delta机器人工作空间
基于运动学正解的Delta机器人工作空间分析

基于运动学正解的Delta机器人工作空间分析韦岩;李冉冉;张鲁浩;周万里;郁汉琪【摘要】基于并联机器人机构学理论,对Delta机器人机构进行位置分析,建立Delta机器人运动学逆解模型,并通过几何法求得Delta机器人运动学正解.在运动学正解的基础上,分析了Delta机器人的工作空间,并利用MATLAB的计算与绘图功能,画出Delta机器人的工作空间,为Delta机器人的应用提供了重要参考依据.%Based on the theory of parallel robot mechanism,this paper analyses the position of Delta robot mechanism,establishes its kinematic inverse solution model,obtains the kinematic forward solution by geometry method and on the basis of the forward solu-tion,analyzes the workspace of the Delta robot and draws out its workspace by using the function of calculation and drawing of the MATLAB. This lays the foundation of its applications.【期刊名称】《机械制造与自动化》【年(卷),期】2018(000)001【总页数】4页(P173-175,180)【关键词】蒙特卡洛法;Delta机器人;工作空间;运动学【作者】韦岩;李冉冉;张鲁浩;周万里;郁汉琪【作者单位】南京工程学院工业中心,江苏南京211167;南京工程学院工业中心,江苏南京211167;南京工程学院工业中心,江苏南京211167;南京工程学院工业中心,江苏南京211167;南京工程学院工业中心,江苏南京211167【正文语种】中文【中图分类】TP2420 引言广义的并联机械臂是末端的执行装置由几个独立的运动支链连接到基座,形成的闭环运动链机构[1]。
机器人工作空间的名词解释

机器人工作空间的名词解释机器人工作空间,是指机器人在其操作范围内可以自由移动和执行任务的三维空间。
它是机器人工作过程中的一个重要概念,对于机器人的路径规划、任务执行和人机协作都具有重要意义。
1. 机器人工作空间的定义和要素机器人工作空间是机器人在执行任务时所能够到达的空间范围。
一个机器人的工作空间通常由几个要素组成:- 可操作区域:指机器人的可移动区域,通常由机器人的运动范围和机构结构决定。
- 墙壁和障碍物:指机器人工作空间中的固定物体,可能会影响机器人的路径规划和任务执行。
- 人体工作区域:如果机器人需要与人进行协作,那么人的活动范围也需要考虑在机器人工作空间中。
2. 机器人工作空间的控制和规划机器人工作空间的控制和规划是确保机器人能够高效完成任务的重要环节。
工作空间控制通常包括以下方面:- 位置控制:机器人需要能够准确地控制自身在工作空间中的位置。
- 路径规划:机器人需要在考虑到工作空间中的障碍物和限制条件下,规划最优路径以完成任务。
- 动态障碍物避让:如果机器人在工作过程中遇到动态障碍物(如人体),需要能够及时避让以确保安全。
3. 机器人工作空间的优化与扩展随着机器人技术的不断发展和应用,人们对机器人工作空间的优化和扩展提出了更高的要求。
- 灵活性和可调性:机器人工作空间应能够根据不同任务和环境的需求进行灵活调整,以最大程度地发挥机器人的效能。
- 工作空间协调:当多个机器人共同工作时,需要保证各个机器人的工作空间之间互不干扰,避免冲突与碰撞。
- 联合工作空间:随着人机协作的不断深入,机器人的工作空间也需要考虑与人的工作空间的协调与融合。
4. 机器人工作空间的挑战和前景机器人工作空间的研究和应用面临诸多挑战和机遇:- 空间限制:机器人工作空间的大小和形状通常受到制约,如狭小的空间和复杂的环境。
- 动态环境:机器人在工作过程中可能会遇到动态环境和障碍物,如人体的移动。
- 多机器人协作:多个机器人在同一工作空间中协同工作,需要解决工作空间冲突和协调问题。
delta高速并联机器人关键技术的

