通信系统设计报告

合集下载

通信设计开题报告

通信设计开题报告

通信设计开题报告研究背景和意义通信是现代社会不可或缺的一部分,随着技术的不断发展,通信网络的重要性越来越被人们所认识。

如何设计高效、稳定、安全的通信网络成为了一个热门的研究课题。

本次论文旨在探究通信系统中的信号传输技术,通过深入研究该技术,实现更快、更稳定、更安全的信号传输。

研究方法和步骤本次研究的具体方法包括文献调研、问题分析、方案设计和实验验证。

首先通过文献调研,全面了解通信领域的知识和最新技术。

然后,针对通信系统中的传输问题,分析现有方案的优缺点,查找存在的问题及原因。

在此基础上,设计完善的信号传输方案,并通过实验验证该方案的可行性和有效性。

研究预期成果本次研究预期可以解决通信系统中的传输问题,实现更加高效、稳定和安全的信号传输。

具体成果包括:- 提出更加完善的信号传输方案,解决传输过程中存在的问题。

- 实现更快速、更准确、更全面的数据传输,提高通信网络的可靠性和稳定性。

- 提高通信网络的安全性,增强抗攻击能力。

计划进度安排- 第一周:文献调研,了解通信系统中信号传输的技术原理。

- 第二周:问题分析,查找通信系统中存在的问题。

- 第三周:方案设计,设计更加完善的信号传输方案。

- 第四至六周:实验验证,验证方案的可行性和有效性。

- 第七周:论文撰写,整理研究成果。

结论本次研究旨在探究通信系统中信号传输技术,通过深入研究和实验验证,提出更加完善的信号传输方案,实现更加高效、稳定和安全的数据传输。

希望本次研究能为通信领域的研究者提供一些可供参考的思路和方法,为通信网络的发展做出一份贡献。

通信系统基础实验报告

通信系统基础实验报告

一、实验目的1. 理解通信系统的基本组成和功能;2. 掌握通信系统中的基本概念和原理;3. 熟悉通信实验设备的使用方法;4. 培养实验操作能力和分析问题能力。

二、实验内容1. 实验设备:通信系统实验箱、示波器、信号发生器、频谱分析仪等;2. 实验步骤:(1)搭建通信系统实验平台,包括调制器、信道、解调器等模块;(2)进行模拟调制实验,包括调幅(AM)、调频(FM)和调相(PM);(3)进行数字调制实验,包括二进制移幅键控(BPSK)、二进制移频键控(BFM)和二进制移相键控(BPM);(4)进行信道特性实验,包括噪声信道、多径信道和频率选择性信道;(5)进行信号解调实验,包括模拟解调、数字解调和相干解调;(6)进行眼图分析实验,观察信号波形和码间串扰情况。

三、实验结果与分析1. 模拟调制实验通过实验,观察到调幅、调频和调相三种调制方式下的信号波形。

分析结果表明,调制后的信号具有较好的频谱特性,能够满足通信系统的要求。

2. 数字调制实验实验结果显示,BPSK、BFM和BPM三种数字调制方式下的信号波形均满足通信系统的要求。

通过眼图分析,发现三种调制方式均存在一定的码间串扰,但可以通过调整调制参数来降低码间串扰的影响。

3. 信道特性实验通过实验,观察到噪声信道、多径信道和频率选择性信道对信号的影响。

分析结果表明,噪声信道会导致信号失真,多径信道会导致信号码间串扰,频率选择性信道会导致信号带宽受限。

4. 信号解调实验实验结果显示,模拟解调、数字解调和相干解调均能正确恢复出原始信号。

通过比较三种解调方式,发现相干解调在码间串扰严重的情况下具有更好的性能。

5. 眼图分析实验实验结果表明,未受码间串扰影响的眼图具有较为清晰的开口,而受码间串扰影响的眼图则由于符号间的干扰而导致开口变小,甚至闭合。

通过对比不同调制方式下的眼图,可以直观地观察到码间串扰对数字信号传输的影响。

四、实验总结1. 通过本次实验,掌握了通信系统的基本组成和功能,了解了通信系统中的基本概念和原理;2. 熟悉了通信实验设备的使用方法,提高了实验操作能力;3. 通过对实验结果的分析,加深了对通信系统性能的理解,为后续通信系统设计奠定了基础。

