ANSYS磁场分析

合集下载

ANSYS电机磁场分析

ANSYS电机磁场分析

2009-06-02 18:58 by:有限元来源:广州有道有限元ANSYS软件是世界上著名的大型通用有限元分析计算软件,具有强大的求解器和后处理功能,为我们解决复杂、庞大的工程项目和致力于高水平的科研攻关提供了一个良好的工作平台,更使我们从繁琐单调的常规有限元分析计算中解脱出来。

无轴承异步电机是在普通电机的定子中再嵌入悬浮控制绕组,通过悬浮绕组磁场对原有绕组磁场的作用,改变了气隙磁场的对称分布,将在转子上产生可控磁悬浮力,实现了转子的悬浮运行。

因此,讨论无轴承电机的运行机理,必须从分析电机中的电磁力着手。

无轴承异步电机中转子受到了洛仑兹力和麦克斯韦力两种不同的电磁力。

计算的方法通常有等效磁路法、近似解析法、位势磁通法和有限元法。

在磁场分布和变化比较复杂且非线性严重的情况下,有限元法精度最高,而使用ANSYS软件既保证了有限元分析的高精度,又大大降低了计算量。

本文所讨论的无轴承异步电机具有非线性饱和磁路,磁场变化复杂。

因此,非常适合用ANSYS进行分析。

1 A NSYS软件简介ANSYS软件有以下特点:使用方便、涉及面广、易学易用,高效方便的绘图功能,灵活多样的剖分网格形状,疏密程度,多种可选择的迭代求解器,强大的后处理功能。

1.1 A NSYS电磁场分析ANSYS程序可用来分析电磁场多方面问题,如电感、电容、磁通量密度、涡流、电场分布、磁力线、力等。

可有效地分析多种设备,如发电机、电动机、螺线管传动器、开关等。

ANSYS程序提供了丰富的线性和非线性材料的表达方式,包括各向同性或正交各向异性的线性磁导率,材料的B.H曲线和永磁体的退磁曲线。

后处理功能允许用户显示磁力线、磁通密度和磁场强度并进行力、力矩、源输入能量、端电压和其它参数的计算。

1.2 A NSYS软件的分析计算步骤(1)创建无轴承异步电机有限元分析模型;(2)定义和分配材料,网格剖分;(3)施加边界条件和载荷,并求解;(4)查看并保存计算结果。

ANSYS电磁场分析报告指南设计

ANSYS电磁场分析报告指南设计

ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章 2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章 3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩· S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

