岩石化学
2-岩石地球化学之一--岩石化学数据检(查)调(整)及参数计算

岩石化学的表达形式-1
1. 过去,氧化物重量百分数(wt%) 2. 现在,氧化物质量百分数(wB%)
岩石化学以氧化物形式表达是人为的,实际
上组成岩石的矿物成分并非以氧化物形式结合 中。硅酸盐熔体的近代物理和测试研究表明, 不存在氧化物,但已形成习惯,且易于组合在 造岩矿物,故仍以氧化物形式表达。
化学成分是岩石的主要成分的一种表现形式。岩石化 学成分研究的范围日益广泛,其重要性也与日俱增。
岩石化学基本概念-2
1946年,扎瓦里茨基定义:“从广义来解释, 岩石化学应该包括当研究岩石的化学性质时, 我们所碰到的一切化学问题”
1956年,契特维里科夫认为:“查明各个岩石 及天然组合(岩系)中的全部化学联系属于岩 石化学的研究领域,岩石化学的任务不仅在于 研究岩石及其共生组合的化学亲合性,而且还 要发现岩石组分和矿物成分中的规律性,并且 查明它们在矿物成分上的发生的变化规律”
19世纪以来,随着硅酸盐物理化学和结晶化学 的发展,把氧化物进行合理的归并,换算成少 数几个参数或换算成标准矿物成分,因而出现 了不同类型的计算方法。 CIPW法( 1900 )、尼格里法(1919)、扎瓦 里茨基法(1933)巴尔特法(1948)…
岩石化学发展简史-2
20世纪50年代到21世纪初,发展迅速。 1. 矿床的火山成因说受到极大重视,岩石化学走
关于烧失量
当样品加热到灼烧温度(一般为1000℃ )时, CO2 、 H2O+ 、 F、Cl、S、有机质等这些组分 分解放出,样品重量的变化 。是灼烧过程中 各种化学反应所引起的重量增加或减少的代数 和。大多是变轻(只有FeO很高时灼烧变重)。
重量增加或减少是很复杂的,很难明确确定, 测烧失量就没有意义,因此在计算时应剔出。
岩石学

1.岩浆:岩浆是上地幔和地壳深处形成的,以硅酸盐为主要成分的炽热、粘稠、含有挥发份的熔融体(熔体)。
2.次火山岩:是与火山岩同源的、呈侵入产状的岩石。
它与火山岩有“四同”:同时间但一般较晚;同空间但分布范围较大;同外貌但结晶程度较好;同成分但变化范围及碱度较大。
侵入深度一般<3.0km,又可分为:近地表相0~0.5km;超浅成亚相0.5~1.5km;浅成亚相1.5~3.0km。
3.辉长结构:基性斜长石和辉石的自形程度几乎相等,均呈半自形-它形粒状。
这种结构是辉石和斜长石含量近于共结比时,同时从岩浆中析出的结果,是基性深成相的典型结构。
4.安山岩:是与闪长岩化学成分相当的喷出岩,致密块状,有时具气孔构造。
具斑状结构或隐晶质结构,斑晶为斜长石(中性斜长石)、辉石、角闪石和黑云母。
基质常见交织结构或玻晶交织结构。
5.原生岩浆:岩浆起源于上地幔和地壳底层,把直接来自地幔或地壳底层的岩浆叫原生岩浆。
5.解释斑状结构与似斑状结构的概念,并对比分析这两种结构类型的区别。
岩石中所有矿物颗粒可分为大小截然不同的两群,大的称为斑晶,小的称为基质,其中没有中等大小的颗粒,这点可与不等粒结构相区别。
斑状与似斑状结构的区别是:如果基质为隐晶质及玻璃质,则称斑状结构;如果基质为显晶质,则称似斑状结构。
斑状结构中斑晶和基质为不同世代的产物,似斑状结构中斑晶和基质基本上为同一世代的产物。
试述钙碱性系列超基性岩、基性岩、中性岩和酸性岩的化学成分,矿物组合特征及其演化规律。
超基性岩主要代表性岩石为橄榄岩-苦橄岩。
本类岩石的化学成分特点是SiO2含量很低(<45%),贫K2O和Na2O,而富含FeO和MgO。
岩石中铁镁矿物占绝对优势,主要是橄榄石和辉石,其次是角闪石,黑云母则很少出现,不含或很少含斜长石(0~10%)。