通信系统综合设计报告——光照强度监测系统设计

通信系统综合设计报告——光照强度监测系统设计

目录第一章概述 (2)第一节课题背景与意义 (2)第二节课题设计要求与指标 (2)第二章系统方案选择与确定 (3)第一节硬件系统方案选择 (3)一、光照采集模块方案选择 (3)二、无线传输模块方案选择 (3)三、 LCD显示模块方案选择 (4)四、 MCU模块方案选择 (4)第二节软件系统方案选择 (4)第三章系统硬件设计与实现 (6)第一节采集端硬件设计 (6)一、光照采集模块设计 (7)二、ATmega16L最小系统模块设计 (8)三、无线传输模块设计 (9)第二节终端硬件设计 (10)一、LCD显示模块设计 (11)二、变压电路设计 (12)第四章系统软件设计与实现 (13)第一节程序整体设计 (13)第二节光照采集与AD转换程序设计 (13)第三节无线传输程序设计 (14)第四节LCD显示程序设计 (16)第五节程序下载 (17)第四章测试结果及讨论 (18)第一节LCD显示测试 (18)第二节光照采集与显示测试 (19)心得体会 (21)参考文献 (22)附录 (23)一、器件清单 (23)二、工具清单 (23)三、实物图 (24)四、程序代码 (24)第一章概述第一节课题背景与意义在现代农业和工业领域,经常需要对一些环境参数进行监测,以做出相应处理,确保设备和系统运行在最佳状态。

随着科技的发展,对环境参数监测系统的要求也越来越高;因此基于传感器、单片机和无线通信芯片设计出一种无线环境参数监测系统十分的重要。

光照强度是一个重要的环境参数,在工业和农业领域有着重要的应用,本课程设计介绍一种可以应用在许多领域的无线光照强度监测系统,实现对环境中的光照强度进行实时采集处理、无线传输与显示的功能。

本文的主要研究工作集中在光照强度监测系统的设计上,通过C语言编程对单片机进行控制,使单片机控制光照采集传感器、无线通信芯片和LCD,实现系统功能。

在本课题的基础上可以设计完成一个高速、方便、稳定的环境数据监测采集和传输系统,可以广泛应用于现代农业和工业领域。

通信系统仿真实验报告

通信系统仿真实验报告

通信系统仿真实验报告摘要:本篇文章主要介绍了针对通信系统的仿真实验,通过建立系统模型和仿真场景,对系统性能进行分析和评估,得出了一些有意义的结果并进行了详细讨论。

一、引言通信系统是指用于信息传输的各种系统,例如电话、电报、电视、互联网等。

通信系统的性能和可靠性是非常重要的,为了测试和评估系统的性能,需进行一系列的试验和仿真。

本实验主要针对某通信系统的部分功能进行了仿真和性能评估。

二、实验设计本实验中,我们以MATLAB软件为基础,使用Simulink工具箱建立了一个通信系统模型。

该模型包含了一个信源(source)、调制器(modulator)、信道、解调器(demodulator)和接收器(receiver)。

在模型中,信号流经无线信道,受到了衰落等影响。

在实验过程中,我们不断调整系统模型的参数,例如信道的衰落因子以及接收机的灵敏度等。

同时,我们还模拟了不同的噪声干扰场景和信道状况,以测试系统的鲁棒性和容错性。

三、实验结果通过实验以及仿真,我们得出了一些有意义的成果。

首先,我们发现在噪声干扰场景中,系统性能并没有明显下降,这说明了系统具有很好的鲁棒性。

其次,我们还测试了系统在不同的信道条件下的性能,例如信道的衰落和干扰情况。

测试结果表明,系统的性能明显下降,而信道干扰和衰落程度越大,系统则表现得越不稳定。

最后,我们还评估了系统的传输速率和误码率等性能指标。

通过对多组测试数据的分析和对比,我们得出了一些有价值的结论,并进行了讨论。

四、总结通过本次实验,我们充分理解了通信系统的相关知识,并掌握了MATLAB软件和Simulink工具箱的使用方法,可以进行多种仿真。

同时,我们还得出了一些有意义的结论和数据,并对其进行了分析和讨论。

这对于提高通信系统性能以及设计更加鲁棒的系统具有一定的参考价值。

北邮红外通信收发系统的设计实验报告2篇

北邮红外通信收发系统的设计实验报告2篇

北邮红外通信收发系统的设计实验报告2篇北邮红外通信收发系统的设计实验报告第一篇:一、引言通信技术是现代社会的重要组成部分,而红外通信作为一种无线通信技术,具有无线、隐蔽、低功耗等特点,在各个领域得到广泛的应用。