ANSYS永磁铁磁场分析

ANSYS永磁铁磁场分析

模拟永磁体的实例Br 与Hc, ur=Br/(u0*Hc)赋值时磁导率赋ur,矫顽力赋Hc!********************************************! 说明:该例子演示一个永磁体的磁场(使用了infin9单元)!********************************************/TITLE, alextest, Test for Permanent Magnet*go,:start:start !利用这个可以让ansys有选择性的读取输入文件!JPGPRF,500,100,1 ! MACRO TO SET PREFS FOR JPEG PLOTS/PREP7emunit,mks !定义电磁单位为国际标准单位,即μ0=4 Pi e-7 henries/meter!********************************************! 定义单元类型*!********************************************ET,53,PLANE53 ! Define PLANE 53 as element typeET,9,INFIN9 !无限外界(注意:系统原点一定不能在infin9类型的节点上)!********************************************! 定义材料*!********************************************MP,MURX,1,1 !Define material properties (permeability) !定义空气(磁导率=1)HC=895000 ! Coercive force!表示矫顽力有的地方为895000TB,BH,2,,30TBPT,, 130.000000 , 0.100000000TBPT,, 170.000000 , 0.200000000TBPT,, 197.000000 , 0.300000000TBPT,, 218.000000 , 0.400000000TBPT,, 250.000000 , 0.500000000TBPT,, 290.000000 , 0.600000000TBPT,, 338.000000 , 0.700000000TBPT,, 400.000000 , 0.800000000TBPT,, 472.000000 , 0.900000000TBPT,, 570.000000 , 1.00000000TBPT,, 682.000000 , 1.10000000TBPT,, 810.000000 , 1.20000000TBPT,, 975.000000 , 1.30000000TBPT,, 1600.00000 , 1.40000000TBPT,, 2520.00000 , 1.50000000TBPT,, 3520.00000 , 1.60000000TBPT,, 4760.00000 , 1.70000000TBPT,, 8300.00000 , 1.80000000TBPT,, 12000.0000 , 1.90000000TBPT,, 17000.0000 , 2.00000000TBPT,, 23000.0000 , 2.10000000TBPT,, 32000.0000 , 2.20000000TBPT,, 42500.0000 , 2.30000000TBPT,, 44500.0000 , 2.32000000TBPT,, 48200.0000 , 2.35000000TBPT,, 52200.0000 , 2.37000000TBPLOT,BH,2,,,/IMAGE,SAVE,BH2,JPEG !将材料2的B-H曲线存储成bh2.jpg mp,mgxx,2,0 !对于永磁铁,必须定义mgxx(或mgyy)mp,mgyy,2,hc!********************************************!* 建立模型*!********************************************/PNUM,AREA,1 !定义显示模式wall=20hall=10w1=4h1=2!x1=(wall-w1)/2!x2=x1+w1!y1=(hall-h1)/2!y2=y1+h1!rectng,0,wall,0,hall!rectng,x1,x2,y1,y2rectng,-wall/2,wall/2,-hall/2,hall/2rectng,-w1/2,w1/2,-h1/2,h1/2aovlap,allnumcmp,area !将生成的面重新编号aplot!/eof !配合前面的:start使用!********************************************!建立材料属性!********************************************asel,s,area,,1 !选择中间的磁铁aatt,2asel,s,area,,2 !选择周围的空气aatt,1!********************************************!建立单元类型,并划分网格!********************************************asel,alltype,53lsel,s,line,,1,4 !选择所有的无限外边界type,9 !设定为infin9单元lesize,all,,,30 !划分为30等份lmesh,all !开始划分lsel,s,line,,5,8lesize,all,,,20 !将磁铁边界的每条边分成20等份asel,allamesh,all!********************************************!建立载荷!********************************************ESEL,ALLNSEL,EXTD,ALL,AZ,0!********************************************!求解!******************************************** ALLSEL,ALLMAGSOLV!********************************************!后处理!********************************************FINISH/POST1PLF2D,27,0,10,1 !显示磁力线/IMAGE,SAVE,mf,JPEG !将磁力线保存成jpg文件说明:1)如果输入文件写成:mp,mgxx,2,hcmp,mgyy,2,0那么,得到的磁力线为:(也就是磁极在x轴上。

ANSYS有限元案例分析之磁场分布仿真案例

ANSYS有限元案例分析之磁场分布仿真案例

ANSYS有限元案例分析-两平行圆环电产生磁场分布仿真
二,前处理
•3 创建模型
2)生成四分之一圆,圆心(0,0)半径20: Main Menu:Preprocessor>Modeling>Create
>Areas>Circle>Partial Annulus。Rad-1 输入20 ;Theta-2输入90;点击OK。
中选择Axisymmetric;同理选择type2做如上操作。
ANSYS有限元案例分析-两平行圆环电产生磁场分布仿真
一,前处理
• 2定义材料特性
1)相对磁导率 Main Menu: Preprocessor > Material Props >Relative Permeability>Constant
ANSYS有限元案例分析之磁场 分布仿真-两平行圆环电产生
ANSYS有限元案例分析-两平行圆环电产生磁场分布仿真
一,前处理前的操作
•1 文件路径,工作名称和工作标题的设定。
1)文件路径:Utility Menu:File>Change Directory 2)工作名称:Utility Menu:File>Change Jobname 3)工作标题:Utility Menu:File>Change Title
ANSYS有限元案例分析-两平行圆环电产生磁场分布仿真
四,求解
• 7 往路径上映射变量的数值: Main Menu>General Postproc>Path Operation>Map onto Path。左边一栏选择Flux&gradient,右边选择 MagFluxDens BSUM,点击OK。