通过先进的视觉系统和运动控制技术, Delta机器人能够实现高精度的定位和操作 ,确保产品质量和生产效率。
并联结构
易于编程和集成
采用并联结构设计,使得机器人具有较高 的刚性和稳定性,能够应对各种复杂作业 场景。
Delta高速并联机器人支持多种编程语言和 通信协议,方便与现有生产线和设备进行 集成,降低改造成本。
高精度传感与检测技术
提升机器人的感知能力是实现更高精度和更稳定运动的关键。未来,高 精度传感与检测技术将成为高速并联机器人领域的重要研究方向。
技术创新与应用拓展思考
融合新技术
探索将新技术如深度学习、强化学习等引入高速并联机器人的控制和决策系统,以提高机器人的智能 水平和适应能力。
拓展应用领域
除了传统的制造业领域,可以进一步拓展高速并联机器人在医疗、航空航天、救援等领域的应用,以 满足更多复杂任务的需求。
delta高速并联机器人关 键技术的
汇报人: 日期:
contents
目录
• Delta高速并联机器人概述 • 关键技术之:机构设计与优化 • 关键技术之:运动规划与控制 • 关键技术之:感知与交互 • 关键技术之:系统集成与应用 • 技术挑战与发展趋势
01
Delta高速并联机器人概述
机器人定义与分类
环境感知与适应
动态环境建模:通过传感器数据实时构建环境模 型,为机器人的路径规划和动作执行提供准确依 据。
障碍物检测与规避:通过距离传感器和视觉传感 器实时检测障碍物,实现机器人的自主避障功能 。
自适应控制策略:根据环境变化实时调整机器人 的控制策略,确保机器人在复杂环境中的稳定性 和高效性。
通过以上关键技术的研究和应用,可以提高Delta 高速并联机器人的感知能力和交互性能,使其更 好地适应各种复杂应用场景,推动机器人技术的 进一步发展。
6.7机器人介绍资料

机器人介绍1. 机器人的定义机器人是一种具有与人或生物相似的智能和高度灵活性的自动化机器。
机器人技术的本质是感知、决策、行动和交互技术的结合。
机器人系统和技术集机械、精密机械、计算机技术、自动控制技术、传感器技术、人工智能等技术之大成,是典型的机电一体化技术。
随着科学技术发展,机器人的含义也在不断地拓宽,一般可以归结机器人特征大致有以下三方面:(1)像人或人的上肢,能模拟人的动作。
(2)具有智能控制。
(3)机械或电子装置。
机器人一般由执行机构、驱动装置、检测装置和控制系统和复杂机械等组成。
2. 机器人的发展作为20 世纪人类最伟大发明之一,自六十年代问世以来,已经取得实质性的进步和成果。
机器人的发展代表着国家综合实力和水平。
目前,许多先进工业发达国家将机器人技术列为本国的高新技术发展纲要,足以看出大力发展机器人的重要性。
机器人近年来发展呈现两种趋势:在横向上,应用领域不断由传统制造领域向人类工作生活等社会方向延伸,种类逐渐增多。
另一方面是纵向上,随着智能化及虚拟现实技术等不断的完善,机器人需要范围不断地扩展,应用扩大,遍布于工业、科技、国防等各部门,大部分机器人水平将提高到更智能的水平。
在传统生产制造领域,工业机器人经过诞生、成长、成熟期后,成为了制造业中不可或缺的核心自动化装备,现在约有百万台工业机器人活跃在各个生产现场。
在非传统制造领域,特种机器人由于其独特特征,近年来发展十分迅速,服务机器人、水下机器人、医疗机器人、娱乐机器人纷纷问世,并且正在向实用性迈进。
机构学,自控理论,计算机技术的快速发展带动了机器人的全面发展,传统的机器人由欠自由度操作臂发展到冗余度操作臂、行走机器人、拟人机器人、多机器人系统等多种形式。
生产技术从大批量生产自动化向小批量多品种生产自动化的转变。
由于工业机器人能大大的提高生产的柔性而广泛渗透到各行业,逐渐形成了工业机器人产业。
生产的效率和产品的合格率都得到了很大的改进。
基于运动学正解的Delta机器人工作空间分析