本实验旨在设计并实现一种基于北邮红外通信收发系统,以验证其可靠性和稳定性。

二、实验目的1. 理解红外通信的原理和规范。

2. 学习使用北邮红外通信收发系统。

3. 能够正确设置收发模块的参数。

4. 进行距离测试,评估系统的通信距离性能。

5. 进行干扰测试,确定系统的抗干扰性能。

三、实验设备1. 硬件设备:北邮红外通信收发模块、电脑。

2. 软件设备:PC机控制软件、北邮红外通信收发系统驱动程序。

四、实验步骤1. 连接硬件设备:将北邮红外通信收发模块通过串口线与电脑连接。

2. 安装驱动程序:根据实验要求,在电脑上安装北邮红外通信收发系统驱动程序。

3. 配置参数:在PC机控制软件中,设置收发模块的参数,包括通信速率、校验方式等。

4. 进行距离测试:设置一个合适的通信距离,发送一条特定信息,观察接收端是否成功接收并显示该信息。

5. 进行干扰测试:在通信过程中引入干扰信号,观察系统是否能正确识别并过滤干扰信号。

五、结果与分析1. 距离测试结果:根据实验设置的通信距离,收发系统能够成功传输信息,并且接收端能够正确接收和显示该信息,表明系统具有较好的通信距离性能。

2. 干扰测试结果:在引入干扰信号的情况下,系统能够正确识别并过滤干扰信号,保证数据传输的准确性和可靠性。

六、实验结论通过本次实验,我们成功设计并实现了一种基于北邮红外通信收发系统。

实验结果表明,该系统具有较好的通信距离性能和抗干扰性能,能够满足实际应用的需求。

同时,本实验也深入理解了红外通信的原理和规范,对于今后的通信技术研究和应用具有一定的参考价值。

第二篇:一、引言红外通信是一种无线通信技术,具有无线、隐蔽、低功耗等特点,在各个领域得到了广泛的应用。

即时通信系统设计报告

即时通信系统设计报告

即时通信系统设计报告1. 引言即时通信系统是现代人们进行实时沟通的重要工具,其功能包括文字、语音、图片、视频等多种形式的交流方式。

随着社交网络的兴起,即时通信系统逐渐成为人们日常生活中必不可少的一部分。

本报告旨在设计一种高效、安全、稳定的即时通信系统,以满足现代人们对实时交流的需求。

2. 系统设计基于以上目标,我们提出了以下设计方案:2.1 架构设计我们采用客户端-服务器架构设计,并且引入云计算技术来保证系统的可扩展性和高可用性。

具体架构如下:![系统架构](system_architecture.png)- 客户端:用户通过安装在手机、电脑等设备上的客户端应用来进行实时通信。

- 服务器端:负责处理用户请求的服务器群集,主要包括用户认证、消息传输、联系人管理等功能。

2.2 功能设计我们的即时通信系统具备以下核心功能:- 用户注册与认证:用户可以通过客户端应用完成注册,并通过用户名和密码进行认证。

- 实时通信:用户可以与自己的联系人进行实时文字、语音、图片、视频等形式的交流。

- 消息同步:用户可以在不同设备之间同步消息记录,确保在任何时间、任何地点都可以获取到最新的消息。

- 联系人管理:用户可以添加、删除、编辑自己的联系人,并进行分组管理。

- 安全保障:我们将采用加密算法对用户消息进行加密,并采取严格的用户权限管理措施,保障用户的信息安全。

2.3 技术选型根据我们的设计目标,我们选择以下技术来实现即时通信系统:- 服务器端:采用Java或Python等面向对象的语言进行开发,并使用Spring、Django等框架来提高开发效率和可维护性。

- 数据库:选择可扩展性好、性能高的关系型数据库,如MySQL或PostgreSQL,并结合缓存技术来提升系统的读写能力。

- 客户端:根据设备的不同,选择相应的开发技术。

例如,可以使用React Native进行移动端开发,使用Electron进行桌面端开发。

3. 性能评估为了评估我们设计的即时通信系统的性能,我们将进行以下测试:- 压力测试:通过模拟大量用户并发登录、发送消息等操作,来测试系统在高并发场景下的性能表现。

