污水净化过程中二氧化钛的使用

合集下载

《2024年纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究》范文

《2024年纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究》范文

《纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究》篇一一、引言随着环境问题日益严重,污水处理成为了全球关注的焦点。

纳米二氧化钛(TiO2)作为一种重要的光催化剂,因其具有优异的物理化学性质和良好的光催化性能,在污水处理和分析检测领域得到了广泛的应用。

本文将重点探讨纳米二氧化钛光催化的原理及其在污水处理和分析检测中的应用研究。

二、纳米二氧化钛光催化的原理纳米二氧化钛光催化是一种利用光能驱动的化学反应过程。

当纳米二氧化钛受到光照时,其表面会产生光生电子和空穴对。

这些电子和空穴对具有极强的氧化还原能力,能够与吸附在催化剂表面的物质发生反应,产生一系列的氧化还原反应。

这些反应能够有效地降解有机污染物,使其转化为无害的物质,从而达到净化水质的目的。

三、纳米二氧化钛在污水处理中的应用(一)有机污染物的降解纳米二氧化钛光催化技术能够有效地降解水中的有机污染物,如染料、农药、油污等。

通过光催化反应,这些有机污染物被分解为无害的物质,如二氧化碳和水等。

此外,纳米二氧化钛还具有较高的催化活性和稳定性,能够在较宽的pH范围内发挥作用。

(二)重金属离子的去除除了有机污染物外,水中的重金属离子也是一项重要的污染源。

纳米二氧化钛光催化技术还可以通过吸附和还原作用去除水中的重金属离子,如铅、汞等。

这些重金属离子在光催化过程中被还原为无害的金属单质或沉淀物,从而达到净化水质的目的。

四、纳米二氧化钛在分析检测中的应用(一)水质检测纳米二氧化钛具有良好的光学性能和稳定性,可用于水质检测中作为光散射剂或荧光探针。

通过检测水样中纳米二氧化钛的光学性能变化,可以快速准确地检测出水中有机污染物的种类和浓度等信息。

(二)食品和药物检测除了水质检测外,纳米二氧化钛还可用于食品和药物检测中。

由于食品和药物中往往含有各种成分和添加剂,这些成分的准确测定对于保证食品安全和药物有效性具有重要意义。

纳米二氧化钛可作为一种高灵敏度的光学探针,用于检测食品和药物中的有害物质或有效成分。

水处理中二氧化钛光催化消毒技术的应用

水处理中二氧化钛光催化消毒技术的应用

水处理中二氧化钛光催化消毒技术的应用作者:朱国涛肖振华来源:《中国科技博览》2017年第03期[摘要]随着科学技术的迅猛发展,人们对于水资源的需求不断增加;二氧化钛光催化消毒发展成为一种新型的水处理技术,正在被科学家们创新研究并将大规模运用到饮用水的处理中。

本文将通过阐明二氧化钛光催化的优点,总结二氧化钛光催化机理和杀灭细菌病毒的具体过程;论述近年来二氧化钛光催化消毒技术在水处理中的应用现状以及未来的发展方向;为实现其工业化生产和应用提供参考。

[关键词]二氧化钛;水处理;光催化;消毒;发展中图分类号:TN99.1 文献标识码:A 文章编号:1009-914X(2017)03-0026-01前言随着人口的急剧增长、工业化的发展、资源的过度开发、环境污染的日益加剧,水资源短缺成为人类面临的重大危机。

可饮用水资源的短缺时时刻刻威胁着缺水地区人群的健康,水源被致病微生物污染后引发的疾病;每年都会造成数千人死亡。

因此;提供安全可靠的饮用水成为科研工作者面临的大问题。

过去我们使用过氯、臭氧消毒、消毒效果虽好但却产生了危害人身体健康的副作物。

之后;紫外线消毒逐渐发展起来,但某些细菌具有自我修复能力;可以重复再生;严重影响了杀菌效果;给人们的生命健康造成了严重威胁。

在二氧化钛光催化消毒过程中;光源作为一种廉价、易获取、并且可以重复循环利用的能源;给催化过程提供了便利。

二氧化钛在光催化过程中生成的氧化剂具有很强的氧化能力;效果显著;耗能少;无二次污染;逐渐成为科研工作者的研究热点。

1.二氧化钛光催化机理当二氧化钛受到光照射时获得了能量;价带上的电子获得能量跃迁至导带,在导带上出现光生电子;而价带上形成空穴。

光生电子和空穴可以发生移动而中和;大范围的中和可能导致无效反应;或者结合体可以迁移到催化剂表面,与溶液中的活性氧族发生反应。

光生电子易与水中溶解氧等氧化物发生反应;而空穴则可将二氧化钛表面吸附的有机物氧化;或将OH-和H2O分子氧化成·OH自由基,·OH自由基能氧化水中绝大部分的有机物及无机污染物,将其矿化为小分子、二氧化碳、H2O等无害物质[1]。