常见的副矿物有磁铁矿、钛铁矿、铬铁矿和尖晶石等。
岩石颜色深,色率大于75%,比重大,常呈块状构造。
超基性侵入岩在地表出露有限,按出露面积计约占整个岩浆岩的0.4%。
岩石地球化学特征

岩石地球化学特征1火山岩岩石学特征1.1主量元素特征该旋回岩石化学成分平均值与黎彤值和戴里值相比,该旋回火山熔岩,总体具高硅、高镁,低铁、铝、钙的特点;A/NKC值反映该旋回为铝过饱和岩石类型;分异指数(DI)为32.63~88.51,均值为61.04,各氧化物随着DI值的增大有不同变化,如SiO2、K2O明显升高,Na2O稍有增高,Al2O3变化不明显,TiO2、Fe2O3、FeO、MgO、CaO明显降低,MnO、P2O5稍微降低。
总体上反映了该旋回火山岩正常的分异趋势;里特曼组合指数说明本区义县旋回火山岩具钙碱性向碱性演化的趋势。
总体上来看,依据同源岩系的δ值事连续且相近的原理,说明义县旋回火山岩浆是同源的。
1.2微量元素特征该旋回火山岩各岩石过渡元素分配型式曲线基本协调一致,呈明显的“W”型,表明为同源岩浆分异产物。
岩石曲线出现相交现象,是因为个别元素在不同岩石中富集水准不同所致,反映了岩浆在运移和成岩过程中可能有外界物质的介入和混染。
图中给类岩石的Ba、Nb呈明显的波谷,说明其在该旋回岩浆演化分异过程中分异较好,而Zr具有明显的波峰说明该元素在该旋回中比较富集。
仅在流纹岩中Th元素具有明显的波谷,说明其在流纹岩中分异较好。
1.3稀土元素特征该旋回火山熔岩各岩石稀土总量差别较大,∑REE在94.6~230.17,平均值为152.4。
与世界同类岩石维氏值相比,该旋回火山岩基性-中性岩,为富稀土岩石,中酸性-酸性岩为贫稀土岩石。
LREE/HREE值为9.26~15.49,(La/Yb)N值为11.8~27.33,(Ce/Yb)N值为7.98~17.35,La/Sm值为3.36~8.83之间,以上参数值及稀土配分曲线特征反映该旋回火山岩各岩石均具轻稀土富集,分馏较好;重稀土亏损,分馏较弱的特点,火山岩浆可能来源于壳幔混源。
2火山岩形成环境及源区2.1火山岩岩浆源及成因分析义县旋回火山岩在(La/Yb)N-(Yb)N 图解中,该旋回火山岩的投影点一部分投在大陆壳源区,一部分投在大陆壳源区左侧及上侧,主要由角闪岩组成的源区产生的熔体趋势线附近。
岩石学中的岩石分类与岩石化学组成分析

岩石学中的岩石分类与岩石化学组成分析岩石学是地球科学的一个重要分支,研究岩石的形成、组成及演化过程。
在岩石学中,岩石的分类与岩石化学组成分析是其中的两个核心内容。
本文将探讨岩石学中的岩石分类和岩石化学组成分析的基本概念、方法和应用。
一、岩石分类岩石分类是根据岩石的起源、组成及结构等特征将其分为不同类别的过程。
岩石分类有助于我们理解岩石的形成和演化过程,可以为地质研究提供重要的基础数据。
1. 岩石的主要分类岩石主要分为三类:火成岩、沉积岩和变质岩。
火成岩是由地幔或地壳中的熔岩在地表或地下凝固而成的岩石。
火成岩又分为火山岩和深成岩。
沉积岩是由风化、侵蚀和沉积等过程形成的岩石。
变质岩是在高温高压条件下由其他岩石转变而成的岩石。
2. 岩石分类的依据岩石分类依据主要包括岩石的矿物成分、岩石的结构、岩石的颜色和岩石的化学成分等因素。
根据不同的依据,我们可以将岩石分为具体的类别。
3. 岩石分类的应用岩石分类在地质勘探、矿产资源评价和地质灾害预测等方面具有重要应用价值。
通过岩石分类,我们可以判断某个地区的地质特征,并为相关的资源开发和灾害防治提供科学依据。
