第二十六章反比例函数

合集下载

新人教版九年数学下第二十六章-反比例函数知识点总结

新人教版九年数学下第二十六章-反比例函数知识点总结

新人教版九年数学下第二十六章 反比例函数知识点总结26.1知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

26.2知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

26.4知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠) k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。

人教版初中数学九年级下册第二十六章 反比例函数课件(共29张PPT)

人教版初中数学九年级下册第二十六章 反比例函数课件(共29张PPT)
反比例函数
第1课时
1.什么是反比例函数? 2.理解反比例函数的概念,会列出实际问题的 反比例函数关系式.
1、体育课上,同学们跑800米时,每个同学跑步的平均
速度v(单位:米/分)随着此同学跑完全程的时间t (单位:分)பைடு நூலகம்变化而变化,用含t的式子表示v.
2、一次数学课上,老师要同学们画一个面积为10平方
画出函数 y 4 的图象
解:1.列 x
表: x … -8 -4 -3 -2 -1 1 … 1 1 2 3 4 8
2
2
y 4 … 1 1 4 2 4 8 … -8 -4 -2 4 -1 1
x
2
3
3
2
2.描点: 以表中各组对应值作为点的坐标,在直角坐 标系内描出相应的点.
3.连线: 用光滑的曲线顺次连接各点,就可得到 图象.
当a≠4 时,点B不在反比例函数图象上.
反比例函数的图象和性质
1.形状 反比例函数的图象是由两支曲线组成的, 因此称反比例函数的图象为双曲线.
2.位置 当k>0时,两支曲线分别位于第一、三象限内;在每 一个象限内,y随x的增大而减小; 当k<0时,两支曲线分别位于第二、四象限内,y
随x的增大而增大.
函数
的两支曲线分别
函数
y 的kx 图像是由两支双曲线组
(1)当 k>0 时,两支曲一 线三分别位于
减 在每一象限内,y的值随x值的增大而 _____;
(2)当 k<0 时,两支二曲线四小分别
位在于每第一__象_、限_内__,象y限的.值增随x值的增大

1、反比例函数y = - 5 的图象大致是( D )
y 10 s 16 800

九年级数学人教版第26章反比例函数整章知识详解

九年级数学人教版第26章反比例函数整章知识详解

有的土地面积s(单位:平方千米/人)随全市总人口
n(单位:人)的变化而变化.
1.68×104
【解析】 s=
1.68×104
n
或 s·n =
九年级数学第26章反比例函数
1.由上面的问题我们得到这样的三个函数
v=
1463 t
y=
1000 x
s=
1.68×104 n
2.上面的函数解析式形式上有什么的共同点?
都是
y=
k x
的形式,其中k是常数.
3.反比例函数的定义
一般地,形如 y= k (k为常数,k≠0) 的函数称为反比例
函数.
x
4.反比例函数的自变量x的取值范围是_不__等__于__0__的__一__切__实__数
九年级数学第26章反比例函数
等价形式:(k≠0)
y k
y=kx-1
x
xy=k
y是x的反比例函数

的图象上,∴点的坐标应满
xy=-6;满足条件的是C.
九年级数学第26章反比例函数
4.下列关系中是反比例函数的是( )
(A) y= k
x
(B) y= x
2
(C) y= 5
3x
(D)y= 5 -1
x
【解析】选C.∵B、D都不符合 y= k
x
们都
(k≠0)的形式,因而它
不是反比例函数;A不一定是反比例函数,因为k可能为零;C是
2
答案:答案不惟一,如(-2,-1)
九年级数学第26章反比例函数
5.已知反比例函数 y= 2k+4 的图象在第一、三象限,反
x
比例函数 y= k-3 在x>0时,y随x的增大而增大,则k的