污水处理中二氧化钛光催化技术的研究

污水处理中二氧化钛光催化技术的研究

污水处理中二氧化钛光催化技术的研究
近年来,环境污染问题日益严重,其中水污染是一个比较突出的问题。

随着人
口增加和工业化进程的加快,污水处理的压力越来越大。

为了解决这一问题,科学家们开发了许多种污水处理技术,其中二氧化钛光催化技术受到了越来越多的关注。

一、什么是二氧化钛光催化技术
二氧化钛光催化技术是将二氧化钛作为催化剂,利用光的力量将有害物质转化
为无害的物质。

此技术通过紫外线或可见光来激发催化剂的分子,并在催化剂表面形成氢氧自由基和超氧自由基等活性物质,从而分解水中含有的有机物和硝酸盐、亚硝酸盐等有害物质。

相比于传统污水处理技术,二氧化钛光催化技术具有处理速度快、效果好、操作简便等优点。

二、二氧化钛光催化技术在污水处理中的应用
二氧化钛光催化技术在污水处理中的应用已经得到了广泛的研究。

其中,其在
处理水中难降解有机物、色度和异味,以及去除氨氮、硝酸盐和亚硝酸盐等方面都取得了很好的效果。

研究表明,当光照强度、二氧化钛颗粒的形状、大小、负电荷等条件适宜时,其处理效果会更好。

三、二氧化钛光催化技术的前景
随着人们环境意识的提高和污染治理的需求,二氧化钛光催化技术的应用前景
越来越广阔。

未来,其可能会广泛应用于污水处理、空气净化、新型材料制备等领域,其在节能、环保、低碳等方面也具有非常大的发展前景。

四、结语
二氧化钛光催化技术是一项非常先进的污水处理技术,其具有处理速度快、效
果好、操作简便的优点,受到了越来越多的关注。

未来,其应用前景也非常广阔,
相信在科学家们的不懈探索下,其效果会越来越好,为人们营造更好的生活环境做出更大的贡献。

纳米TiO2光催化剂在污水处理中的应用

纳米TiO2光催化剂在污水处理中的应用

纳米TiO2光催化剂在污水处理中的应用2012年10月16日[摘要]纳米二氧化钛作为一种重要的光催化材料,由于具有化学性质稳定、便宜、无毒并具有较高活性等优点而得到了广泛的研究与应用。

论文在综合分析相关文献的基础上,概述了二氧化钛光催化剂在污水处理中的应用,介绍了纳米二氧化钛在光催化处理污水方面的成果和研究进展,探讨了纳米二氧化钛工业应用的研究方向。

[关键词]纳米二氧化钛;光催化;污水处理;研究进展1972年,日本学者Fujishima和Honda在《Nature》上报道了在n型半导体TiO2单晶电极上光致分解H2O产生H2和O2的现象,这一报道使得半导体光催化氧化还原技术,在污水处理、抗菌杀毒等方面的潜在应用受到广泛关注,并得到了迅速发展。

大量研究证实,染料、表面活性剂、有机卤化物、农药、油类、氰化物等有机污染物都能有效通过光催化氧化反应在TiO2表面降解、脱色、去毒,并最终完全矿化为CO2、H2O及其它无机小分子物质,从而消除对环境的污染。

1 TiO2光催化剂在污水处理中的应用1.1 无机废水的处理工业废水中的无机污染物主要有重金属离子,如Hg、Cr、Pb等的离子。

大量的研究表明,许多无机物在TiO2表面具有光催化活性。

周林波等[1]在Cr6+浓度为80 mg/L、体积为100 mL的废水中,投加0.7g SiO2-TiO2系玻璃作为光催化剂,光照反应体系3 h,Cr6+的去除率达99.9 %。

Serpone 等[2]研究了以TiO2为光催化剂在模拟太阳光光照下处理HgCl2 和甲基氯化汞的过程,取得了较好的实验效果。

除重金属离子外,工业废水中的无机污染物还包括部分对环境危害较重的无机阴离子,如CN-、NO2-、Au(CN)-4等离子,一般方法难以去除,采用光催化氧化技术则能够达到这一目的。