二、岩石化学组成分析岩石化学组成分析是研究岩石中元素含量及元素组成比例的过程。
通过分析岩石的化学成分,可以了解岩石的形成环境、成因及演化过程。
1. 岩石化学组成分析方法岩石化学组成分析方法主要包括光谱分析、电子探针分析、质谱分析和化学分析等。
不同的方法可以从不同的角度揭示岩石的化学组成。
2. 岩石化学组成分析的内容岩石化学组成分析的内容主要包括岩石中主量元素和微量元素的含量及其组成比例、元素的分布规律和特征等方面。
通过分析这些内容,我们可以研究岩石的形成机制和演化历史。
3. 岩石化学组成分析的应用岩石化学组成分析在矿产勘探、岩石演化研究和环境地质等领域具有广泛应用。
通过分析岩石的化学组成,我们可以评价矿产资源的潜力、揭示岩石的演化历史,并为环境保护和污染治理提供科学依据。
岩浆岩分类说明

一.按岩石化学成分——2.碱度
2.岩石的碱度——即指岩石中碱的饱和程度, 岩石的碱度与碱含量多少有一定关系。通 常把Na2O+K2O的重量百分比之和,称为 全碱含量。Na2O+K2O含量越高,岩石的 碱度越大。
一.按岩石化学成分——1.酸度
1.岩石的酸度——是指岩石中含有 SiO2的重量百分数。通常,SiO2含量 高时,酸度也高;SiO2含量低时,酸 度也低。而岩石酸度低时,说明它的 基性程度比较高。 SiO2是岩浆岩中最主要的一种氧化物, 因此,它的含量有规律的变化是岩浆 岩分类的主要基础。
一.按岩石化学成分——1.酸度-岩浆岩分成四个大类
1.侵入岩 1)深成岩位于地下深处,岩浆冷凝速 度慢,岩石多为全晶质、矿物结晶颗 粒也比较大,常常形成大的斑晶; 2)浅成岩靠近地表,常具细粒结构和 斑状结构; 2.喷出岩由于冷凝速度快,矿物来不及 结晶,常形成隐晶质和玻璃质的岩石。
目录
一.按岩石化学成分 1.按岩石的酸度--分大类 1)超基性岩(SiO2 <45%) 2)基性岩(SiO2 45-53%) 3)中性岩(SiO2 53-66%) 4)酸性岩(SiO2 >66% 2.按岩石的碱度—分岩类 1)钙碱性、 2)碱性
3)过碱性 二.按矿物成分 1.浅色矿物比例 2.暗色矿物 比例 三。根据产状分 1.侵入岩 1)深成岩 2)浅成岩 2.喷出岩
构成岩浆岩大家族的主要成员
根据上述原则,首先把岩浆岩按酸度 分成四大类,然后再按碱度把每大类 岩石分出几个岩类,它们就是构成岩 浆岩大家族的主要成员 1.超基性岩大类: 钙碱性系列的岩石是橄榄岩-苦橄岩类; 偏碱性的岩石是含金刚石的金伯利岩; 过碱性岩石为霓霞岩-霞石岩类和碳酸 岩类。
岩石学-岩石学4-超基性-基性岩

(1) 颜色:暗绿色,黑色
(2) 矿物成分: 与辉长岩相似,pl+py为主(比例约1:1), 可呈斑晶。 可含有Ol,Or(正长石),Q
(3) 结构:辉绿结构,斑状结构
辉绿结构:基性斜长石和辉石颗粒大小相近,但是 自形程度不同,自形程度好的斜长石呈板状,搭成三角形 孔隙,其中充填它形的辉石颗粒。可与辉长结构过渡,称 辉长辉绿结构。
地幔橄榄岩的概略相图
左边点线为地盾区的地热曲线,右边点线为大洋区的地热曲线 (Wyllie,1970)。Ga:石榴石;Sp:尖晶石;Pl:斜长石
喷出岩的主要类型
喷出岩又被称为火山岩
超基性岩类的喷出岩在自然界分布很少, 常见有: 苦橄岩,
玻基纯橄岩(麦美奇岩), 金伯利岩 科马提岩,等。 。
橄榄岩——超基性深成岩 (peridotite)
斑晶由橄榄石和辉石组成,基质具间粒-间隐结构,在板条状 的斜长石微晶间充填了细粒的辉石和玻璃(正交偏光)
皮羌碱性橄榄玄武岩
间隐结构
普鲁橄榄玄武岩
间粒间隐结构(拉斑玄武结构)
