数值分析第四章习题答案
数值分析第四章习题

数值分析第四章习题第四章习题1. 采用数值计算方法,画出dt t t x y x ?=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。
〖答案〗1.65412. 求函数x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。
〖答案〗s = 5.1354Warning: Explicit integral could not be found. > In sym.int at 58s =int(exp(sin(x)^3),x = 0 .. pi)3. 用quad 求取dx x e x sin 7.15?--ππ的数值积分,并保证积分的绝对精度为910-。
〖答案〗1.087849437547794. 求函数5.08.12cos 5.1)5(sin )(206.02++-=t t t et t f t 在区间]5,5[-中的最小值点。
〖答案〗最小值点是-1.28498111480531 相应目标值是-0.186048010065455. 设0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。
〖答案〗数值解y_05 = 0.78958020790127符号解ys =1/2-1/2*exp(2*t)+exp(t)ys_05 =.789580356470605529168507052137806. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。
〖答案〗x =0.06670.06670.06677. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。
〖答案〗解不唯一x =-0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588。
《数值分析》第四章答案

习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。
再给13169=建立3次插值公式,给出相应的结果。
解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。
数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0
1 2
0 0 0 1 1 0
1 2
1 2
1 2
1
0 0 0 1 0
1 2
1 2
0
1 2
1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3
解
16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5
解
2 A 1
1 3
1 2
2 11
22
1
5 2
1
3 21来自,所以 A12
1
2 1 1
5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
解
3 2 6 4 10 7 0 7 10 7 0 7
r1r2
消元
10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
数值分析第4章答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:10121012112120(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];hhhh hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。
(1)若101(1)()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+ 从而解得011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则3()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=故101()()(0)()hhf x dx A f h A f A f h --=-++⎰成立。
令4()f x x =,则4551012()52()(0)()3hhhhf x dx x dx h A f h A f A f h h ---==-++=⎰⎰故此时,101()()(0)()hhf x dx A f h A f A f h --≠-++⎰故101()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。
《数值分析》杨大地 答案(第四章)