Frank 等[3]研究了以TiO2为光催化剂将CN-氧化为OCN-,并最终反应生成CO2、N2、和NO3-的过程。

二氧化钛光催化技术在污水处理领域中应用

二氧化钛光催化技术在污水处理领域中应用

二氧化钛光催化技术在污水处理领域中应用二氧化钛光催化技术在污水处理领域中的应用引言随着工业的发展和人口数量的增加,污水处理成为了一个日益重要和紧迫的问题。

传统的污水处理方法存在着一些问题,如工艺复杂、处理效果差、成本高等。

因此,我们需要寻找一种更为高效和经济的污水处理技术。

二氧化钛光催化技术是近年来发展起来的一种新型污水处理技术。

该技术利用了二氧化钛的强大的光催化性能,能够将有害污染物转化为无害物质。

本文将以二氧化钛光催化技术在污水处理领域中的应用为中心,综述该技术的原理、关键技术和应用案例。

一、二氧化钛光催化技术的原理1.1 光催化原理光催化是指在光照的作用下,通过光生电荷对物质进行催化反应。

二氧化钛具有较大的能带间隙和良好的光吸收能力,在紫外光照射下,二氧化钛表面产生电子和空穴对,形成电荷对。

这些电子和空穴对能够参与不同的反应,从而实现有机污染物的降解和氧化。

1.2 光催化材料选择与制备二氧化钛的晶型和表面结构对光催化反应具有重要影响。

常见的二氧化钛晶型有锐钛矿型和金红石型,其中锐钛矿型TiO2的光催化活性更高。

制备二氧化钛光催化材料的方法主要包括水热法、溶胶-凝胶法、气相沉积法等,其中水热法制备的二氧化钛颗粒具有较好的光催化性能。

二、二氧化钛光催化技术在污水处理中的关键技术2.1 光源选择与辐照条件控制二氧化钛光催化技术需要紫外光激发二氧化钛表面的电子和空穴对,因此选择适合的光源非常重要。

传统的光源有氙灯、汞灯等,不过这些光源有功耗大、寿命短等问题。

近年来,LED光源得到了广泛应用,能够提供稳定、可调节的紫外光,是二氧化钛光催化技术的理想光源。

2.2 二氧化钛载体设计与制备为了提高二氧化钛的光催化性能,可以将二氧化钛负载在一些载体上,形成复合光催化材料。

常用的载体材料有氧化铁、活性炭等。

此外,调控二氧化钛的纳米结构也是提高光催化性能的关键。

可以通过pH调节、加入表面活性剂等方法实现纳米结构的调控。

纳米二氧化钛的光催化机理及其在有机废水处理中的应用

纳米二氧化钛的光催化机理及其在有机废水处理中的应用

纳米二氧化钛的光催化机理及其在有机废水
处理中的应用
纳米二氧化钛是指尺寸小于100纳米的二氧化钛颗粒,在光催化领域中被广泛应用。

纳米二氧化钛具有一定的暴露表面积、较高的光吸收能力以及良好的稳定性,因此在有机废水处理中具有很大的应用潜力。

纳米二氧化钛的光催化机理是指在光照条件下,纳米二氧化钛表面会形成电子-空穴对,电子会与氧分子发生反应形成氧自由基,而空穴则会与水分子发生反应,形成氢自由基。

这些自由基可以与水中有机物质发生反应,将其分解为低分子物质,从而实现废水的净化。

在实际应用中,纳米二氧化钛通常以悬浮液的形式添加到废水中,在光照条件下进行反应。

由于钛元素的比较稳定,纳米二氧化钛可以循环使用,减少了处理成本。

纳米二氧化钛在有机废水处理中的应用非常广泛。

研究表明,纳米二氧化钛可以有效地去除废水中的有机物质,如酚类化合物、染料等。

其中,纳米二氧化钛对染料的处理效果尤为显著。

此外,在纳米二氧化钛的光催化过程中,还产生了一定量的氢氧化钙,可以起到中和废水pH的作用,降低废水的酸碱度,使废水更易于处理。

总之,纳米二氧化钛作为一种高效、低成本的废水处理技术,具有广阔的应用前景。

未来随着纳米技术的不断发展,纳米二氧化钛的性能和应用范围还将进一步拓展。

二氧化钛光催化技术在水净化领域的应用研究

二氧化钛光催化技术在水净化领域的应用研究

二氧化钛光催化技术在水净化领域的应用研究近年来,随着社会经济的发展和人民生活水平的提高,我们对水质的要求也越来越高。

然而,由于工业和城市化的快速发展,水资源污染问题日益严重。

因此,研究和应用高效的水净化技术变得尤为重要。

作为一种新型的高效水净化技术,二氧化钛光催化技术已经受到了广泛的关注。

二氧化钛是一种特殊的光催化剂,具有良好的光稳定性和化学稳定性,同时具有高的光催化活性。

二氧化钛可以吸收可见光和紫外线,并将其转化为高能、有效的光电子,从而产生一系列的化学反应,如漂白、氧化和分解等,同时生成羟基自由基,具有一定的消毒作用,因此在水净化方面的应用非常广泛。