(2)构造 气孔构造,杏仁构造普遍发育 枕状构造—— 海水冷却,有内部结构 柱状节理—— 4,5,6,7边形, 多为五方柱和六方柱 如江苏六合,福建牛头山
超基性岩体一般都次生变化
(8)次生变化:主要是蛇纹石化,碳酸盐化(滑石菱镁 岩)
次生变化的本质:由于H2O、CO2、SiO2等组分的加入,使得原来 新鲜的岩石发生化学反应,生成了新矿物。
例1:水化
2Mg2SiO4+3H2O = Mg3Si2O5(OH)4+ Mg(OH)2
橄榄石
蛇纹石
水镁石
例2:水化和硅化
科马提岩的鬣刺结构
岩石化学计算方法基础知识讲解

岩石化学计算方法基础知识讲解1、岩石类型(或岩石系列)用以说明岩石主要化学组分之间的含量关系。
岩石类型(或系列)不同,不仅其化学组成上有重大差异,而且更表现在其矿物组成上具有明显的不同特点。
同时其岩石化学的计算程序和结果也各有差异。
因此在计算中,应首先根据各组分之间含量上的相互关系确定岩石所属的类型(或系列)。
在岩石化学计算中,一般是将岩浆岩划分如下四个类型(或系列)。
(1) 正常类型,也称为钙硷系列。
指岩石中Al的含量能全部和K、Na及部分Ca组成长石类矿物,而多余的Ca则参加到暗色矿物中去。
因而岩石中既可有钾长石、钠长石及斜长石,也可以有单斜石和角闪石的存在,其表达方式因计算方法不同而有所不同,但基本意义是相同的。
即:查氏公式:K+NaAl)(2)硷极度过饱和:指岩石中K、Na含量不仅使全部的Al消耗殆尽而组成硷性长石,同时也能使全部Fe3+和Fe2+,Mg2+、Mn2+等消耗完而组成霓石类矿物,并且还有剩余。
少数情况下出现霞石等硅不饱和矿物。
表达式:查氏公式:K+Na;Al+Fe2++Mn2+ 尼氏公式:AlK;Fe3++Fe2++Mn2+2、分子数与原子数岩石化学全分析结果,都是用重量百分含量表达的,但岩石化学在把各种元素或其氧化物按其组成矿物的规律进行换算时,是根据各矿物分子式中各元素的原子或氧化物的分子之间的量比关系进行的。
故在计算时,都要根据某一方法的需要,将化学分析结果的氧化物重量百分含量换算为原子数或分子数。
例如:SiO2的重量百分含量为50%,其分子量为60.08,则分子数为50/6008=0.833,为消除小数点,均将计算结果乘以1000,故SiO2的分子数为0.833×1000=833。
由于岩石的分析结果多用氧化物表示,故原子数一般都不便单独计算,而均根据分子数换算而得。
它与分子数的关系有几种不同情况,需区别对待,其一,当在一个氧化物分子中有一个原子时,其分子数即等于原子数。
岩石化学计算方法讲解之五

岩石化学计算方法讲解之五——尼格里标准分子计算法(一)方法的任务鉴于CIPW法在计算岩石的矿物成分时,仅仅考虑到各种组分间的化学组合关系,而很少考虑岩石的成因条件,因而所计算出来的矿物成分往往同岩石中实际存在的矿物组成有较大的误差。
为此,尼格里1937年提出了他所创立的标准分子计算法。
其主要任务是将岩石的化学分析结果,尽可能计算成为符合岩石实际存在的矿物成分,这样就不仅可以将岩石的化学分析同显微镜下的研究紧密结合起来,而且由于此法可以计算出反映岩石不同成因条件(岩浆、交代、变质)的不同的矿物组成方案,通过对这些方案的分析和比较,或者根据所计算中的矿物组合做出的物理化学图解,可以得出有关岩石成因和演变的某些有重要意义的认识和结论(鉴于该法的许多用途大体与CIPW法相近,故此处对这方面不再具体介绍)。
(二)方法的原理1、概述:该法所依据的基本原理,不仅是岩石化学组分间的化学组合关系,而且考虑到不同成因条件下矿物形成的特点和规律。
