】t =,2x t =,2dx tdt =,利用分部积分法,原式220cos 22cos 2sin t t tdt t tdt t d t πππ=⋅==⎰⎰⎰20002sin 2sin 4cos t t t tdt td t πππ⎡⎤=-=⎢⎥⎣⎦⎰⎰0004cos cos 4cos 4sin 4t t tdt t ππππππ⎡⎤=-=-=-⎢⎥⎣⎦⎰.11. (10年,4分) 已知曲线L 的方程为[]{}11,1y x x =- ∈-,起点是()1.0-,终点是()1,0,则曲线积分2Lxydx x dy +=⎰.【详解】12222LL L xydx x dy xydx x dy xydx x dy +=+++⎰⎰⎰()()()01221011x x dx x dx x x dx x dx -=+++-+-⎰⎰()()0122122x x dx x x dx -=++-⎰⎰1322310223223x x x x -⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭211203223⎛⎫⎛⎫=--++-= ⎪ ⎪⎝⎭⎝⎭12. (10年,4分) 设(){}22,,1x y z xy z Ω=+≤≤,则Ω的形心的竖坐标z = .【详解】()2221221211000211212021r rrz d rdr zdxdydz d rdr zdzdxdydz d rdr dzd r rdrππθθθθΩΩ⎛⎫⎪⋅ ⎪⎝⎭==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4211222r d r drπθπ⎛⎫- ⎪⎝⎭=⎰⎰126204122r r d πθ⎛⎫- ⎪⎝⎭=⎰20112266322d πθπππ⋅===⎰. 13. (10年,4分) 设()()()1231,2,1,0,1,1,0,2,2,1,1,TTTa ααα=-==,若由123,,ααα生成的向量空间的维数是2,则a = . 【详解】因为由123,,ααα生成的向量空间维数为2,所以123(,,)2r ααα=. 对123(,,)ααα进行初等行变换:123112112112211013013(,,)1010130060202000a a a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以6a =.14. (10年,4分) 设随机变量X 的概率分布为{}!C P X k k ==,0,1,2,k = ,则()2E X = . 【考查分析】随机变量的数学期望,方差.泊松分布的期望,方差. 【详解】利用离散型随机变量概率分布的性质,知{}001!k k CP X k Ce k ∞∞======∑∑,整理得到1C e -=,即 {}111!!k e P X k e k k --===.故X 服从参数为1的泊松分布,则()()1,1E X D X ==,根据方差的计算公式有()()()222112E X D X E X =+=+=⎡⎤⎣⎦. 【评注】22()EX DX EX =+,所以应求X 的期望与方差,而X 的分布{},0,1,2,!CP X k k k === 的C 是待定常数.不难看出这是一个泊松分布. 三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.) 15. (10年,10分)(本题满分10分)求微分方程322x y y y xe '''-+=的通解. 【考查分析】求常系数线性非齐次微分方程的通解. 【详解】对应齐次方程的特征方程为2320λλ-+=,解得特征根121,2λλ==,所以对应齐次方程的通解为212x x c y C e C e =+.设原方程的一个特解为*()x y x ax b e =+,则()()*22x y axax bx b e '=+++,()()*2422x y axax bx a b e ''=++++,代入原方程,解得1,2a b =-=-,故特解为*(2)xy x x e =--. 故方程的通解为*212(2)x x x c y y y C e C e x x e =+=+-+. 16. (10年,10分)(本题满分10分)求函数()()2221x t f x x t e dt -=-⎰的单调区间与极值.【考查分析】对变限求导数,划分单调区间,求极值. 【详解】 因为22222222111()()x x x t t t f x x t e dt x e dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt ----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e--''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞- ,()f x 的单调递增区间为(1,0)(1,)-+∞ .