一般来说,二氧化钛光催化技术主要分为三种类型:可见光催化、紫外光催化和可见光/紫外光催化。

可见光催化主要利用二氧化钛在可见光区域的吸收来促进水体中有机物的降解和去除,适用于自然光照的环境。

紫外光催化则需要紫外线照射,具有更高的活性和降解速度。

可见光/紫外光催化技术则结合了两者的优点,可以在更广泛的波段范围内发挥催化作用。

在实际应用中,二氧化钛光催化技术的效果受多种因素的影响,如二氧化钛的晶型、光源种类、光照强度、水体pH值等等。

晶型不同的二氧化钛具有不同的光催化性能,比如氧化钛B的催化效率高于氧化钛A。

光源种类也会影响催化效果,一般紫外线效果更好,但需要使用紫外线灯。

光照强度是另一个重要因素,太阳光照射下效果最好,但是需要更长的时间。

pH值也会影响催化效率,对于不同的有机污染物,其最佳的pH值也是不相同的。

二氧化钛光催化技术在水净化领域的应用研究非常广泛。

目前,已经有很多研究者利用二氧化钛光催化技术去除水中的有机污染物、重金属等。

比如,利用可见光/紫外光催化技术可以去除水中的染料、苯酚等有机物,可见光催化技术也可以去除水中的油脂、微生物等。

此外,还有一些研究者发现,二氧化钛光催化技术还可以用于水中重金属离子的去除,如汞、铅等。

总的来说,二氧化钛光催化技术作为一种新型的水净化技术,具有广阔的应用前景。

金属二氧化钛光催化技术在水处理中的应用

金属二氧化钛光催化技术在水处理中的应用

金属二氧化钛光催化技术在水处理中的应用随着城市化进程的不断加速,人们对水资源的需求也越来越大。

然而,随之而来的是水污染的日益加重,给水资源的保护和净化带来了严峻的挑战。

在此背景下,光催化技术成为了一种备受关注的水处理技术,其中金属二氧化钛光催化技术因其独特的催化性能和良好的稳定性而备受瞩目。

本文将从金属二氧化钛的性质、光催化污染物的机理及金属二氧化钛光催化技术在水处理中的应用展开叙述。

一、金属二氧化钛的性质金属二氧化钛(TiO2)是一种常见的半导体材料,具有多种晶体结构。

其中,金红石型、锐钛矿型和金红石锐钛矿复合晶型的TiO2应用最为广泛。

TiO2具有宽带隙和大的激发能,因此,它只能吸收紫外光,因此在日常生活中TiO2显得暗沉不易清洁。

但是,这种宽带隙所带来的好处在于,能够促进TiO2的光催化反应,降解许多有机物和染料,这为其在水处理中的应用奠定了基础。

二、光催化污染物的机理金属二氧化钛光催化污染物的机理主要包括两个方面,即光致电荷分离和自由基的产生。

在TiO2表面吸收光子的过程中,带固体吸附的污染物分子被激发成激发态,然后将电子传递给邻近的TiO2价带。

这个过程称为光致电荷分离。

生长于TiO2表面的OH和O2-等自由基是产生的主要自由基。

在光催化反应中,这些自由基可以和吸附在TiO2表面上的有机物分子发生不可逆的氧化还原反应,促使有机分子分解为二氧化碳和水等无害物质,从而实现水处理的目的。

三、金属二氧化钛光催化技术在水处理中的应用范围非常广泛,涵盖了废水处理、饮用水净化、环境修复和医药制品等领域。

具体应用如下:(一)废水处理TiO2能够有效地光催化降解有机污染物,具有高效、低成本、环保等优点。

因此,它已成为废水处理中的一种经济、有效的方法,取代传统的化学和生物处理方法,实现了高效、安全、环保地处理废水。

(二)饮用水净化TiO2除了能够光催化有机污染物外,还能够光催化形成物的氧化,如硝酸盐、重金属、微生物等,在水净化中表现出较好的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The Use of Titanium Dioxide in the Process of WaterPurificationValentina Smirnova, Olga Nazarenko and Alexander IlyinTomsk Polytechnic University,30 Lenin Ave, Tomsk, 634050, Russia.vv_smirnova@Abstract – This paper relates to the problem of drinking water contaminants from soluble heavy metals. Proposed for sorption purification of water using titanium dioxide, which was synthesized by chemical and electrochemical methods. The synthesized products are nanostructured compounds x-ray amorphous and crystalline titanium dioxide. Adsorbed and crystallization water is removed by heating from sorbent to 110 °C in air. To stabilize the amorphous structure of the sorbent calcined at 600 °C. At the same time formed titanium dioxide, containing two crystalline phases: anatase and rutile. Sorption properties with respect to the soluble ions of Fe+2/Fe+3 and Mn+2 was investigated in static mode, using titanium dioxide powders synthesized in acidic, neutral and alkaline media. Pre-sorbents were subjected to activation by the action of ultrasound (22 kHz, 0.15 W/cm2). The best results were obtained using a titanium dioxide powder, which was synthesized in an alkaline environment. For practical use of sorbent needed to achieve two objectives: to transfer the sorbent powder into pellets with preservation of the active surface, resistant to water and to develop a system of regeneration of used sorbent. In this paper we studied the water resistance of granular titanium dioxide and how it can regenerate after purification.Keywords: water purification, titanium dioxide, ultrasound treatment, cavitation, IR spectroscopy, thermal analysis, the heavy metal impuritiesI.I NTRODUCTIONInitial purification of drinking water is primarily from the use of mechanical methods in which the sorption loading are: quartz sand, charcoal, activated carbon and some of minerals. This gives rise to secondary contamination, related to the leaching them from the sorbent. Water treatment with chemical sorbents is a new promising direction in obtaining large amounts of clean drinking water. In this regard, chemically inert to leaching and promising sorbent is titanium dioxide, which has recently seen an increased interest, as on the surface except for the sorption process is possible and the process of disinfecting water. In addition, titanium dioxide under certain conditions can act as cation and anion both. This versatility in the water treatment increases the interest in the study of the sorbent. At the same time, the properties and characteristics of titanium dioxide, and