ANSYS磁场分析

ANSYS磁场分析
• 打开绘制单元的材料属性 Utility>PlotCtrls>Numbering
• 选择 OK
2.1-19
力边界条件标志需要单元部件,即一组具有 “名称”的单元
把衔铁定义为一个单元组件
– 选择衔铁平面
Utility>select>entities
用此选项在图形窗 口中选择平面
再次选择用APPLY
• 选择 OK
2.1-32
2.1-8
定义材料 • P定义re空p气ro为c1e号s材s料o(rM>UMRXa=te1)rial Props>Isotropic
• 选择OK
• 选择 Apply (自动循环地定义下一个材料号)
2.1-9
定义衔铁为2号材料
• 选择OK
• 选择 Apply (自动循环地选择下一个材料号)
2.1-10
• 选择 OK
2.1-22
• 加力边界条件标志 Preprocessor>Loads>Apply>-Magnetic-Flag>Comp Force
• 选择OK
• 施加两个标志,用两个不同的方法来计算力 – Maxwell’s 应力张量 – 虚功
即使只有一种选项,也要 鼠标选取
2.1-23
以毫米单位生成的模型,最好把模型尺寸变 换为国际单位制(变换系数 =.001)
• 选择 Apply
2.1-12
建立空气面
• 选择 OK 衔铁
到了这步,建立了全部 平面,但它们还没有连 接起来.
线圈
2.1-13
用Overlap迫使全部平面连接在一起
Preprocessor>Operate> Overlap>Areas

ANSYS电磁场分析指南-第六章3-D静态磁场分析(棱边单元方法)

ANSYS电磁场分析指南-第六章3-D静态磁场分析(棱边单元方法)

第六章3-D静态磁场分析(棱边单元方法)6.1何时使用棱边元方法在理论上,当存在非均匀介质时,用基于节点的连续矢量位A来进行有限元计算会产生不精确的解,这种理论上的缺陷可通过使用棱边元方法予以消除。

这种方法不但适用于静态分析,还适用于谐波和瞬态磁场分析。

在大多数实际3-D分析中,推荐使用这种方法。

在棱边元方法中,电流源是整个网格的一个部分,虽然建模比较困难,但对导体的形状没有控制,更少约束。

另外也正因为对电流源也要划分网格,所以可以计算焦耳热和洛伦兹力。

用棱边元方法分析的典型使用情况有:·电机·变压器·感应加热·螺线管电磁铁·强场磁体·非破坏性试验·磁搅动·电解装置·粒子加速器·医疗和地球物理仪器《ANSYS理论手册》不同章节中讨论了棱边单元的公式。

这些章节包括棱边分析方法的概述、矩阵列式的讨论、棱边方法型函数的信息。

对于ANSYS的SOLID117棱边单元,自由度是矢量位A沿单元边切向分量的积分。

物理解释为:沿闭合环路对边自由度(通量)求和,得到通过封闭环路的磁通量。

正的通量值表示单元边矢量是由较低节点号指向较高节点号(由单元边连接)。

磁通量方向由封闭环路的方向根据右手法则来判定。

在ANSYS中,AZ表示边通量自由度,它在MKS单位制中的单位是韦伯(Volt·Secs),SOLID117是20节点六面体单元,它的12个边节点(每条边的中间节点)上持有边通量自由度AZ。

单元边矢量是由较低节点号指向较高节点号。

在动态问题中,8个角节点上持有时间积分电势自由度VOLT。

ANSYS程序可用棱边元方法分析3-D静态、谐波和瞬态磁场问题。

(实体模型与其它分析类型一样,只是边界条件不同),具体参见第7章,第8章。

6.2单元边方法中用到的单元表 1三维实体单元6.3物理模型区域的特性与设置对于包括空气、铁、永磁体、源电流的静态磁场分析模型,可以通过设置不同区域不同材料特性来完成。

基于ANSYS的开关磁阻电动机磁场有限元分析

基于ANSYS的开关磁阻电动机磁场有限元分析
关键 词 : 有限元分析 ; 开关磁 阻电动机 ; 静态特性 ; N Y A SS 中图分类号 : M3 2 T 5 文献标识码 : A 文章 编号 :04- 0 8 2o )0- 0 7—0 10 7 1 (0 7 1 0 0 3
M a nei ed Anay i fSwic e l t n e M o o s d n ANS g tc Fil l ss o t h d Reuc a c t r Ba e o YS