【评注】(1)求()f x 的单调性区间就是求()f x '的正负号区间.增减或增减区间的分界点就是极值点.上述方法就是求出()f x ',然后分出()f x '的正负号区间,从而得到()f x 的增减区间,相应地得到()f x 的极值点.这里就不必去求驻点处得()f x ''.(2)若题目只要求()f x 的极值,我们也可以221()2x t f x x e dt -'=⎰后,解得驻点0x =,1x =±,然后再求驻点处的二阶导数.由于201(0)20t f e dt -''=<⎰,⇒11(0)(1)2f e -=-为极大值.由于1(1)40f e -''±=>,⇒(1)0f ±=为极小值.17. (10年,10分)(本题满分10分)(I)比较()1ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n = 的大小,说明理由;(II)记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n = ,求极限lim n n u →∞. 【详解】(I)当01x <<时0ln(1)x x <+<,故[]ln(1)nnt t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n = .(II)()1111001ln ln ln 1nnn t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由 ()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.18. (10年,10分)(本题满分10分)求幂级数()121121n n n x n -∞=--∑的收敛域及和函数.【考查分析】求幂级数的收敛域及和函数. 【详解】(I) (1)1222(1)1122(1)(1)2(1)121lim lim (1)(1)2121n n n n n n n n n nx x n n xx n n +-++--→∞→∞--⋅+-+=--⋅--222(21)21lim lim 2121n n n x n x x n n →∞→∞--==⋅=++,所以,当21x <,即11x -<<时,原级数绝对收敛.当21x >时,原级数发散,因此幂级数的收敛半径1R =.当1x =±时,11211(1)(1)2121n n n n n x n n --∞∞==--⋅=--∑∑,由莱布尼兹判别法知,此级数收敛,故原级数的收敛域为[]1,1-. (II) 设1122111(1)(1)()2121n n nn n n S x x x x n n --∞∞-==⎛⎫--=⋅=⋅⋅ ⎪--⎝⎭∑∑,其中令12111(1)()21n n n S x x n -∞-=-=⋅-∑()1,1x ∈-,所以有 12221111()(1)()n n n n n S x xx ∞∞---=='=-⋅=-∑∑ ()1,1x ∈-,从而有 12211()1()1S x x x '==--+ ()1,1x ∈-,故 11201()(0)arctan 1xS x dx S x x =+=+⎰,()1,1x ∈-.1()S x 在1,1x =-上是连续的,所以()S x 在收敛域[]1,1-上是连续的.所以()arctan S x x x =⋅,[]1,1x ∈-.【评注】幂函数在收敛域上可以逐项积分,但逐项求导只能先在收敛区间进行.在逐项求导后,在另行讨论端点处是否成立。
2010年数一试题及答案

ln 2 (1 x )
n
x
dx 的收敛性( D
)
(B)仅与 n 有关 (D)与 m 、 n 都无关
【解】 :显然 x 0, x 1 是两个瑕点,有
1m
ln 2 (1 x)
n
0
x
dx
1 m 2 0
ln 2 (1 x)
n
x
dx 1
1 m
ln 2 (1 x)
n
2
x
dx .
B ) (C) x (D) z
(A) x
(B) z
【解】 等式两边求全微分得: F1 d 即 F1
y z F2 d 0 , x x
xdy ydx xdz zdx F2 0 F1 ( xdy ydx) F2 ( xdz zdx) 0 , 2 x x2
.
【解】令 x t , 原式为
2
0
x cos x dx 2 t 2 cos t dt 2 t 2 sin t | 0 2t sin t dt
0
4 t sin t dt 4 t cos t | 0 cos t dt 4 .
0
0
0
2t t e ln 1 t 2 e t 2 1 2t 1 t t e2 t ln(1 t 2 ) 2 2 t e 1 t e
d2 y 0 2 故 d x t 0 .