how it is received not been studied for practical use. One method of modifying the surface of the sorbents is their ultrasonic treatment in various media with the formation of sorption sites in cavitation. When the ultrasonic cavitation bubbles effects occur within which pressure fluctuations (± P) reaches 105 kPa. Under the action of ultrasound is the change of solid surfaces and thereby increases the sorption capacity.The aim of this study was to establish the nature of the functional groups formed under the conditions of cavitation, and their influence on the sorption activity of soluble impurities of iron and manganese cations.II.EXPERIMENTAL METHODSTitanium dioxide was synthesized by hydrolysis of titanium tetrachloride [1, 2], followed drying (110 °C) and calcination in air (600 °C). To determine the nature of the functional groups on the surface of the synthesized titanium dioxide recorded infrared spectra (IR) absorption of the sample in the range 4000 - 400 cm-1 (FT-IR spectrometer, Nicolet 5700 Research and Analytical Center TPU). Recording of samples the spectra were carried out in the form of compressed tablets of potassium bromide. Thermal properties of the synthesized titanium dioxide were investigated by means thermoanalyzer Q 600 STD when heated to 800 °C at 10 °C per minute in the air. The accuracy of temperature measurement was 0.01 °C. Soluble impurities Fe+2 and Mn+2, really present in the drinking water of Tomsk city, were used as objects of study. The content of iron impurities were determined by photometry of the standard method [3]. The method is based on the interaction of iron ions with sulfosalicylic acid in an alkaline medium and the formation of yellow colored complex compound. The color intensity is proportional to the weight concentration of iron was measured at a wavelength of 400 - 430 nm. The content of manganese impurities were analyzed by photometry [4]. The method is based on the oxidation of manganese compounds to MnO4-. Oxidation occurs in the acidic environment of ammonium or potassium persulfate in the presence of silver ions as a catalyst. Thus there is a pink color of the solution, the absorption intensity was measured at the wavelength range 530 - 525 nm. To prepare the model solutions used analytical grade purity chemicals. Solutions for the study was prepared by dissolving geptahydrate iron sulfate (II) and pentahydrate manganese sulfate (II). The accuracy of the experiment provided the construction of calibration function and statistical processing of the data with a probability P = 0.95: for iron - in the range of concentrations from 0.01 to 2.00 mg/l, for manganese – from 0.005 to 0.3 mg/l. For the experiments were prepared model solutions of iron and manganese, 3 and 1 mg/l, respectively, by dissolving accurately weighed portion of salts. Previously, before the sorption experiments, the synthesized978-1-4673-1773-3/12/$31.00 ©2013 IEEE(base) of titanium dioxide powder was subjected to repeated ultrasound exposure in various media: distilled water, 0.2 N solutions of NaOH and HCl. Duration of treatment was 10 minutes at a power of 0.15 W/cm 2 ultrasound exposure.III. RESULTS OF EXPERIMENTSFor the initial solution, a volume of 100 ml containing 3.00 mg/l ions Fe +2, added 0.20 g of sorbent (base and activated in various media), mixed and analyzed on a sample of the residual content of impurities of iron (Table 1, 2). Similarly, in 100 ml of a solution containing 1 mg/l of ions Mn +2, added 0.20 g of the same samples of the sorbent was stirred and after a certain time determined by the residual concentration of manganese ions (Table 1, 2). The results of extraction of contaminants through the base and titanium dioxide treated with ultrasound in different media (H 2O, NaOH, HCl), are presented in tables. Preliminary results at a conference of the Russian were discussed [5].TABLE I. THE RESIDUAL CONTENT OF IMPURITIES Fe +2 and Mn +2 AFTER SORPTION SPECIMEN ACTIVATED IN ALKALINE ANDACIDIC MEDIA Samples of sorbentTiO 2 in NaOHTiO 2 in HClPermission - foundP e r m i s s i o n o f 3.00 m g /l F e +2P e r m i s s i o n o r 1.00 m g /l M n +2P e r m i s s i o n o f 3.00 m g /l F e +2P e r m i s s i o n o f 1.00 m g /l M n +2F o u n d , m g /lAfter 20 min 0.53 0.24 1.12 0.31After 60 min 0.90 0.64 1.10 0.27After 24 h 1.06 0.74 0.73 0.26 After 48 h 0.96 0.47 0.53 0.25According to the results of sorption of impurities in titanium dioxide takes place within a relatively short time: the concentration of iron ions with 3.00 mg/l minimum is reduced to 1.42 mg/l and a maximum of 0.53 mg/l, while at the same time reducing the concentration of manganese ions with 1.00 mg/l was observed for the same sample of the sorbent, and that traces of iron - the minimum concentration of 0.24 mg/l, maximum 0.56 mg/l. The best results were obtained for a sample of titanium dioxide treated by ultrasound in a solution of NaOH, and the sorption characteristics had minimal base TiO 2, not treated by ultrasound and is not activated by chemical reagents. Thus, reducing the concentration of iron impurity is on the average 5.7 times, manganese – 4.2 times.TABLE II. THE RESIDUAL CONTENT OF IMPURITIES Fe +2 and Mn +2 AFTER SORPTION BASE SAMPLE AND SIRBENT ACTIVATED INDISTILLED WATERSamples of sorbent TiO 2base TiO 2 in H 2OPermission - foundP er m i s s i o n o f 3.00 m g /l F e +2P e r m i s s i o n o f 1.00 m g /l M n +2P e r m i s s i o n o f 3.00 m g /l F e +2P e r m i s s i o n o f 1.00 m g /l M n +2F o u n d , m g /lAfter 20 min 1.42 0.56 0.90 0.31After 60 min 1.25 0.53 0.69 0.27After 24 h 1.25 0.53 0.86 0.19 After 48 h 1.25 0.53 1.06 0.28By increasing the contact time of sorbent with model solutions of the impurity content did not change for the sampleTiO 2 not treated, for the sample prepared in distilled water and impurity content remained practically unchanged for 48 hours. At the same time a sample of the sorbent prepared in sodium hydroxide, was characterized by increased iron concentrations up to 0.90 – 1.06 mg/l and higher concentrations of manganese ions to 0.47 – 0.74 mg/l. In contrast to the above samples TiO 2, treated in hydrochloric acid, was characterized by a smooth decrease in the concentration of iron ions in solution from 1.12 to 0.53 mg/l and lower concentrations of manganese ions from 0.31 to 0.25 mg/l.Figure 1. The IR transmission spectrum of activated ultrasonic sample aftertreatment in an alkaline mediaIR spectrum of the precipitate obtained in an alkaline medium (Fig. 1) is characterized by a relatively narrow absorption band ( = 550 - 560 cm -1). In the IR spectrum, there are also weak absorption bands corresponding to ( Ti - O = 912, 1020, 1147 cm -1). In the range from 1400 to 1600 cm -1 are weak absorption bands corresponding to deformation vibrations of water molecules that have a different relationship with the energy of titanium dioxide. In a broad band is represented by the absorption in the IR spectrum associated with the stretching vibrations of O - H: 2900 - 3700 cm -1.Figure 2. The IR transmission spectrum of activated ultrasonic sample aftertreatment in acid mediaIn acidic medium (Fig. 2) formed on the surface of the sorbent structural fragments, which absorb in the infrared spectrum of light of different ranges. The absorption band corresponding Ti - O = 517 - 707 cm -1, which is wider than the previous model. However, this absorption band, there is another unresolved absorption band in the 1040 - 1160 cm -1,which reflects the presence of two types of bonds Ti - O. In the IR spectrum of the sample contains weak absorption bands in the range 1400 - 1550 cm-1 are associated with deformation vibrations of water molecules (δ = H - O - H). He absorption band associated with vibrations of υ O - H is a broad isotropic band, containing virtually no peaks that could be due to the homogeneity of the structure of the sorbent and the higher its stability. When the sorption of impurities, according to the results, this sorbent retains impurity cations more strongly, while the sorbent is activated in an alkaline solution, tends to reconstruct the structure and desorption of contaminants (Table 1).From the analysis of the IR