由于同样的化学组分在不同的成因条件下,可以形成不同的矿物组合方案的可能性。
而为了寻求同岩石实际矿物组成相符合的矿物方案,往往需要在计算中把一种矿物方案换算成另一种方案。
为了给此种转变矿物方案的工作提供便利的基础和条件,尼格里提出了原始分子和矿物标准分子的概念。
整个计算方法是先把组成岩石的各种氧化物计算为原始分子,然后再进一步根据岩石的实际情况把原始分子换算为标准矿物分子。
2、原始分子及其组成:所谓原始分子(或称基本分子),即是由各氧化物按一定组合规律和量比关系而组成的原子团。
它并非是岩石中实际存在的矿物,而仅仅是人为设置的一个“建造单元”,是为了供进一步计算的一些原子团,是组成各种矿物的基础。
为了实现既便于把原始分子换算为标准矿物,又便于把计算出的一种矿物方案转变成另一种矿物方案,尼格里巧妙地把各种原始分子(包括以后的标准矿物分子)的当量,设计为等于其化学式的分子量被其化学式中的正价数目而除所得的分子量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Energy Source
Absorbed radiation Sample
Absorption Detector
Output with absorption trough
Variation Diagrams
How do we display chemical data in a meaningful way? 4. 如何以一种有意义的方式来表示岩石化学分析 数据——变异图解 二元变异图解 Bivariate (x-y) diagrams 三角变异图解 Ternary Variation Diagrams
• 样品与测试
• 样品的采集和选取,以及选用恰当的测试仪器和方法,是岩石地球化学研究的首要问题。野外采样是在野外 观察基础上推行某种思考和设想的过程,至关全局;返回室内后,对其中代表性样品切片作岩相学反复研究; 然后从中选取为数不多的样品作主量和微量元素分析。常用分析方法有三种: XRF,X-射线荧光分析(X-ray Fluorescence),理论上可测含量>1ppm(灵敏度,即检出下限)原子序数 10~92号元素,相对标准差,即精度,RSD%,为±10~20%,对Ga Ba Rb Sr Nd P Ti Y 灵敏。LOI(loss on ignition)烧失量近似代表挥发份总量。 INAA,仪器中子活化分析(Instrumental Neutron Activation Analysis),检测下限随元素而异,一般不大于 0.1ppm,相对标准差一般为±5%,对超镁铁岩要先作放射化学处理(RNAA)。可测元素:La Ce Nd Sm Eu Gd Tb Yb Lu Hf Ta Th U Zr Sr Ba Rb Cs Sc Cr Co Ni Fe Zn Ag As Au Br Sb W Mo,特别适合分析Ta Hf Th REE。 对Sc Co Cr Cs Hf Ta Th U的检测极限为ppm~ppb,对稀土La Ce Nd Sm Eu Tb Yb Lu特别有效。但自90年代起, 由于ICP-AES和ICP-MS的出现,逐步地取代了它在地质样品研究中的地位。 ICP,电感耦合等离子体方法(Inductively Coupled Plasma Spectrometry),分两种: ICP-AES,即原子发射光谱法,检测下限一般为1ppm ICP-MS,即质谱测定法,检测下限1~100ppb 相对标准差一般为±5%,对Rb U Th Ce Td Tm较不灵敏,总计可测60余种元素。 