人教版数学九年级下册第26章《反比例函数》复习课件

人教版数学九年级下册第26章《反比例函数》复习课件
(2)找出满足反比例函数解析式的点P(a,b); (3)将P(a,b)代入解析式得 k=ab; (4)确定反比例函数解析式 y =
ab x
真题专练
(2015安徽21题12分)如图,已知反比例函数y
k1 与
x
一次函数y=k2x+b的图象交于A(1,8),B(-4,m).源自(1)求k1、k2、b的值;
(2)求△AOB的面积;
y= k
K>0
K<0
x
图 象
当k>0时,函数图象的两 当k<0时,函数图象的两
性 质
个分支分别在第一、三象 个分支分别在第二、四象
限,在每个象限内,y随x 限,在每个象限内,y随x
的增大而减小.
的增大而增大.
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
(1)求p与S之间的函数关系式;
用 (2)求当S=0.5m2时物体承受的压强p ;
(3)求当p=2500Pa时物体的受力面积S.
p(Pa)
4000 3000 2000
A(0.25,1000)
1000
O 0.1 0.2 0.3 0.4 S(m2)
【及时归纳】 求反比例函数解析式的步骤
(1)设出反比例函数解析式 y = k ; x
反比例函数的图象及性质(常考)
函数的图象经过点
A(1,-2),则k的值为
()
A. 1
2
B. 1 C. 2
2
D. -2
反比例函数解析式的确定(常考)
点P(1,a)在反比例函数的图象上,它关于y 轴的对称点在一次函数y=2x+4的图象上,求
此反比例函数的解析式.