要: 基于有限元分析软件 A S S 采用全场域二维磁场有 限元分析 方法 , NY , 对开关 磁阻 电动机 的磁 场分布 、
静态 特性 等进行 了计算 。这些工作 为分析开关磁 阻电动机 的工作 原理及开关磁 阻电动机 的进一步开 发和应用 , 建 立开关磁 阻电动机 合理的非线性模 型提供 了理 论基 础和可靠 依据。
方程 , 确定求解 区域和有限元求解的边界条件 , 作如 :
下假 设 ¨ : j
() 1 忽略 电 机 端 部 磁 场 效 应 , 场 沿 轴 向 均 匀 磁
分布, 矢量磁位A和电流密度.只有轴向分量A 和 ; ,
., , 故磁 感应 强度 只有 B 和 B 分量 ( ; 以下将 A 简写
定 子 极 数 8 铁 心长 度 / 10 定 子 极 弧/ 。 2 mm 8 () 1

j i


转子极数

每相绕组匝数 16 转子极 弧/ 。 2 3 () 4
式中: 为材料 的磁导率 ;。f 分别为定子外 圆周 税 f,2
A _ 0
r l b et e r u d t n frte ra o a l sa l h n fn ni e d lS M d te fr e x li t n a d a piain ei l h o y f n ai o h e n e e t i me to o l a mo e R a h t r e poti p l t . a o o s b b s nr n uh ao n c o Ke r s f i lme t n l ss s i h d r lc a c tr sai h rc e si ; NS y wo d : n t e e n ay i ; w t e eu t n e moo ;t t c aa t r t A YS i e a c c i c

ANSYS电磁场分析指南

ANSYS电磁场分析指南

ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩·S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 选择 OK
2.1-22

加力边界条件标志 Preprocessor>Loads>Apply>-Magnetic-Flag>Comp Force
• 选择OK
即使只有一种选项,也要鼠 标选取
• 施加两个标志,用两个不同的方法来计算力 – Maxwell’s 应力张量 – 虚功
2.1-23
• • •
以毫米单位生成的模型,最好把模型尺寸变换为国际单位制(变换系数 =.001) 使整个模型激活 Utility>Select>Everything 缩放平面-不用拷贝 Preproc>operate>scale>areas
• 选择 OK
2.1-24
• •
给线圈平面施加电流密度 选择线圈平面 Utility>Select>Entity

定义线圈为3号材料 (自由空间导磁率,MURX=1)
• 选择 OK
• 选择 OK (退出材料数据输入菜单)
2.1-11

建立衔铁面 Preprocessor>Create>Rectangle>By Dimensions
利用TAB 键移动输 入窗口
• 选择Apply (重复显示和输入) • 建立线圈面
X
2.1-4

建模 – 设置电磁学预选项(过滤器) – 对各物理区定义单元类型 – 定义材料性质 – 对每个物理区定义实体模型 • 铁芯 • 线圈 • 空气 – 给各物理区赋材料属性
– 加边界条件
2.1-5

设置预选过滤掉其它应用的菜单 Main menu>preferences
• 选择OK
2.1-6
• 一旦衔铁已选好,选择OK (在选取框内)
2.1-20

选择与已选平面相对应的单元
用“面”
衔铁单元
• 选择 OK • 图示衔铁单元 Utility>plot>elements
2.1-21

使单元与衔铁组件联系起来 Utility>Select>Comp/Assembly>Create Component
第二章 第1节
二维静磁学
应用: 简单直流致动器
• 问题描述 – 2个实体园柱铁芯,中间被空 气隙分开 – 线圈中心点处于空气隙中心 • 分析过程和目的 – 为模拟建模 – 进行模拟 – 后处理 • 电磁力 • 磁场值
切去一部分线圈便以看到极面间空隙
2.1-2
• •
模拟由3个区域组成 衔铁区: 导磁材料 导磁率为常数(即线 性材料)
• 选择 OK
2.1-26

下面窗口输入面积的参数名,用于后面电流密度输入
去掉面号(如果有的话)
这相应于几何面积总和
• 选择 OK
2.1-27
• •
把电流密度加到平面上 Preprocessor>Loads>Apply>Excitation>On Areas (因为只激活了线圈平面,可在选取框内选择Pick All)
2.1-8