(完整word版)基于FPGA的数字通信系统报告

(完整word版)基于FPGA的数字通信系统报告

基于FPGA的数字通信系统设计指导老师:李东明项目负责人:何兴凯项目成员:杜川王光辉李莉玲摘要:设计并实现了了一种基于FPGA的片上数字通信系统。

系统主要由编译码模块,调制解调模块,频率合成模块,FIR数字滤波模块,位同步模块以及加密解密模块组成,由这些模块组成一个完整的通信系统片上系统。

一、项目背景在通信领域,尤其是无线通信方面,随着技术的不断更新和新标准的发布,通信系统也在朝着高速率,高质量,高可靠性等方向不断发展着。

但可以清楚地看到,当今动辄成百上千兆的数据流一股脑的涌进,任何一个高速数据传输系统的稳定性和安全性等方方面面都面临着极大的挑战,稍有考虑不周之处就会引起各种各样的问题,为了提高通信系统的稳定性,将系统构建在一个芯片的内部,即构建所谓的片上系统,应该可以大幅度提高系统的稳定性。

借助于通信原理以及EDA技术等课程的专业知识,设计了一个基于FPGA的数字通信系统,主要目的是在片上系统的设计思想指导下,设计并实现一个片上数字通信系统。

二、系统总体方案设计鉴于当前高速数字通信系统的设计方案大多是现场可编程门阵列(FPGA)加片外存储介质(SDRAM、SRAM、DDR等)的组合,本次设计方案同样采用这种组合方式,具体为一片FPGA、三片静态存储器(SRAM)和一片高速数据传输芯片。

FPGA具有管脚多、内部逻辑资源丰富、足够的可用IP核等优点,用作整个高速数字通信系统的控制核心极为合适,本方案中选用Altera公司的高性价比CycloneII系列FPGA芯片;静态存储用具有的一大优点就是数据读取速度快,且控制信号简单,易操纵,适用作高速数据存储介质,其处理速度和存储容量均满足系统设计的需要。

与传统的DSP(数据信号处理器)或DPP(通用处理器)相比,FPGA在某些信号处理任务中表现出非常强的性能,而单片机的处理也显然逊色很多。

以下为整体的系统流程图:图1 系统设计框图三、程序运行平台Quartus II 9.0;Nios II 9.0 IDE ;Alter SOPC Builder 等四、系统模块具体实现1、编译码模块:信源编码有两个基本功能:一是提高信息传输的有效性,二是模拟信号完成AD转换后,可以实现数字化传输。

红外光语音通信系统设计报告

红外光语音通信系统设计报告

摘要本套设计是一个红外光语音通信系统,该系统采用一对850nm波长红外光发光、接收管作为收发器件,实现了定向语音信号传输,无明显失真条件下最大传输距离可达5m,并可以实时传输发射端环境温度。

设计采用STM32F10XC8T 作为控制核心,通信方式选用数字通信,即将语音信号放大滤波后进行A/D采样,转换为数字量以串行通信形式红外发射,接收端信号经过D/A转换后,放大、滤波,通过扬声器输出语音信号。

系统另外设计了中继转发结点,通信方向改变90度以后,依然可以实现清晰传输。

关键词:红外;语音信号;无线通信;温度显示目录1设计任务与要求 (1)1.1设计任务 (1)1.2要求 (1)2系统方案 (3)2.1方案比较与选择 (3)2.2总体方案设计 (5)3 理论分析与计算 (5)3.1通信原理分析 (5)3.2提高转发器效率方法 (7)4电路与程序设计 (8)4.1系统的硬件 (8)4.2程序结构与设计 (13)5 测试方案与测试结果 (15)参考文献 (17)附录一系统元器件清单 (18)1设计任务与要求1.1设计任务设计并制作一个红外光通信装置。

1.2要求1. 基本要求(1)红外光通信装置利用红外发光管和红外光接收模块作为收发器件,用来定向传输语音信号,传输距离为2m,如图1所示。

图1 红外光通信装置方框图(2)传输的语音信号可采用话筒或Φ3.5mm的音频插孔线路输入,也可由低频信号源输入;频率范围为300~3400Hz。

(3)接收的声音应无明显失真。

当发射端输入语音信号改为800Hz单音信号时,在8Ω电阻负载上,接收装置的输出电压有效值不小于0.4V。

不改变电路状态,减小发射端输入信号的幅度至0V,采用低频毫伏表(低频毫伏表为有效值显示,频率响应范围低端不大于10Hz、高端不小于1MHz)测量此时接收装置输出端噪声电压,读数不大于0.1V。