(10)
2
0
x cos x dx
4
x
x
x
(a b) x ab (a b) x ab ( a b ) x ab lim 1 lim 1 x ( x a )( x b) x ( x a )( x b)
2010年考研数学一真题与答案

]x2010年考研数学一真题一、选择题(1〜8小题,每小题4分,共32分。
下列每题给出的 个选项中,只有一个选项是符合题目要求的。
)⑴极限皿—[金而]_(A) l (B)e (C)e a ~b(D)e b ~a【考点】Co 【解析】 【方法一】 这是一个“I 00”型极限Um [—— l x(x-a)(x+b) (a-b)x+ab j (a-D)x+ad J(x- a)(x+ b)X 【方法二】 原式="Hl 評”(x-a )("b)XT 8rfii/im xln ----- - ----- = lim x/n(l +xt8 (x-a)(x+&) xt8(x-a)(x+&)【方法三】对于“18”型极限可利用基本结论: 若Mm a(x) = 0, lim 0(x) = 0,且"m(a-b)x^ab (―a)(+)lim x •*T8(a-b)x+ab (x-a)(x+b)(等价无穷小代换)x 2DM)a(x) 0(x) = A]x由于"mis Q (x)0(x) = Um曽;驚;;)• x XT8 (x-a)(x+fc)■ • (a -b)x 2^abxf=恐乔亦Li 则叫g[高而F =宀【方法四】综上所述,本题正确答案是C 。
【考点】高等数学一函数、极限.连续一无穷小量的性质及无穷 小量的比较,极限的四则运算,两个重要极限(A)x (C)-x【答案】Bo 【解析】 空=_鱼=_只(-召)+ E (一刼=Eg+f 茫 缺 F ; 磅 叫 9dz °y综上所述,本题正确答案是(B)。
所以唏+y 辭警現F , yfi -珈X 2(x-a)(x+b).:(x-a)(x+b)]-XX 2=塑a 一 沪•慟(i+「宀ea 'b(2)设函数z = z(x,y)由方程 F (gm =0确定,其中F 为可微函数,且f”2工°,则燈+琲=(D)-z因为【考点】高等数学一多元函数微分学一多元函数的偏导数和全微(3)设m,ri 为正整数,则反常积分的收敛性【解析】本题主要考察反常积分的敛散性,题中的被积函数分别在x t 0+在反常积分中,被积函数只在"0+时无界。
考研数学一真题解析-2010

2010年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)极限= (A)1 (B) (C)(D)【考点分析】:考察1∞型不定性极限。
【求解过程】:⏹ 方法一:利用求幂指型极限的一般方法:I =lim x→∞[x 2x−a x+b ]x=lim x→∞ex ln x 2(x−a )(x+b)归结为求222lim ln()()lim ln 11()()lim 1()()()lim ()()x x x x x w x x a x b x x x a x b x x x a x b a b x abx x a x b a b→∞→∞→∞→∞=-+⎡⎤⎛⎫=+-⎢⎥ ⎪-+⎝⎭⎣⎦⎡⎤=-⎢⎥-+⎣⎦-+=⋅-+=- 因此,I =e a−b ,选C 【基础回顾】:对于一般的幂指型极限有:()()ln ()lim ()ln ()lim ()lim g x g x f x g x f x f x e e ==⏹ 方法二:利用第二个重要极限求解22()lim ()()lim lim 11()()()()()lim 1()()x xx x x xa b x abx x a x b x a bx x I x a x b x a x b a b x ab e x a x b e →∞→∞→∞-+⋅-+→∞-⎡⎤⎡⎤⎛⎫==+-⎢⎥ ⎪⎢⎥-+-+⎣⎦⎝⎭⎣⎦⎡⎤-+=+=⎢⎥-+⎣⎦=2lim ()()xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦e ea b-eb a-【基础回顾】:一般地,对于1∞型极限,均可利用第二个重要极限求解: 设lim ()1f x =,lim ()g x =∞,则()()()lim(()1)()lim ()lim 1()1g x g x f x g x f x f x e⋅-⋅=+-⎡⎤⎣⎦=(2)设函数由方程确定,其中为可微函数,且则= (A) (B) (C)(D)【考点分析】:隐函数求导 【求解过程】:⏹ 方法一:全微分法 方程(,)0y z F x x=两边求全微分得:12()()0y z F d F d x x ''+=,即12220xdy ydx xdz zdxF F x x --''+= 整理得 12122yF zF F dz dx dy xF F '''+=-''所以,122yF zF z x xF ''+∂=∂',12F z y F '∂=-∂'。
2010年考研数一试题及答案

2010年全国硕士研究生入学统一考试数学(一)试题及参考答案一、选择题:1~8小题,每小题4分,共32分。