人教版九年级数学下第26章《反比例函数》全套教案

人教版九年级数学下第26章《反比例函数》全套教案

26.1.1《反比例函数》教案课标要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式.教学目标知识与技能:1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解;2.使学生理解并掌握反比例函数的概念;3.能判断一个函数是否为反比例函数,并用待定系数法求函数解析式.过程与方法:1.经历对两个变量之间相依关系的讨论,培养学生的辩证唯物主义观点;2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识;3.经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会函数的建模思想.情感、态度与价值观:1.经历抽象反比例概念的过程,体会数学学习的重要性,提高学生学习数学的兴趣;2.通过分组讨论,培养学生合作交流意识和探索精神.教学重点理解反比例函数的概念,能根据已知条件写出函数解析式.教学难点理解反比例函数的概念.教学流程一、情境引入复习:什么是函数?问题:京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.你能写出关于t的解析式吗?1463vt引出课题:今天,我们就来研究这种形式的函数.二、探究归纳下列问题中,变量间具有函数关系吗?如果有,请直接写出解析式.(1)某住宅小区要种植一块面积为1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.(2)已知北京市的总面积为1.68×104km 2,人均占有面积S (单位:km 2/人)随全市总人口n (单位:人)的变化而变化.1000y x=,41.6810S n ⨯= 归纳概念:一般地,形如ky x=(k 为常数,且k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.强调:自变量x 的取值范围是不等于0的一切实数. 例题指引:例:已知y 是x 的反比例函数,并且当x =2时,y =6. (1)写出y 关于x 的函数解析式; (2)当x =4时,求y 的值.分析:因为y 是x 的反比例函数,所以设ky x=,把x =2和y =6代入上式,就可求出常数k 的值. 解:(1)设ky x=,因为当x =2 时,y =6, 所以有62=.k 解得:k =2. 因此12=.y x(2)把x =4代入12y x=,得 1234y == 三、应用提高1.用函数解析式表示下列问题中变量间的对应关系:(1)一个游泳池的容积为2000m 3,游泳池注满水所用时间t (单位:h )随注水速度v (单位:m 3/h )的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h (单位:cm )随底面积S (单位:cm 2)的变化而变化;(3)一个物体重100N ,物体对地面的压强p (单位:Pa )随物体与地面的接触面积S (单位:m 2)的变化而变化.2.下列哪些关系式中的y 是x 的反比例函数?4y x =,3y x =,2y x =-,61y x =+,21y x =-,21y x=,123xy =. 3.已知y 与x 2成反比例,并且当x =3时,y =4.(1)写出y 关于x 的函数解析式; (2)当x =1.5时,求y 的值; (3)当 y =6 时,求x 的值. 四、体验收获 说一说你的收获.1.今天我们学习了哪些知识? 2.我们是如何形成反比例函数概念的? 3.如何根据已知条件确定反比例函数的解析式? 五、拓展提升1.关系式xy +4=0中y 是x 的反比例函数吗?若是,比例系数k 等于多少?若不是,请说明理由. 2.如果y 是z 的反比例函数,z 是x 的反比例函数,那么y 与x 具有怎样的函数关系? 六、课内检测1.在下列函数中,y 是x 的反比例函数的是( ) A .85y x =+ B .37y x =+ C .5xy = D .22y x= 2.已知函数7m y x-=是正比例函数,则m = . 3.已知函数75m y x-=是反比例函数,则m = .4.已知y 是x 的反比例函数,并且当x =3时,y =-8. (1)写出y 与x 之间的函数关系式; (2)求y =2时x 的值. 七、布置作业必做题:教材8页习题26.1第1、2题. 选做题:教材9页习题26.1第7题. 附:板书设计教学反思:26.1.2《反比例函数的图象和性质》教案课标要求能画出反比例函数的图像,根据图像和表达式y =xk(k ≠0)探索并理解k >0和k <0时,图像的变化情况.教学目标知识与技能:1.会用描点法画反比例函数的图象; 2.结合图象分析并掌握其性质;3.能灵活运用反比例函数的图象和性质求函数的解析式,进而解决一些较综合的数学问题. 过程与方法:1.经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征;2.经历观察、分析、交流的过程,逐步提高从函数图象中感受其规律的能力; 3.从较综合的题目的解答中学会使用数形结合的方法. 情感、态度与价值观:1.由图象的画法和分析,体验数学活动中的探索和创造性,感受数学美,并通过图象的直观教学激发学习兴趣;2.深刻领会函数解析式与和函数图象之间的联系,体会数形结合及转化的思想方法; 3.通过解决综合题,增强学生的自信心,涵育学生学习数学的兴趣.教学重点正确地进行描点、画出图象,理解并掌握反比例的图象和性质,能灵活运用反比例函数的性质解决一些综合问题.教学难点1.图象的对称性选点,归纳反比例函数的性质.2.利用数形结合思想比较大小以及对反比例函数几何意义的理解学会利用图象分析、解决问题.教学流程一、情境引入问题:我们知道一次函数y =kx +b (k ≠0)的图象是一条直线、二次函数y =ax 2 +bx +c (a ≠0)的图象是一条抛物线,反比例函数(0)=≠ky k x的图象是什么样呢? 我们用什么方法画反比例函数的图象呢? 