如果接收装置设有静噪功能,必须关闭该功能进行上述测试。

(4)当接收装置不能接收发射端发射的信号时,要用发光管指示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信系统课程设计报告题目:模拟线性调制系统的建模、设计与计算机仿真分析学院xx专业班级xx学生姓名xx学生学号xx提交日期 2015.6.28目录1 设计目的 (2)2 设计要求和设计指标 (2)3 设计内容 (3)3.1线性调制的一般原理 (3)3.2常规双边带调制AM (4)3.2.1 AM调制工作原理 (4)3.2.2 AM调制解调仿真电路 (5)3.2.3 AM调制解调仿真结果与分析 (5)3.3双边带调制DSB (9)3.3.1 DSB调制解调工作原理 (9)3.3.2 DSB调制解调仿真电路 (9)3.3.3 DSB调制解调仿真结果与分析 (10)3.4单边带调制SSB (14)3.4.1 SSB调制解调工作原理 (14)3.4.2 SSB调制解调仿真电路 (15)3.4.3 SSB调制解调仿真结果与分析 (16)4 本设计改进建议 (19)5 总结 (19)参考文献 (20)2 设计目的(1)使学生掌握系统各功能模块的基本工作原理;(2)培养学生掌握电路设计的基本思路和方法;(3)能提高学生对所学理论知识的理解能力;(4)能提高和挖掘学生对所学知识的实际应用能力即创新能力;(5)提高学生的科技论文写作能力。

2 设计要求和设计指标(1)学习SystemView仿真软件;(2)对需要仿真的通信系统各功能模块的工作原理进行分析;(3)提出系统的设计方案,选用合适的模块;(4)对所设计系统进行仿真;(5)并对仿真结果进行分析。

3 设计内容3.1 线性调制的一般原理模拟调制系统可分为线性调制和非线性调制,本课程设计只研究线性调制系统的设计与仿真。

线性调制系统中,常用的方法有AM 调制,DSB 调制,SSB 调制。

线性调制的一般原理:载波:)cos()(0ϕω+=t A t s c调制信号:)cos()()(0ϕω+=t t Am t s c m式中()t m —基带信号。

线性调制器的一般模型如图3-1在该模型中,适当选择带通滤波器的冲击响应()t h ,便可以得到各种线性调制信号。

线性解调器的一般模型如图3-2。

图3-2线性解调系统的一般模型其中()t s m —已调信号,()t n —信道加性高斯白噪声。

3.2 常规双边带调制AM3.2.1 AM 调制工作原理(1)调制原理如果输入基带信号()t m 含直流分量,则它可以表示为0m 与()t m '之和,其中,0m 是()t m 的直流分量,()t m '是表示消息变化的交流分量,且假设()t h 也是理想带通滤波器的冲激响应,如果满足max 0)(t m m '>,则信号为调幅(AM )信号,其时域表示形式为: ()()()00cos cos cos m c c c s t m m t t m t m t t ωωω''=+=+⎡⎤⎣⎦其对应的频域表示式为:''102()[()()][()()]m c c c c S m M M ωπδωωδωωωωωω=-+++-++式中 ''()()M m t ω⇔。

(2)解调原理通常AM 信号可以用相干解调(同步检测)和非相干解调(包络检波)两种方法进行解调。

由AM 信号的频谱可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。

解调中的频谱搬移同样可用调制时的相乘运算来实现。

将已调信号乘上一个与调制器同频同相的载波,可得21100022()cos()[()]cos [()][()]cos 2AM c c c s t t A m t t A m t A m t t ωωω⋅=+=+++由上式可知,只要用一个低通滤波器,就可以将第1项与第2项分离,无失真的恢复出原始的调制信号:102[()]A m t + 本设计采用了相干解调的方法进行解调,其原理框图如图3-3所示。

图3-3 相干解调原理框图3.2.2 AM调制解调仿真电路根据以上AM信号的调制与解调原理,用system view仿真的电路图如图3-4所示。

图3-4 AM调制解调仿真电路具体设计参数为:Token12、14:正弦载波信号,幅度为1V,频率为300HZ;Token1:增益为2;Token2、9:乘法器;Token6、7:加法器;Token4:正弦基带信号,幅度为1V,频率10HZ;Token10:低通滤波器,截止频率为12HZ,极点数为3。

采样频率=3000HZ,采样点数=1024。

3.2.3 AM调制解调仿真结果与分析仿真后的波形如图3-5所示:图3-5(a)载波信号图3-5(b)基带信号图3-5(c)AM已调信号图3-5(d)AM解调信号图3-5 AM调制解调波形图其中基带信号频谱、已调信号频谱及解调后信号频谱如下图3-6所示:图3-6(a)载波信号频谱图图3-6(b)基带信号频谱图图3-6(c)AM已调信号频谱图图3-6(d)AM解调信号频谱图图3-6 频谱比较图分析:AM调制为线性调制的一种,由图3-5可以看出,在波形上,已调信号的幅值随基带信号变化而呈正比地变化;由图3-6可以看出,在频谱结构上,它完全是基带信号频谱结构在频域内的简单搬移。