定义材料 Preprocessor>Material Props>Isotropic

定义空气为1号材料(MURX = 1)
• 选择OK
• 选择 Apply (自动循环地定义下一个材料号)
2.1-9

定义衔铁为2号材料
• 选择OK
• 选择 Apply (自动循环地选择下一个材料号)
2.1-10

定义所有物理区的单元类型为 PLANE53
Preprocessor>Element type>Add/Edit/Delete
• 选择 Add


选择磁矢量和8节点53号单元
选择 OK
2.1-7
• • • • •
模拟模型的轴对称形状 选择Options(选项) Element behavior(单元行为) 选择 Axisymmetric(轴对称) 选择OK
衔铁


线圈区: 线圈可视为均匀材料.
空气区:自由空间 (μr = 1) .
线圈
2.1-3
性质 柱体: μr = 1000 线圈: μr = 1 匝数: 2000 (整个线圈) 空气: 激励 μr = 1
Y
材料号 2
衔铁 长度=35
材料号3
线圈励磁为直流电流: 2 安 培
Coil
模型 轴对称 单位 (mm)
• 选择 Apply
2.1-12

建立空气面
• 选择 OK
到了这步,建立了全部平 面,但它们还没有连接起 来.
衔铁 线圈
2.1-13


用Overlap迫使全部平面连接在一起 Preprocessor>Operate> Overlap>Areas 按Pick All
现在这些平面被连接了,因此当 生成单元时,各区域将共享区域 边界上节点
• 选择 OK
2.1-28

进行计算 Solu>-solve-electromagnet>Opt & Solve
• 选择OK
这些适用于用BH 数据来进行的分析,本题将忽略
2.1-29
• •
生成磁力线圈 Postproc>plot results>2D flux lines 选择 OK
使用缺省设置,选择OK, (在通常情 况下,可这样做)
• 选择 OK
2.1-15
• •
这些平面要求与物理区和材料联系起来 Preprocessor>-Attributes-Define>Picked Areas 选取线圈平面 (在选择对话框里)点取OK 材料号窗口输入3
• 点 OK
2.1-16
• • •
加通量平行边界条件 Preprocessor>loads>apply>-magnetic-boundary-flux-par’l 选On Lines并选取相应的线 选 OK
单元边缘围绕的一个红色输廓表示该 区域为同类材料号
2.1-30

计算力 Postproc>Elec&Mag Calc>Comp. Force
必须用鼠标选取
• 选择 OK
衔铁上力是在总体坐标 系下表示的,此力的方 向为使气隙缩小
2.1-31
•显示总磁通密度值 (BSUM) Postproc>Plot Results>Nodal Solution
• 选择 OK
2.1-32
• 选择OK ( 实体选择框) • 选择线圈平面 • 选择 OK (选取框内)
2.1-25
• • •
激励线圈要求电流密度,故要得到线圈截面积. Preprocessor>Operate>Calc Geometric Items>Of Areas 选择OK 要用线圈面积来计算电流密度,将线圈面积赋予参数CAREA Utility>Parameter>Get Scalar Data

打开绘制单元的材料属性 Utility>PlotCtrls>Numbering
• 选择 OK
2.1-19
• •
力边界条件标志需要单元部件,即一组具有 “名称”的单元 把衔铁定义为一个单元组件 – 选择衔铁平面 Utility>select>entities
用此选项在图形窗 口中选择平面
再次选择用APPLY
这种操作后,原先平面被删除, 而新的平面被重新编号
2.1-14
• • • •
这些平面要求与物理区和材料联系起来 Preprocessor>-Attributes-Define>Picked Areas 用鼠标点取衔铁平面 选择OK (在选取框内) 材料号窗口输入2
对于没有明确定义属性的 面,其属性缺省为1
“所选取的线”
注:未划分单元前,加 上这种边界条件
“所选取的线”
2.1-17
• •
生成有限元网格 利用智能尺寸选项来控制网格大小 Preprocessor>-Meshing-Size Cntrls>-smartsize-basic
• 选择OK
2.1-18•Fra bibliotekPreproc>-Meshing-Mesh>-Areas-Free> 在选取框内选择ALL 选择OK
相关文档
最新文档