有哪些步骤?根据k 的取值,应该如何分类讨论呢?引出课题:今天,我们就来研究反比例函数的图象和性质.二、探究归纳例1:画出反比例函数6=y x 和12=y x的图象. 解:列表思考:请观察反比例函数6=y x 与12=y x的图象,它们有哪些特征? (1)每个函数的图象分别位于哪些象限?(2)在每一个象限内,随着x 的增大,y 如何变化?你能由它们的解析式说明理由吗? (3)对于反比例函数(0)=>ky k x,考虑问题(1)(2),你能得出同样的结论吗? 归纳1:当k ﹥0时,反比例函数=ky x的图象: (1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y 随x 的增大而减小. 追问:你能由函数的解析式说明这些结论吗?探究:回顾上面我们利用函数图象,从特殊到一般研究反比例(0)=>ky k x的性质的过程,你能用类似的方法研究反比例(0)=<ky k x的图象和性质吗? 归纳2:当k ﹤0时,反比例函数=ky x的图象: (1)函数图象分别位于第二、第四象限; (2)在每一个象限内,y 随x 的增大而增大.强调:反比例函数的图象由两条曲线组成,它是双曲线.归纳:一般地,反比例函数=kyx的图象是双曲线,它具有以下性质:(1)当k﹥0时,双曲线的两支分别位于第一、第三象限,在每一个象限内,y随x的增大而减小;(2)当k﹤0时,双曲线的两支分别位于第二、第四象限,在每一个象限内,y随x的增大而增大. 例2:已知反比例函数的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y随x的增大如何变化?(2)点B(3,4),14(24)25,C--,D(2,5)是否在这个函数的图象上?解:(1)∵点A(2,6)在第一象限,∴这个函数的图象位于第一、第三象限,在每一个象限内,y随x的增大而减小;(2)设这个反比例函数的解析式为=kyx.∵点A(2,6)在其图象上,62,k∴=解得:k=12.∴这个反比例函数的解析式为12 =yx.当x=3时,y=4,所以点B在这个函数的图像上;当x=122-时,y=445-,所以点C在这个函数的图像上;当x=2时,y=6≠5,所以点D不在这个函数的图像上.例3:如图,它是反比例函数5-=myx图象的一支,根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(x1,y1)和点B(x2,y2),如果x1>x2,那么y1和y2有怎样的关系?解:(1)反比例函数的图象只有两种可能:位于第一、第三象限,或者位于第二、第四象限.∵这个函数的图象的一支位于第一象限,∴另一支必位于第三象限.∵这个函数的图象位于第一、第三象限, ∴m -5﹥0, 解得m ﹥5. (2)∵m -5﹥0,∴在这个函数图象的任一支上,y 随x 的增大而减小, ∴当x 1>x 2时,y 1﹤y 2 . 三、应用提高1.下列图象中是反比例函数图象的是( )2.已知反比例函数=ky x的图象如图所示,则k 0,且在图象的每一支上,y 随x 的增大而 .3.已知反比例函数=ky x的图象过点(2,1),则它的图象在________象限,k ___0. 4.点A (x 1,y 1)和点B (x 2,y 2)在反比例函数1y x=的图象上.如果x 1﹤x 2,而且x 1,x 2同号,那么y 1,y 2有怎样的大小关系?为什么?四、体验收获 说一说你的收获.1.反比例函数的图象是怎样得到的?画图时要注意什么问题? 2.反比例函数的性质是怎样的?为什么要强调在每一个象限内的性质? 3.在反比例函数图象及性质的应用中体现了数形结合思想,能否谈谈你的体会? 五、拓展提升1.在同一直角坐标系中,函数=y kx 与(0)=≠ky k x的图象大致是( ). A .(1)(2) B .(1)(3) C .(2)(4) D .(3)(4)2.点A (x 1,y 1)和点B (x 2,y 2)在反比例函数(0)=≠ky k x的图象上,如果x 1>0>x 2,那么y 1和y 2有怎样的关系?六、课内检测1.如图所示的图象对应的函数解析式为( ). A .5y x = B .23y x =+ C .4y x =D .3y x=-2.反比例函数5y x=的图象在第 象限. 3.已知一个反比例函数的图象经过点A (3,-4).(1)这个函数的图象位于哪些象限?在图象的每一支上,y 随 x 的增大如何变化? (2)点B (-3,4),C (-2,6),D (3,4)是否在这个函数的图象上?为什么? 七、布置作业必做题:教材8页习题26.1第3、5题. 选做题:教材9页习题26.1第9题. 附:板书设计教学反思:26.2《实际问题与反比例函数》教案课标要求能用反比例函数解决简单实际问题.教学目标知识与技能:1.能灵活列出表达式解决一些实际问题;2.能综合利用几何、方程、反比例函数的知识解决实际问题.过程与方法:1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题;2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力;3.初步形成自己构建数学模型的能力.情感、态度与价值观:1.积极参与交流,并积极发表自己的见解,相互促进;2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具,体验数学的实用性.教学重点综合运用反比例函数的解析式、图象和性质解决实际问题.教学难点综合运用反比例函数的知识解决较复杂的实际问题.教学流程一、情境引入问题:反比例函数kyx=的图象是什么样的?它有什么性质?引出课题:前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决实际问题中的作用.今天,我们进一步探讨如何利用反比例函数解决实际问题.二、探究归纳例1:市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少(结果保留小数点后两位)?解:(1)根据圆柱的体积公式,得Sd =104,所以S关于d的函数解析式为410Sd =.