spectra shows that the samples activated in acidic and alkaline media have similar absorption bands, except for the absorption bands of υ = 1040 - 1160 cm-1, which is associated with an additional structure of the sorbent and the greater the binding energy of Ti - O in compared with the structure, which absorbs in the range 517 - 707 cm-1.The thermal stability of the synthesized samples of hydrated titanium dioxide was studied by heating in air to a temperature of 1200 °C. A typical thermogram is shown in Figure 3. Upon heating the sample from the removal of adsorbed water was observed at 20 - 180 °C and was accompanied by endoeffect (with a maximum of 100 °C). With a further increase in temperature was observed with respect to a smooth decrease in weight of the sample to 590 °C and then a more rapid decrease in its accompanied exothermally that are most likely associated with the process of phase transition from the amorphous structure in the crystal structure of anatase and rutile.Figure 3. A typical thermogram of hydrated titanium dioxide a sampleThus, adjusting the processing temperature of the synthesized sorbent is possible to obtain single-phase (anatase or rutile) and polyphase (anatase - rutile) samples of sorbents.IV.DISCUSSIONIn heterogeneous systems, cavitation processes in the action of ultrasonic vibrations usually occur at solid-liquid interface. The energy released during the collapse of the bubble, is sufficient to implement the processes of dissociation and ionization, as a solid (titanium dioxide) and solvent (water). The dissociation of water takes place by the ionic mechanism with the formation of a large number of protons (greater than Кw) and a radical mechanism with the formation of hydrogen atoms and hydroxyl groups. The hydrogen atoms rapidly recombine with each other to form molecules of hydrogen and hydroxyl groups are transformed into hydrogen peroxide. Hydrogen molecule by collision with the surface of titanium dioxide and water molecules are removed from the solution by diffusion. Hydrogen peroxide is characterized by a significant time of life after cavitation, but eventually decomposes to atomic oxygen, which effectively oxidizes iron (II) to iron (III) and manganese (II) to manganese (IV).One of the characteristics of ultrasonic cavitation is that it is a very effective mechanism for the local concentration of the relatively low average energy of the acoustic field in very small volumes, which leads to the creation of extremely high energy density and giving the system a high reactivity, related to additional with the peculiarities of the structure and properties titanium dioxide.Direct confirmation of the existence of a high power density can serve as luminescence, observed during ultrasonic treatment.Measuring the sign of the potential (ζ) shows how the charged surface of titanium dioxide (positive or negative), and then, by what mechanism, the dissociation of water flowing under the action of ultrasound. Thus the sign of ζ can be determined cation-anion or treated sorbent. At high energy densities (in the cavitation bubble) dissociation of water can proceed as follows:H2O → H2O+ + ē,H2O → 1/2H2+ + OH-.Positively charged ions of substances with a high reactivity are oxidants whose lifetime is very small.Part of the energy shock waves, thermal energy emissions in cavitation bubbles and the energy ripple of cavitation bubbles are consumed in the formation of free radicals, which interact with the impurity ions can occur with small or no activation energy. In the cavitation process involving vesicles filled with water vapor. The water molecules in the gaseous state, trapped in rising microbubbles are destroyed, forming a highly active as ions and radicals, including hydroxyl radicals: H2O → HO· + H·,2OH· → H2O2.The standard enthalpy of electrolytic dissociation expended (at 20 °C) is 57.15 kJ/mol [6], which can be significantly reduced on the surface of titanium dioxide because of its polarizing effect.Hydroxyl radicals are involved in the reactions in the gas phase in the bubbles, or at the gas - water or