1、222ln 1()()()()lim lime lime()()xx x xx x a x b x a x b x x x xx a x b ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞⎛⎫==⎪-+⎝⎭()()2()()()()lim elim e a b x ab a b x abxx x a x b x a x b x x -+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞==e a b -=方法二22()()lim lim 1()()()()xxx x x x x a x b x a x b x a x b →∞→∞⎛⎫⎛⎫--+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()()()()()()()()lim 1lim 1()()()()x a x b a b x abxxa b x ab x a x b x x a b x ab a b x ab x a x b x a x b -+-+⋅-+-+→∞→∞⎛⎫⎛⎫-+-+=+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()lim()()()ee x a b x abxa b x a x b →∞-+--+==(2)等式两边求全微分得:12d d 0y z F F x x ⎛⎫⎛⎫''⋅+⋅= ⎪ ⎪⎝⎭⎝⎭, 即 1222d d dz d 0x y y x x z xF F x x --''+=12(d d )(dz d )0F x y y x F x z x ''⇒⋅-+⋅-= 12122dz d d yF zF F x y xF F '''+∴=-'' 所以有,1212222yF zF F zF z z xy x y z u y xF F F ''''+∂∂+=-==∂∂'''(3)、【解析与点评】:显然0,1x x ==是两个瑕点,有=+⎰对于的瑕点0x =,当0x +→21ln (1)mnx x -=-等价于221(1)mm nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n⇒->-),故收敛;对于的瑕点1x =,当1(1,1)(0)2x δδ∈-<<12122ln (1)2(1)n m n mx x <-<-,而2112(1)m x dx -⎰显然收敛,故收敛。
2010年考研数学一真命题及答案解析

2010年考研数学一真题一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)极限limx→∞[x2(x−a)(x+b)]x=(A)1 (B)e (C)e a−b (D)e b−a 【考点】C。
【解析】【方法一】这是一个“1∞”型极限lim x→∞[x2(x−a)(x+b)]x=limx→∞{[1+(a−b)x+ab(x−a)(x+b)](x−a)(x+b)(a−b)x+ab}(a−b)x+ab(x−a)(x+b)x=e a−b【方法二】原式=limx→∞e xlnx2(x−a)(x+b)而limx→∞ xln x2(x−a)(x+b)=limx→∞xln(1+(a−b)x+ab(x−a)(x+b))=limx→∞x∙(a−b)x+ab(x−a)(x+b)(等价无穷小代换) =a−b则limx→∞[x2(x−a)(x+b)]x=e a−b【方法三】对于“1∞”型极限可利用基本结论:若limα(x)=0, limβ(x)=0,且limα(x)β(x)=A 则li m(1+α(x))β(x)=e A,求极限由于limx→∞α(x)β(x)=limx→∞x2−(x−a)(x+b)(x−a)(x+b)∙x=limx→∞(a−b)x2+abx(x−a)(x+b)=a−b则limx→∞[x2(x−a)(x+b)]x=e a−b【方法四】lim x→∞[x2(x−a)(x+b)]x=limx→∞[(x−a)(x+b)x2]−x=limx→∞(1−ax)−x∙limx→∞(1+bx)−x=e a∙e−b=e a−b综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数z=z(x,y)由方程F(yx ,zx)=0确定,其中F为可微函数,且f′′2≠0,则xðzðx+yðzðy=。
2010年全国硕士研究生入学统一考试(数一)试题及答案

2010年全国硕士研究生入学统一考试数一试题一、选择题(1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一项符合题目要求的,把所选项前的字母填在答题纸指定的位置上)(1)极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( ) (A )1 (B )e (C ) a b e - (D )b a e -(2)设函数(,)z z x y =由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '≠。