⑴ 2 3 1 ,求按模最大特征值和对应的特征向量,精确到小数三位。
解:由幂法公式有:
1i n
//P67 页
(1) | a r | max | a i | ,其中 ai 是uk −1 = (a1 , a2 , . . . , an )T 的各分量; (2) y k 1
∴ i t 为������ − ������������ 的特征值。 令 为 A 的特征向量,则有: A i 又∵ A tI A tI i t i t ∴ 也为������ − ������������ 的特征向量; ∴ i t 是 A tI 的特征值,且 A 和������ − ������������特征向量相同。
T
1
当计算到第 9 次时,λ 1 的小数点前三位精度开始稳定,满足题目要求,所以此时 A 矩阵的按模最大特 征值 1 =7.288,对应的特征向量为(1.000,0.523,0.242)T 5.若 A 的特征值为 1, 2 ,, n , t 是一实数,证明: i t 是 A tI 的特征值,且特征向量不变. 证明: ∵ A 的特征值为 ∴| i I A |=0 假设������是 A tI 的特征值,则有:
k 0 1 2 3 4 5 6 7 8 9 ukT 1.000,1.000,1.000 9.000,6.000,3.000 7.6667,4.3333,2.000 7.3913,3.9565,1.8261 7.3177,3.8530,1.7824 7.2966,3.8231,1.7701 7.2906,3.8146,1.7666 7.2887,3.8119,1.7655 7.2882,3.9112,1.7652 7.2880,3.8109,1.7651 ykT 1.000,1.000,1.000 1.000,0.6667,0.3333 1.000,0.5653,0.2609 1.000,0.5353,0.2471 1.000,0.5265,0.2436 1.000,0.5240,0.2426 1.000,0.5232,0.2423 1.000,0.5230,0.2422 1.000,0.5229,0.2422 9.0000 7.6667 7.5913 7.3177 7.2966 7.2916 7.2887 7.2882 7.2880
数值分析答案第四章
令
f (x) = x ,则
0 = −1 + 2 x1 + 3 x2
令 f ( x ) = x 2 ,则
2 2 = 1 + 2 x12 + 3 x2
从而解得
⎧ x1 = −0.2899 ⎧ x1 = 0.6899 或⎨ ⎨ ⎩ x2 = 0.5266 ⎩ x2 = 0.1266
令 f ( x ) = x 3 ,则
∫
1
−1
f ( x)dx = ∫ x3 dx = 0
−1
1
[ f ( −1) + 2 f ( x1 ) + 3 f ( x2 )] / 3 ≠ 0
故
∫
1
−1
f ( x)dx = [ f (− 1) + 2 f ( x1 ) + 3 f ( x2 )] / 3不成立。
h
因此,原求积公式具有 2 次代数精度。 (4)若
7 h T8 = [ f ( a) + 2∑ f ( xk ) + f ( b)] = 0.11140 2 k =1
复化辛普森公式为
7 7 h S8 = [ f ( a) + 4∑ f ( x 1 ) + 2∑ f ( xk ) + f ( b)] = 0.11157 k+ 6 k=0 k =1 2 1
令 f ( x ) = x 2 ,则
b 1 3 3 2 f ( x ) dx = ∫a ∫a x dx = 3 (b − a ) b −a 1 3 3 [7 f ( x0 ) + 32 f ( x1 ) + 12 f ( x2 )+ 32 f ( x (b − a ) 3 )+ 7 f ( x 4 )]= 90 3 b
数值分析第二版(丁丽娟)答案
1.32
1.68
2.08
2.52
3.00
解答下列问题 (1)试列出相应的差分表; (2)写出牛顿向前插值公式; (3)用二次牛顿前插公式计算 f(0.225);
例3已知当 x=-1,0,2,3时,对应的函数值为
,
,
,
,
,求 的四次 Newton 插值多项式。
例4 设 对 n=1,2,3时
,证明:
例5 设 (1)
6 2730.5000 5051.0000 5051.5000
7 10922.5000 23483.0000 23483.5000
8 43690.5000 80827.0000 80827.5000
21.000000000000000 17.000000000000000 16.238095238095237 16.058823529411764 16.014662756598241 16.003663003663004 16.000915583226515
第一章答案
第二章答案
第三章答案
0 0.5 0.5 1 1 2.5000
5.0000 5.5000
第四章答案
2 10.5000 19.0000 19.5000
3 42.5000 91.0000 91.5000
4 170.5000 315.0000 315.5000
5 682.5000 1467.0000 1467.5000
3、 用规范化幂法求
按模最大的特征值和对应的特征向量,取初值
。当特征值有3位小数稳定时停止。
4、 用反幂法求矩阵
练习五
,迭代7次。
的最接近于6 的特征值和对应的特征向量,取初值
数值分析课程第五版课后习题答案(李庆扬等)
数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。
它包括了从数学理论到计算实现的一系列技术。
数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。
2. 解答:数值分析在实际应用中起着重要的作用。
它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。
数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。
3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。
与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。
数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。
4. 解答:计算误差是指数值计算结果与精确解之间的差异。
在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。
计算误差可以分为截断误差和舍入误差两种。
第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。
例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。
绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。
2. 解答:相对误差是指绝对误差与精确解之间的比值。
对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。
相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。
3. 解答:舍入误差是由于计算机的有限精度而引起的误差。
计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。
舍入误差会导致计算结果与精确结果之间存在差异。
4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。
应用数值分析【研究生课程】课后习题答案04章
应用数值分析【研究生课程】课后习题答案04章第四章习题解答1、 求下列矩阵的满秩分解。
121002123011,04111002514211A A ⎡⎤-⎡⎤⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦解:因为1A 的秩为2,可求出满秩分解为11110011001001121A B C ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦又因为2A 的秩为2,可求出满秩分解为22210212301041111A B C ⎡⎤-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦2、 根据定义求下列矩阵的广义逆A +。
1210012011,24100211A A ⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥-⎣⎦解:(1)先求出1A 的一个满秩分解。
因为1A 的秩为1,可求出满秩分解为[]1111122A B C ⎡⎤==⎢⎥⎣⎦于是有[]11111111111()12511()52T T T T B B B B C C C C +-+-==⎡⎤==⎢⎥⎣⎦最后得1111212524A C B +++⎡⎤==⎢⎥⎣⎦(2)先求出2A 的一个满秩分解。
因为2A 的秩为2,可求出满秩分解为22210011001001121A B C ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦于是有1222212222111114444()5131144441011()052102T TT T B B B B C C C C +-+-⎡⎤-⎢⎥==⎢⎥⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦最后得222111144441311888813118888A C B +++⎡⎤-⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦3、 证明下述广义逆矩阵的性质,设,m nn m A R A R ⨯+⨯∈∈。
(1)()AA ++=;(2)2()AA AA ++=;(3)2()AA A A ++=。
证明:(1)因为由定义可得,,(),()T T A AA A AA A A A A A A AA AA ++++++++====故由广义逆的定义可知()A A ++=。