(2)把S=500代入410Sd=,得410 500d=解得:d=20(m)答:如果把储存室的底面积定为500 m2,施工时应向地下掘进20 m深.(3)把d=15代入410Sd=,得41015S=解得:S≈666.67(m2)答:当储存室的深度为15 m时,底面积约为666.67 m2.例2:码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数解析式为240vt=.(2)把t=5代入240vt=,得240485v==(吨).∴如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.∵对于函数240vt=,当t>0时,t越小,v越大.∴若货物不超过5天卸载完,则平均每天至少要卸载48吨.问题1:公元前 3 世纪,有一位科学家说了这样一句名言:“给我一个支点,我可以撬动地球!”你们知道这位科学家是谁吗?这里蕴含什么样的原理呢?杠杆原理:阻力×阻力臂=动力×动力臂例3:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?解:(1)根据“杠杆原理”,得Fl=1200×0.5,所以F关于l的函数解析式为600Fl=.当l=1.5 m时,6004001.5F==(N).对于函数600Fl=,当l=1.5 m 时,F=400N,此时杠杆平衡.因此,撬动石头至少需要400N的力.(2)当14002002F=⨯=时,由600 200l=得6003 200l==(m),3-1.5=1.5(m).对于函数600Fl=,当l>0时,l越大,F越小.因此,若想用力不超过400N的一半,则动力臂至少要加长1.5m.追问:在我们使用撬棍时,为什么动力臂越长越省力?问题2:电学知识告诉我们,用电器的功率P(单位:W)、两端的电压U(单位:V)以及用电器的电阻R(单位:Ω)有如下关系:PR=U2.这个关系也可写为P=2UR,或R=2UP.例4:一个用电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围多少?解:(1)根据电学知识,当U=220时,得2220PR=.(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻R最小值=110代入2220PR=,得P最大值=2220440110=(W);把电阻R最大值=220代入2220PR=,得P最小值=2220220220=(W);因此用电器功率的范围为220~440W.追问:想一想为什么收音机的音量、某些台灯的亮度以及电风扇的转速可以调节.三、应用提高1.如图,某玻璃器皿制造公司要制造一种容积为1L(1L=1dm3)的圆锥形漏斗.(1)漏斗口的面积S(单位:dm2)与漏斗的深度d有怎样的函数关系?(2)如果漏斗口的面积为100cm2,则漏斗的深为多少?答案:(1)3Sd=(2)30 cm2.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6 h到达目的地.(1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系?(2)如果该司机必须在4h之内回到甲地,那么返程时的平均速度不能小于多少?答案:(1)480Vt=(2)120 km/h3.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103m2.(1)所需的瓷砖块数n与每块瓷砖的面积S(单位:m2)有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,建筑师决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80cm2,且灰、白、蓝瓷砖使用数量的比为2∶2∶1,需要三种瓷砖各多少块?答案:(1)3510nS⨯=(2)250000块,250000块,125000块四、体验收获说一说你的收获.1.我们如何建立反比例函数模型,并解决实际问题?2.在这个过程中要注意什么问题?五、拓展提升1.某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了安全、迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1)木板面积S 与人和木板对地面的压强p 有怎样的函数关系?(2)当木板面积为0.2 m2时,压强是多少?(3)要求压强不超过6000 Pa,木板面积至少要多大?答案:(1)600(0)p SS=>(2)3000 Pa(3)至少0.1m22.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请写出这个反比例函数的解析式.(2)蓄电池的电压是多少?(3)完成下表:范围?答案:(1)36IR=(2)36V(3)12,9,7.2,6,5.14,4.5,4,3.6(4)R≥3.6六、课内检测1.已知甲、乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:km/h)的函数图象是()答案:C2.在某一电路中,电源电压U 保持不变,电流I (A )与电阻R (Ω)之间的函数关系如图所示. (1)写出I 与R 之间的函数解析式;(2)结合图象回答当电路中的电流不超过12 A 时,电路中电阻R 的取值范围是多少Ω?答案:(1)36I R=(2)电阻R 大于或等于3 Ω 3.密闭容器内有一定质量的二氧化碳,当容器的体积V (单位:m 3)变化时,气体的密度ρ(单位:kg /m 3)也会随之变化.已知密度ρ与体积V 是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V 的函数解析式; (2)求V =9 m 3时,二氧化碳的密度ρ.答案:(1)9.9Vρ=(2)1.1 kg /m 3 七、布置作业必做题:教材16页习题26.2第2、3、4、7题. 选做题:教材17页习题26.2第9题. 附:板书设计教学反思:。