则z zx y x y∂∂+=∂∂( ) (A )x (B )z (C )x - (D )z - (3)设m 、n为正整数,则反常积分0⎰的收敛性( )(A )仅与m 有关 (B )仅与n 有关 (C )与 m 、n 都有关 (D )与 m 、n 都无关 (4)2211lim ()()nnn i j nn i n j →∞===++∑∑( ) (A )1201(1)(1)x dx dy x y ++⎰⎰(B )11001(1)(1)dx dy x y ++⎰⎰ (C )101(1)(1)x dx dy x y ++⎰⎰(D )112001(1)(1)dx dy x y ++⎰⎰(5)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且AB E =,其中E 为m 阶单位矩阵,则( )(A )()()R A R B m == (B )()R A m =,()R B n = (C )()R A n =,()R B m = (D )()()R A R B n ==(6)设A 是4阶实对称矩阵,且2A A O +=,若()3R A =,则A 相似于( )(A )1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ (B )1110⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭ (C )1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭ (D )1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(7)设随机变量X 的分布函数为0,011(),02211,2x x F x x e x -⎧⎪<⎪⎪=≤<⎨⎪⎪-≥⎪⎩,则{1}P X ==( )(A )0 (B )12 (C )112e -- (D )11e -- (8)设1()f x 为标准正态分布的概率密度函数,2()f x 为[1,3]-上均匀分布的概率密度函数,若12(),0()(),0af x x f x bf x x ≤⎧⎪=⎨>⎪⎩(0a >,0b >),则a ,b 满足( )(A )234a b += (B )324a b += (C )1a b += (D )2a b +=二、填空题(9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上)(9)设20ln(1)ttx e y u du -⎧=⎪⎨=+⎪⎩⎰,则220t d y dx ==(10)0π=⎰(11)已知曲线L 的方程为1y x =-(11x -≤≤),起点为(1,0)-,终点为(1,0),则2Lxydx x dy +=⎰(12)设22{(,,)1}x y z x y z Ω=+≤≤,则Ω的形心坐标z =(13)若11210α⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭,21102α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,3211a α⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,若由123,,ααα形成的向量组的秩为2,则a =(14)设随机变量X 的分布为{}!CP X k k ==(0,1,2,...k =),则2EX = 三、解答题(15~23小题,共94分,请将解答写在答题纸指定的位置上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年全国硕士研究生入学统一考试数学试题详解及评分参考数 学(一)一.选择题:1 - 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个 是符合题目要求的,请将所选项前的字母填在答题纸指定的位置上.(1)极限2lim ()()()x x x x a x b ®¥=-+(A)1(B)e(C)a be -(D)b ae -【答】 应选 (C) .【解】 因22ln ln()ln()lim ln()lim()()1/x x x x x x a x b x a x b x®¥®¥---+=-+()()()3222112=lim lim 1x x a b x abx x x a x b a b x x a x b x ®¥®¥---+-+==--+-,所以2lim (()()x a x b x x a x b e ®¥-=-+,故选 (C) .(2)设函数(,)z z x y =由方程(,0y zF x x=确定,其中F 为可微函数,且20F ¢¹,则z z x y x y ¶¶+=¶¶(A)x (B)z (C)x -(D)z-【答】 应选 (B) .【解】 在方程两边分别对x 和对y 求偏导,得122211()0y z F z F x x x x ¶¢¢-+-=¶,12110z F F x x y¶¢¢+=¶于是有 22()z z x y F zF x y ¶¶¢¢+=¶¶, 即z zx y z x y ¶¶+=¶¶,故选 (B) .(3)设,m n均是正整数,则反常积分ò的收敛性(A)仅与m 的取值有关(B)仅与n 的取值有关(C)与,m n 的取值都有关(D)与,m n 的取值都无关【答】 应选 (D) .【解】 显然该反常积分有且仅有两个瑕点0,1x x ==,于是需分成两个积分加以考察:dx =+ò(1)对于,易见被积函数非负,且只在0x +®时无界,于是当1n >时,由+0lim 0x®=及120ò收敛,知收敛;当1n=时12/1mx-:及212101mdx x-ò收敛,知收敛;(2)对于,易见被积函数非负,且只在1x -®时无界,于是当1m >时,由11lim lim 0x x --®®==及1收敛,知 收敛;当1m =时,由21/211ln (1)lim lim 0(1)x x x x ---®®-==-及212101m dx x -ò收敛,知收敛;由此可见,无论正整数,m n如何取值,0ò都是收敛的,故选 (D) .