in the bulk solution and at the interface between a solid (titanium dioxide) - the liquid. Saturation of oxygen gas heterogeneous systems, except for the formation of radicals OH·, initiates the formation of peroxide radicals and overperoxides. Then the recombination of radicals at the interface or in the bulk solution to the hydrogen peroxide:O2 + H· → HO2·,O2 → O + O,O + H2O → HO· + HO·,HO2· + HO2· → H2O2 + O2.If we compare the lifetimes of the formed radicals and ions, then after a short period of time, the main oxidant is hydrogen peroxide, which can generate oxygen atoms:H2O2→ H2O + O.Thus, the effects of ultrasound in the cavitation mode provides the operating time of free radicals and oxidants which in some cases contribute to the precipitation of water-soluble heavy metal impurities. For example, under the action of oxidizing iron (II) is oxidized to iron (III) and falls as a precipitate Fe(OH)3 and Mn (II) is oxidized to MnO2. Strong oxidants formed in cavitation are radicals HO2·, OH· and atomic oxygen.CONCLUSION1. The process of hydrolysis and precipitation of hydrated sorbent is based on titanium dioxide and its thermal stability when heated in air.2. It is established that the primary precipitated product formed by hydrolysis of TiCl4 is х-ray amorphous substance. When heated, it is dehydration, crystallization of anatase in the first, and then to rutile.3. Pre-and post-treatment with ultrasound at the time of the sorption step up the process of sorption of impurities of iron and manganese: the concentration of iron impurities is reduced by 5.7 times, and manganese -4.2 times.4. The sorption capacity of titanium dioxide depends on the pre-sonication in solutions with different pH: the maximum effect was achieved in 0.2 N solution of NaOH.5. According to the IR absorption spectra under sonication in alkaline medium formed by oxo- (υ = 517 - 707 cm-1) and hydroxide (υ = 1400 - 1550 cm-1) group with a high sorption activity.6. Found that the sorption activity of the sorbent, activated in the alkaline (Table 1) decreases with time, resulting in leaching of adsorbed impurities is observed. At the same time, the sorption activity of the sorbent, activated in an acidic medium, remained unchanged.7. Ultrasonic treatment of sorbents based on titanium dioxide leads to its modification and improvement of its sorption capacity.R EFERENCES[1] A.P. Ilyin, V.M. Milushkin, O.B. Nazarenko, V.V. Smirnova,“Development of new methods of water purification from soluble impurities of heavy metals” (Razrabotka novykh metodov ochistki vody ot rastvorimykh primesej tyazhelykh metallov), Bulletin of the Tomsk Polytechnic University (Izvestiya Tomskogo Politekhnicheskogo Universiteta), Tomsk, 2010, vol. 317, № 3, pp. 40-44 (in Russian).[2]V.V. Smirnova, O.B. Nazarenko, “The use of titanium oxides andhydroxides for water purification” (Primenenie oksidov i gidroksidov titana dlya ochistki pit'evoj vody), Prospects of Fundamental Sciences Development VIII Int. Conf. (Perspektivy razvitiya fundamental'nykh nauk trudy VIII mezhdunarodnoj konferentsii), Tomsk, 2011, pp. 383-385 (in Russian).[3]GOST (Gosudarstvennyj standart) 4011 – 72, Russian Federation.Drinking water. Methods for measuring the mass concentration of total iron (in Russian).[4]GOST (Gosudarstvennyj standart) 4974 – 72, Russian Federation.Drinking water. Methods for determination of manganese (in Russian). [5]V.V. Smirnova, O.B. Nazarenko. “Effect of preparation conditions andthe ultrasonic treatment of titanium dioxide on its sorption activity”(Vliyanie uslovij prigotovleniya i ul'trazvukovoj obrabotki dioksida titana na ego sorbtsionnuyu aktivnost'), Prospects of Fundamental Sciences Development IX Int. Conf. (Perspektivy razvitiya fundamental'nykh nauk trudy IX mezhdunarodnoj konferentsii), Tomsk, 2012, pp. 484-486 (in Russian).[6]V.V. Goncharuk, V.V. Malyarenko, V.A. Yaremenko. “The use ofultrasound in water purification” (Ispol'zovanie ul'trazvuka pri ochistke vody), Water Chemistry and Technology (Khimiya i tekhnologiya vody), 2008, vol. 30, № 3, pp. 196 – 199 (in Russian).。

相关文档
最新文档