由于它的高灵敏度和谱线相对简单,已成当今地质样品微量元素,包括铂族元素(PEG)的最主要测试手段。 同时,发展出原位微量元素和同位素测试技术,即激光烧蚀(Laser Ablation)的ICP-MS(La-ICP-MS)和 多收集器(Multi Collector)的ICP-MS(MC-ICP-MS)仪器和技术,大大扩展了ICP-MS的同位素分析能力 (La-ICP-MS的锆石U-Pb定年准确度可达±1~2%),包括对Lu-Hf同位素的分析。 上述仪器分析的准确度(指测定值与真实值的差异),可用地球化学标样(即标准参考物质)进行检查,也 可以根据地质学、岩石学资料和一些特征的元素对元素的比值,如Nb/Ta、Zr/Hf、Y/Ho、K/Rb、TE1,3及其 变化规律(参见下述)对测定值的合理性作出大致的判断。
TiO2 MnO P2O5 CO2
痕量元素(Trace elements): usually < 0.1%
•主要元素
1.主要氧化物的分析方法 大型X-荧光光谱分析法 化学分析法 2. 地壳中元素的丰度 Abundance of the elements in the Earth’s Crust
Element O Si Al Fe Ca Mg Na Wt % Oxide Atom % 60.8 59.3 21.2 15.3 6.4 7.5 2.2 6.9 2.6 4.5 2.4 2.8 1.9
Rhyolite Phonolite 72.82 56.19 0.28 0.62 13.27 19.04 1.48 2.79 1.11 2.03 0.06 0.17 0.39 1.07 1.14 2.72 3.55 7.79 4.30 5.24 1.10 1.57 99.50 99.23
•火成岩类型的划分
(一)火成岩的化学成分
• 划分依据:岩石中元素或氧化物的含量 • 类型 主要元素(Major elements): usually greater than 1%
SiO2 Al2O3 FeO* MgO CaO Na2O K2O H2O 次要元素(Minor elements): 主要元素
usually 0.1 - 1%
X射线荧光光谱(XRF)分析 中子活化分析(INAA和RNAA) 原子吸收光谱(AAS) 等离子光谱(ICP) 质谱方法:同位素稀释质谱法(IDMS) 等离子光谱质谱法(ICP-MS)
2)分类 A. 依据:元素的相容性 相容元素:优先进入矿物相的元素 不相容元素(亲岩浆元素):优先进入熔体相的 元素
2)亚碱性系列的进一步划分 拉斑玄武岩系列 钙碱性系列
教材中的:w(FeO)/w(MgO)—w(SiO2)% w(FeO)/w(MgO)—w(FeO)% (注:更适用于基性岩) AFM三角变异图解——更适用于中酸性岩 A—w( Na2O+K2O)% F—w(FeO+0.9Fe2O3)% M—w(MgO) %
•火成岩系列划分
Early on it was recognized that some chemical parameters were very useful in regard to distinguishing magmatic groups – Total Alkalis (Na2O + K2O) – Silica (SiO2) and silica saturation – Alumina (Al2O3)
第三章 岩石化学在火成岩成因 研究中的应用
• 火成岩的化学成分 1. 主要元素 2. 微量元素 3. 同位素
检 测 术 语