(4) 2211lim()()n nn i j nn i n j ®¥===++åå (A) 12001(1)(1)x dx dy x y ++òò(B)1001(1)(1)xdx dy x y ++òò(C) 11001(1)(1)dx dyx y ++òò(D) 112001(1)(1)dx dyx y ++òò【答】 应选 (D) .【解】 记21(,)(1)(1)f x y x y =++,(){},y 01,01D x x y =££££,知(,)f x y 在D 上可积. 用直线()0,1,2,,i i x x i n n ===L 与()0,1,2,,j j y y j n n===L 将D 分成2n等份,可见22221111211()()(1)(1)n n n ni j i j n i j n i n j n n n=====×++++åååå是(,)f x y 在D 上的二重积分的一个和式,于是112222001111lim ()()(1)(1)(1)(1)nnn i j Dn dxdy dx dy n i n j x y x y ®¥====++++++ååòòòò.故选 (D) . (5)设A 为m n ´矩阵,B 为n m ´矩阵,E 为m 阶单位矩阵. 若AB E =,则(A)秩()r A m =,秩()r B m =(B)秩()r A m =,秩()r B n =(C)秩()r A n =,秩()r B m =(D)秩()r A n =,秩()r B n=【答】 应选 (A) .【解】 因A 是m n ´矩阵,故()r A m £,又()()()r A r AB r E m ³==,故()r A m =. 同理,可得()r B m =,故选 (A) .(6)设A 为4阶实对称矩阵,且2A A O +=. 若A 的秩为3,则A 相似于(A) 1110æöç÷ç÷ç÷ç÷èø(B) 1110æöç÷ç÷ç÷-ç÷èø(C) 1110æöç÷-ç÷ç÷-ç÷èø(D) 1110-æöç÷-ç÷ç÷-ç÷èø【答】 应选 (D) .【解】 设l 为A 的特征值,则由2A A O +=知2+=0l l ,即=0l 或1-. 又因A 是实对 称矩阵,故A 必相似于对角矩阵L ,其中L 的对角线上的元素为特征值1-或0. 再由()3r A =可知()3r L =,故选 (D) .(7)设随机变量X 的分布函数0,0,1(),01,21,1xx F x x e x -<ìïï=£<íï-³ïî则{1}P X ==(A)0 (B)12(C)112e --(D)11e--【答】 应选 (C) .【解】 由分布函数的用途,知{1}(1)(1)P X F F -==-1111122e e --=--=-. (8)设1()f x 为标准正态分布的概率密度,2()f x 为[1,3]-上均匀分布的概率密度,若12(),0()(0,0)(),0af x x f x a b bf x x £ì=>>í>î为概率密度,则,a b 应满足(A)234a b +=(B)324a b +=(C)1a b +=(D)2a b +=【答】 应选 (C) .【解】 由题意,有221()x f x -=,21/4,(1,3)()0x f x Î-ì=íî,其他,()1f x dx +¥-¥=ò而0120()()()f x dx af x dx bf x dx +¥+¥-¥-¥=+òòò()3201=2a b f x dx +ò13=24a b +,于是有13124a b +=,即234a b +=. 故选 (C) .二、填空题:9:14小题,每小题4分,共24分. 请将答案写在答题纸...指定位置上. (9)设20,ln(1),t tx e y u du -ì=ïí=+ïîò则220t d y dx == .【答】 应填 0.【解】 因2/ln(1)=/t dy dy dt t dx dx dt e -+=-, 22222ln(1+)12=[][ln(1)]/1t td y d t te t dx dt e dx dt t -=++-+, 故2020t d ydx==.(10)2p =ò.【答】 应填 4p -.【解】t =,则2dx tdt =,于是有2220002cos 2sin 4sin 4cos 4cos 4.t tdt t tt tdt t tdt p pppp p p ==-=-=-òòòò(11)已知曲线L 的方程为1||([1,1])y x x =-Î-,起点是(1,0)-,终点为(1,0),则曲线积分2Lxydx x dy +=ò.【答】 应填 0.【解法一】 补有向线段:0([1,1])L y x =Î-,起点为(1,0),终点为(1,0)-,设由L 与L 围成的平面区域为D ,则利用格林公式及区域D 关于y 轴的对称性,得222(2)00LDL LLxydx x dy xydx x dy xydx x dy x x dxdy ++=+-+=---=òòòòò【解法二】 记1:1([1,0])L y x x =+Î-,起点是(1,0)-,终点是(0,1);2:1([0,1])L y x x =-Î, 起点为(0,1),终点为(1,0)有12222+LL L xydx x dy xydx x dy xydx x dy+=++òòò 012210=[(1)][(1)]x x x dx x x x dx -+++--òò1212=()(02323-++-=.