人教版九年级数学下册第二十六章《 反比例函数》优质课件

人教版九年级数学下册第二十六章《 反比例函数》优质课件

关系式是
I
10
.R
做一做(1)
1.已知△ABC的面积为12,则△ABC的高h
与它的底边 a 的函数关系式为
h
.
24 a
2.如果反比例函数 y 1的3m图象位于第二、
x
四象限,那么m的范围为
.
m
1 3

由1-3m<0 得-3m<- 1

m>
1 3
3.下列函数中,图象位于第二、四象限的
有 (3);、(在4)图象所在象限内,y的值随x
(3)设 P(m,n)关于原点的 P(m 对 ,n)称 过 , P作 点 x轴是 的垂线 与P 过 作 y轴的垂A点 线 ,则 交于
SΔPA 2 1|AA PP|2 1|2 m ||2|n2|k|(如图)所 .
y
o
P/
P(m,n)
x
A
y
o
P/
P(m,n)
x
y
o
P/
P(m,n)
x
以上几点揭示了双曲线上的点构成的几 何图形的一类性质.掌握好这些性质,对 解题十分有益.(上面图仅以P点在第一象 限为例).
x
B
y
O
x
C
y x
o
D
7.已知点A(-2,y1),B(-1,y2)都在反比例函数
y 的4x 图象上,则y1与y2的大小关系(从大到小)

y1>. y2
8.已知点A(-2,y1),B(-1,y2)都在反比例函数 的图y 象 上xk ,(则k<y01)与y2的大小关系(从大到小)
3.函数 y 的6 图象位于第 一象、限三,
x
在每一象限内,y的值随x的增大而 减,小 当x>0时,y >0,这部分图象位于第 象一限.

人教版九年级数学下册第26章 反比例函数PPT

人教版九年级数学下册第26章 反比例函数PPT

解:
设y
k x
(k
0)
解得:k 2.
y
2 x
.
举一反三
变式练习:y是x的反比例函数,下表给出了x与y的
一些值:
x
-1
-
1 2
1 2
1
随 时
y2
4 -4 -2

(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.

方法总结
待 定
求反比例函数解析式的方法:

∵反比例函数 y k (k 0) 只有一个待定系 数K,只需要一组x,y的x 对应值代入解析式
(B) y x 1
x -3 -2 -1 1 2 3
y -2 -3 -6 6 3 2
(C) xy=6即y=
6 x
x -3 -2 -1 1 2 3 y -6 -4 -2 2 4 6
(D) y 2x
方法探究
1、现有一张一百元的人民币,如果把它换成50元的人民 币,可得几张?换成10元的人民币可得几张?依次换成5元 ,2元,1元的人民币,各可得几张?
正比例函数的自变量可以=0;
(4)函数值:反比例函数y的值不为0,而正比例函数y的值可
以为0.
马上试一试
下列关系式中,y是x的反比例函数吗?如果是,比例系数
k是多少?
(1)y=
4 x
(2)y=-
1 2x
(3)y=1-x
(4)xy=1 (7) y=x-1
(5)y=
x 2
(6) y=x2 记住
这些
(8)y=
1 x
-1
形式
y是x的反比例函数,比例系数为k(k≠0)
y=
k x

人教版九年级数学下册第二十六章:26.1.2 反比例函数的图像和性质 优秀课件

人教版九年级数学下册第二十六章:26.1.2  反比例函数的图像和性质  优秀课件

-4
-6
-8
当k>0时,两支双曲线分 位于第一,三象限内; 当k<0时,两支双曲线分别 位于第二,四象限内;
反比例函数的图象和性质: 1.反比例函数的图象是双曲线; 2.图象性质见下表: k y= K>0 K<0
x
图 象
当k>0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小. 当k<0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
一、复习引入
反比例函数的定义:
一般地,形如 (k是常数,k≠0)的函数, 叫做反比例函数。其中, x是自变量,y是函 数.自变量x的取值范围是不等于0的一切实 数.
反比例函数的三种表达式:
① ② ③
1、过点(2,5)的反比例函数的解析 10 式是: y x . 2、一次函数y=2x-1的图象 是 一条直线 ,y随x的增大而 增大. 3、用描点法作函数图象的步骤:
y
4 C(-3,y3)是 y B(5,y2)是反比例函数 x
数形结合

⑴代入求值
y1 y2 y3
A
2
⑵利用增减性
B
5
-3
⑶根据图象判断
x
O
C
7、若点(-2,y1)、(-1,y2)、(2,y3)在
100 反比例函数 y = 的图象上,则( x
B

A、y1>y2>y3
C、y3>y1>y2
B、y2>y1>y3
x
标系中的 图象可能是 D
y o x y o x
:
y o x y o x
(A)
(B)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档