灵敏度: 即检出下限,指某分析方法在一确定分析条件下 能可靠检测出试样中某元素的最低含量。它与分 析方案、检测仪器内部噪音两方面因素有关。 精 度: 即精密度,又称再现性和重现性,指对某一样品 在相同条件下多次检测所得数据彼此的接近程度 。常用相对标准差,即RSD%,表示精密度。 准确度: 检测含量与元素含量之间差异程度,即测定值与 真实值的差异,可用地球化学标样(即标准参考 物质)进行检查。
(1)花岗岩岩浆来 源深度的确定 (Platen等,1969) P=0.4 Gpa 左右 h=13 Km左右
•火成岩岩浆来源深度的确定
(2)玄武岩岩浆 来源深度的确定 (Yoder,1976)
研 究 实 例
古近纪: Ek-孔店组 Es-沙河街组 Ed-东营组
新近纪:
Ng-馆陶组 Nm-明化镇组
•火山岩形成构造环境的判别
3)SiO2饱和与SiO2不饱和系列
4)Al2O3—过铝质、亚铝质、过碱性
(钠闪石) (钠铁闪石)
•岩浆演化
• 问题的提出—一个地区、一组岩石、密切共生、成分 变化大——成因关系如何?演化方式如何? • 原理—成分的相关性和演化趋势 • 解决方式—变异图解——常用的Harker图解 横坐标的选择:SiO2、MgO、分异指数(DI)、 碱度率(AR) DI=标准矿物Q+Af+Ab+Ne+Kp+Lc AR= w( Al2O3 +K2O+Na2O+CaO )/ W( Al2O3 -K2ONa2O-CaO)
<3.3者为钙碱性岩 =3.3—9者为碱性岩 >9者为过碱性岩 4)w(K2O)/w(Na2O)比值: S型花岗岩: >1.0(一般情况) I型花岗岩: <1.0 (一般情况) 5)Al2O3: 亚碱性玄武岩: w( Al2O3 ) >16.0%为高铝玄武岩 mole( Al2O3 )/mole(K2O+Na2O+CaO) >1.1者 多为S型花岗岩
大兴安岭
松辽盆地
黑龙江东部
实 例 分 析
东北地区早白垩世火山岩的成分空间变异
实 例 - 苏 鲁 造 山 带 中 生 代 花 岗 岩
大别-苏鲁造山带中生代岩浆岩年龄
Zhao & Zheng (2009) Sci. China
大别-苏鲁造山带中生代花岗岩继承锆石U-Pb年龄
Zhao & Zheng (2009) Sci. China
纵坐标:其他氧化物
Bivariate (x-y) diagrams
Harker diagram for Crater Lake
岩浆演化过程中矿物分离结晶对岩浆成分的影响
岩浆演化过程中矿物分离结晶比例的确定
岩浆演化过程中矿物分离结晶比例的确定
岩浆演化过程中矿物分离结晶比例的确定
•火成岩岩浆来源深度的确定
5. 主要元素研究的意义
Table 8-3. Chemical analyses of some representative igneous rocks Peridotite Basalt Andesite SiO2 42.26 49.20 57.94 TiO2 0.63 1.84 0.87 Al2O3 4.23 15.74 17.02 Fe2O3 3.61 3.79 3.27 FeO 6.58 7.13 4.04 MnO 0.41 0.20 0.14 MgO 31.24 6.73 3.33 CaO 5.05 9.47 6.79 Na2O 0.49 2.91 3.48 K2O 0.34 1.10 1.62 H2O+ 3.91 0.95 0.83 Total 98.75 99.06 99.3
2)花岗岩的主要元素判别图解
A. Maniar等(1989)提出的图解 B. R1—R2图解(Batchelor R A.等,1985)