(12)设22{(,,)|1}x y z x y z W =+££,则W 的形心的竖坐标z = .【答】 应填23.【解】 记(){}22,y 1D x x y =+£,有221x y Ddxdydz dxdy dz +W=òòòòòò22=(1)Dx y dxdy --òò212=(1)d r rdr p q -òò=2p,2212122240011[1()]=(1)223x yDD zdxdydz dxdy zdz x y dxdy d r rdr p p q +W==-+-=òòòòòòòòòò, 从而W 的形心的竖坐标为23DDzdxdydzz dxdydz==òòòòòò. (13)设1(1,2,1,0)Ta =-,2(1,1,0,2)Ta =,3(2,1,1,)Ta a =. 若由123,,a a a 生成的向量空间的维数为2,则a = .【答】 应填 6.【解】 因由123,,a a a 生成的向量空间的维数为2,故矩阵()123,,a a a 的秩为2,而()123112112211013,,=101006020000a a a a æöæöç÷ç÷ç÷ç÷®ç÷ç÷--ç÷ç÷èøèø,故6a =.(14)设随机变量X 的概率分布为{},0,1,2,!CP X k k k ===L ,则2EX =.【答】 应填 2.【解】 由概率分布的性质,有{}01k k P X x ¥===å,即01!k Ck ¥==å,亦即1Ce =,1C e -=.由此可见,X 服从参数为1的泊松分布,于是22()112EX DX EX =+=+=.三、解答题( 15 ~ 23小题,共94分.)(15)(本题满分10分)求微分方程322xy y y xe ¢¢¢-+=的通解.解:对应齐次方程320y y y ¢¢¢-+=的两个特征根为121,2r r ==,其通解为212x x Y C e C e =+.……4分设原方程的特解形式为*()x y x ax b e =+,则*2((2))xy ax a b x b e ¢=+++,*2((4)22)x y ax a b x a b e ¢¢=++++,代入原方程解得1,2a b =-=-,……8分 故所求通解为212(2)x x xy C e C e x x e=+-+ ……10分(16)(本题满分10分)求函数2221()()x t f x x t e dt -=-ò的单调区间与极值.解: ()f x 的定义域为(,)-¥+¥,由于2222211()x x t t f x xe dt te dt --=-òò,2224423311()2222xxt x x t f x x e dt x ex ex e dt ----¢=+-=òò,所以()f x 的驻点为0,1x =± ……3分列表讨论如下:x (,1)-¥-1-(1,0)-0 (0,1) 1 (1,)+¥()f x ¢-0 +0 -0 +()f x ↘极小↗极大↘极小↗……6分因此,()f x 的单调增加区间为(1,0)-及(1,)+¥,单调减少区间为(,1)-¥-及(0,1);极小值为(1)0f ±=,极大值为21101(0)(1)2t f te dt e --==-ò……10分(17)(本题满分10分) (I)比较1|ln |[ln(1)]nt t dt +ò与1|ln |(1,2,)ntt dt n =òL 的大小,说明理由;(II)记1|ln |[ln(1)](1,2,)n n u t t dt n =+=òL ,求极限lim n n u ®¥.解:(I )当01t ££时,因为ln(1)t t +£,所以|ln |[ln(1)]|ln |n n t t t t +£,因此11|ln |[ln(1)]|ln |n n t t dt t t dt+£òò ……4分(II )由 (I) 知,110|ln |[ln(1)]|ln |n n n u t t dt t t dt £=+£òò.因为1112011|ln |ln 1(1)n n n t t dt t tdt t dt n n =-==++òòò,所以1lim|ln |0nn tt dt ®¥=ò ……8分 从而 lim 0n n u ®¥=……10分(18)(本题满分10分) 求幂级数121(1)21n nn x n -¥=--å的收敛域及和函数. 解:记12(1)()21n nn u x x n --=-, 由于221()21lim lim ()21n n n nu x n x x u x n +®¥®¥-==+,所以当21x <,即||1x <时,1()n u x ¥=å绝对收敛,当||1x >时,1()n u x ¥=å发散,因此幂级数的收敛半径1R =……3分当1x =±时,原级数为11(1)21n n n -¥=--å,由莱布尼茨判别法知此级数收敛,因此幂级数的收敛域为[1,1]-……5分设1211(1)()(11)21n n n S x x x n -¥-=-=-££-å,则122211()(1)1n n n S x x x ¥--=¢=-=+å,又(0)0S =,故201()arctan 1xS x dt x t==+óôõ, ……8分 于是121(1)()arctan ,[1,1]21n nn x xS x x x x n -¥=-==Î--å ……10分(19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=的动点,若S 在点P 处的切平面与xOy 面垂直,求点P 的轨迹C ,并计算曲面积分I S=,其中S 是椭球面S 位于曲线C 上方的部分.