2 ቤተ መጻሕፍቲ ባይዱelta 机器人的运动学模型
2.1 Delta 机器人的运动学逆解
机器人的运动学逆解是已知机器人末端在参考坐标 系的位姿 T 的情况下ꎬ求机器人各个关节变量 qi 的取值ꎮ 运动学的逆解是控制机器人的关键ꎬ因为只有各关节变量
作者简介:韦岩(1992-) ꎬ男ꎬ江苏沭阳人ꎬ硕士研究生ꎬ研究方向为机电系统集成与机器人控制ꎮ
Keywords:Monte Carlo methodꎻ Delta robotꎻ workspaceꎻ kinematics
0 引言
广义的并联机械臂是末端的执行装置由几个独立的 运动支链连接到基座ꎬ形成的闭环运动链机构[1] ꎮ 瑞士 的 Reymond clavel 教授于 1985 年提出的 Delta 机器人是 应用最为广泛的并联机构之一ꎮ 由于 Delta 机器人的结构 特点ꎬ使它只有 3 个平移自由度ꎬ设计、制造、控制都比较 简便ꎬ在轻工业分拣与包装中应用广泛ꎮ 机器人的工作空 间是衡量机器人工作性能的一个重要性能指标ꎬ在进行机 构设计、控制、轨迹规划时ꎬ工作空间是首先必须要考虑的 重要问题ꎮ 本文介绍一种 Delta 机器人的结构及工作原 理ꎬ使用蒙特卡罗方法ꎬ在位置正解的基础上ꎬ结合 MAT ̄ LAB 软件对工作空间进行探索研究ꎮ
Workspace Analysis of Delta Robot Based on Forward Kinematics
WEI Yanꎬ LI Ranranꎬ ZHANG Luhaoꎬ ZHOU Wanliꎬ YU Hanqi ( Industrial Centerꎬ Nanjing Institute of Technologyꎬ Nanjing 211167ꎬChina) Abstract:Based on the theory of parallel robot mechanismꎬ this paper analyses the position of Delta robot mechanismꎬ establishes
Delta

摘
要: 研 究了 D e l t a 机 器人结构参数与其期望工作空间之 间的关 系。 工作空间是机 器人性能的重要指标之一。 但 并联机
器人工作 空间边界是不规则的凸起 , 当在边界附近运动时, 机 器人容易陷入奇异位姿。因此 , 用规 则的期望工作空间取代
实际工作空间是一个很好 的选择。机器人工作空间的大小直接有机 器人的结构参数决定, 因此研 究机器人结构参数 与. Y -
作 空间之间的关系非常有意义。 在归一化空间中绘制 了D e l t a 机 器人结构参数与 内接期望工作空间体积之问的映射关 系 图, 并讨论 了它们之间的关 系。结果对 D e l t a 机 器人的机构设计等具有指导意义。
关键 词 : D e l t a机器 人 ; 结构 参数 ; 内接 期 望工 作 空 间 ; 归一 化 空 间 中 图 分 类号 : T …6 ; T P 2 4 2 文献标识码 : A 文章 编 号 : 1 0 0 1 — 3 9 9 7 ( 2 0 1 5 ) 0 2 — 0 1 5 4 — 0 3
L I A N G Y a n - y a n g , WA N G X i a o - j i e , L I U H e n g
( S c h o o l o f I n f o r ma t i o n E n g i n e e r i n g ,S o u t h we s t Un i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y ,S i c h u a n Mi a n y a n g 6 2 1 0 1 0 ,C h i n a )
d e s i r e d u , o r k s p a c e a n d s t n t c t u r e p a r a me t e r a r e p l o t t e d a n d d s i c u .  ̄ s e d i n n o r m a l i z e d s p a c e , w h i c h h a v e a ui g d i n g s i g n fc i o l l i e
delta机器人