解: 椭球面S 上点(,,)P x y z 处的法向量是{2,2,2}n x y z z y =--r, ……2分点P 处的切平面与xOy 面垂直的充要条件是0({0,0,1})n k k ×==r r r,即20z y -=所以点P 的轨迹C 的方程为222201z y x y z yz -=ìí++-=î,即2220314z y x y -=ìïí+=ïî ……5分取223{(,)|1}4D x y x y =+£,记S 的方程为(,),(,)z z x y x y D =Î,==,所以DI =óóôôôôõõ(D x dxdy =+òò ……8分2Ddxdy p== ……10分(20)(本题满分11分) 设1101011A l l l æöç÷=-ç÷ç÷èø,11a b æöç÷=ç÷ç÷èø. 已知线性方程组Ax b =存在2个不同的解,(I )求,a l ; (II )求方程组Ax b =的通解.解:(I )设12,h h 为Ax b =的2个不同的解,则12h h -是0Ax =的一个非零解, 故2||(1)(1)0l l =-+=A ,于是1l =或1l =- ……4分当1l =时,因为()()r A r A b ¹M ,所以Ax b =无解,舍去. 当1l =-时,对Ax b =的增广矩阵施以初等行变换,有1111013/2()02010101/211110002a A b B a æ-öæ-öç÷ç÷=-=-=ç÷ç÷ç÷ç÷-+èøèøM .因为Ax b =有解,所以2a =- ……8分(II )当1l =-,2a =-时,1013/20101/20000B æ-öç÷=-ç÷ç÷èø,所以x =A b 的通解为31110201x k æöæöç÷ç÷=-+ç÷ç÷ç÷ç÷èøèø,其中k 为任意常数. ……11分(21)(本题满分11分) 已知二次型123(,,)Tf x x x x Ax =在正交变换x Qy =下的标准形为2212y y +,且Q 的第3列为,0,22T. (I )求矩阵A ;(II )证明A E +为正定矩阵,其中E 为3阶单位矩阵.解:(I )由题设,A 的特征值为1,1,0,且(1,0,1)T为A 的属于特征值0的一个特征向量.……3分 设123(,,)Tx x x 为A 的属于特征值1的一个特征向量,因为A 的属于不同特征值的特征向量正交,所以1231(,,)001x x x æöç÷=ç÷ç÷èø,即130x x +=.取,0,22T æö-ç÷ç÷èø,(0,1,0)T 为A 的属于特征值1的两个正交的单位特征向量 ……6分令022010022Q æöç÷ç÷=ç÷ç÷ç÷-ç÷èø,则有110T Q AQ æöç÷=ç÷ç÷èø,故1101112020101T -æöæöç÷ç÷==ç÷ç÷ç÷ç÷-èøèøA Q Q . ……9分评分说明:求出满足条件的一个矩阵A ,即可给9分.(II )由(I )知A 的特征值为1,1,0,于是A E +的特征值为2,2,1,又A E +为实对称矩阵,故A E +为正定矩阵.……11分(22)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2222(,),,x xy y f x y Ae x y -+-=-¥<<+¥-¥<<+¥,求常数A 及条件概率密度|(|)Y X f y x .解:因2222()(,)x xy y X f x f x y dy A edy +¥+¥-+--¥-¥==òò22()y x x A e dy+¥----¥=ò222(),x y x x Aeedy x +¥-----¥==-¥<<+¥ò,……4分所以21()x X f x dx e dx A p +¥+¥--¥-¥===ò,从而 1A p=……7分当(,)x Î-¥+¥时,22222|1(,)(|)1()x xy y Y X x X ef x y f y x f x p-+--==222x xy y -+-=2(),x y y --=-¥<<+¥ ……11分(23)(本题满分11分)设总体X 的概率分布为X 1 2 3p1q-2q q -2q其中参数(0,1)q Î未知.以i N 表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3i =).试求常数123,,a a a ,使31i ii T a N==å为q 的无偏估计量,并求T 的方差.解: 记11p q =-,22p q q =-,23p q =. 由于(,),1,2,3i i N B n p i =:,故i iEN np = ……4分 于是22112233123[(1)()]ET a EN a EN a EN n a a a q q q q =++=-+-+ ……6分为使T 是q 的无偏估计量,必有22123[(1)()]n a a a q q q q q -+-+=,因此12132010a a a n a a =ìïï-=íï-=ïî,……8分由此得 12310,a a a n===……9分由于123N N N n ++=,故123111()()1N T N N n N n n n =+=-=-.注意到1~(,1)N B n q -,故1221(1)(1)n DT DN n n nq q q q --=== ……11分。