一、Delta并联机器人1. Delta并联机器人概述Delta机器人属于高速、轻载的并联机器人,一般通过示教编程或视觉系统捕捉目标物体,由三个并联的伺服轴确定抓具中心(TCP)的空间位置,实现目标物体的运输,加工等操作。
Delta机器人主要应用于食品、药品和电子产品等加工、装配。
Delta机器人以其重量轻、体积小、运动速度快、定位精确、成本低、效率高等特点,正在市场上被广泛应用。
2. Delta并联机器人特点Delta机器人是典型的空间三自由度并联机构,整体结构精密、紧凑,驱动部分均布于固定平台,这些特点使它具有如下特性:承载能力强、刚度大、自重负荷比小、动态性能好。
并行三自由度机械臂结构,重复定位精度高。
超高速拾取物品,一秒钟多个节拍。
3. Delta并联机器人应用系统Delta并联机器人应用系统主要由三个部分组成:机器人、输送线及机器人安装框架。
其布局如下图1。
3.1 组成机器人由基板、电机罩、旋转轴、主机械臂、副机械臂、抓具中心等组成,如下图2所示。
图1 Delta机器人整体布局图2 Delta机器组成图3 Delta机器人输送装置3.2 输送线机器人配套输送线采用电机输送带方式,输送线如图3所示。
通过机器人视觉系统定位与输送线编码器反馈位置的方式,实现机器人对目标工件的位置、姿态识别和准确抓取。
根据节拍与现场需要,可并行多条输送线同时操作。
3.3 机器人安装框架机器人安装框架用来固定机器人机构,其结构及安装方式根据现场应用进行定制。
4. Delta并联机器人工作空间Delta机器人的工作空间由主机械臂及副机械臂的长度、动平台与静平台半径,以及主动臂活动角度范围这几个参数来确定。
以负载为一公斤的delta机器人工作空间为例,如下图所示。
5. Delta并联机器人运动轨迹Delta机器人基本的运动轨迹如下图,由S1、S2、S3构成门字形的三部分轨迹组成,分别为拾取、平移、放置三个阶段。
Delta机器人进行抓取目标工件时主要以走门字形运动轨迹,也可根据不同的应用要求,规划不同的运动轨迹。
delta机构原理

delta机构原理Delta机构原理介绍Delta机构是一种常用于机器人和机械装置中的运动传输机构。
它由三个连接杆件和三个关节构成,能够实现精确的空间运动。
本文将从浅入深介绍Delta机构原理及其应用。
原理解析1.定义:Delta机构是一种平台式并联机构,由底座、平台和杆件组成。
底座固定在机器上,平台和杆件相互连接,并能够沿着三个固定的关节轴运动。
2.并联机构特点:Delta机构的最大特点是平台和杆件通过关节连接,可以同时实现多个运动自由度。
并联机构具有高刚度、高加速度和高精度等优势,在工业自动化、机器人、医疗器械等领域得到广泛应用。
3.关节类型:Delta机构通常由旋转关节和直线关节组成。
旋转关节允许平台绕固定的轴旋转,直线关节则使得杆件能够在固定的轴线上进行直线运动。
通过这两种关节的组合,Delta机构能够实现复杂的空间运动。
4.控制原理:在Delta机构中,通过控制关节的角度或位置来控制平台的位置和姿态。
运动学算法可以根据给定的位置和姿态,计算出相应的关节角度或位置。
这些数据通过控制系统传递给机构,实现所需的运动。
应用领域Delta机构作为一种先进且灵活的运动传输机构,在许多领域得到广泛应用,主要包括以下几个方面:1. 工业自动化Delta机构在工业自动化领域被广泛应用于装配线、包装线和搬运线等任务。
其高精度和高速度的运动特性,使得 Delta机构能够快速、精确地进行工件搬运、组装和包装等操作。
2. 机器人技术Delta机构作为一种并联机器人结构,被广泛用于工业机器人和服务机器人领域。
其独特的结构和设计,使得机器人能够在狭小的空间中进行高速、高精度的运动,适用于装配、焊接、喷涂等工艺。
3. 医疗器械Delta机构在医疗器械中也发挥着重要作用。
例如,用于微创手术器械的设计中,Delta机构可以实现对手术器械的精确控制,提高手术操作的精确度和可行性。
4. 3D打印由于Delta机构具有高精度和高速度的特点,因此在3D打印领域被广泛应用。