用相干解调法解调出来的信号与基带信号基本一致,实现了无失真传输。

3.3 双边带调制DSB3.3.1 DSB 调制解调工作原理(1)调制原理在图3-1中,如果输入的基带信号没有直流分量,且()h t 是理想的带通滤波器,则该基带信号与载波相乘就得到双边带信号(DSB 信号),或称双边带抑制载波信号。

其表达式为()()cos m c s t m t t ω=(2)解调原理DSB 信号只能用相干解调的方法进行解调,DSB 信号的解调模型与AM 信号相干解调时完全相同。

此时,乘法器输出为:21122()cos ()cos ()()cos 2DSB c c c s t t m t t m t m t t ωωω⋅==+ 经低通滤波器滤除高次项,得12()()o m t m t = 即无失真地恢复出了基带信号。

3.3.2 DSB 调制解调仿真电路根据以上DSB 信号的调制与解调原理,用system view 仿真的电路图如图7所示。

图3-7 DSB调制解调仿真电路图具体设计参数为:Token12、14:正弦载波信号,幅度为1V,频率为300HZ; Token15:增益为0;Token2、9:乘法器;Token16、7:加法器;Token4:正弦基带信号,幅度为1V,频率10HZ; Token10:低通滤波器,截止频率为12HZ,极点数为3。

采样频率=3000HZ,采样点数=1024。

3.3.3 DSB调制解调仿真结果与分析仿真后的波形如图3-8所示:图3-8(a)载波信号图3-8(b)基带信号图3-8(c)DSB已调信号图3-8(d)DSB解调信号图3-8 DSB调制解调波形图其中解调后信号频谱、已调信号频谱及基带信号频谱如下图3-9所示:图3-9(a)载波信号频谱图图3-9(b)基带信号频谱图图3-9(c)DSB已调信号频谱图图3-9(d)DSB解调信号频谱图图3-9 频谱比较图分析:DSB调制为线性调制的一种,由图3-8可以看出,在波形上,DSB调制信号有明显的包络,且存在反相点, 占用频带宽度比较宽,为基带信号的2倍;由图3-9可以看出,在频谱上,DSB信号不存在载波分量,即没有离散谱,只有上下边带两部分,调制效率为100%,即全部功率都用于信息传输。

由于DSB信号的包络不再与调制信号的变化规律一致,因此采用相干解调,低通滤波器的截止频率为12Hz,经相干解调后,与原信号波形一致,稍微存在一些延时。

3.4 单边带调制SSB3.4.1 SSB 调制解调工作原理(1)调制原理双边带已调信号包含有两个边带,即上、下边带。

由于这两个边带包含的信息相同,从信息传输的角度来考虑,传输一个边带就够了。

所谓单边带调制,就是只产生一个边带的调制方式。

故易知在DSB 调制后加适当截止频率的高通或低通滤波器便可产生相应SSB 信号。

通过低通滤波器后产生的下边带SSB 信号,表达式为:()()()t t mt t m t s c c m ωωsin ˆ5.0cos 5.0+= 通过高通滤波器后产生的上边带SSB 信号,表达式为: ()()()t t mt t m t s c c m ωωsin ˆ5.0cos 5.0-= 原理图如图3-10所示。

图3-10 SSB 调制系统原理图但是由于滤波器的截止特性不理想,这里采用移相法来设计。

设调制信号的单频信号t A t f m m ωcos )(=,载波为t t c c ωcos )(=,则调制后的双边带时域波形为()()()[]2/cos cos cos cos t w w A t w w A t t A t s m c m m c m c m m DSB -++==ωω保留上边带,波形为()()[]()2/sin sin cos cos 2/cos t w t w t w t w A t w w A t s m c m c m m c m USB -=+=保留下边带,波形为 ()()[]()2/sin sin cos cos 2/cos t w t w t w t w A t w w A t s m c m c m m c m lSB +=-=上两式中的第一项与调制信号和载波信号的乘积成正比,称为同相分量;而第二项的乘积则是调制信号与载波信号分别移相90°后相乘的结果,称为正交分量。

因此移相法的原理图如图3-11所示。

图3-11 SSB 移相法原理图(2)解调原理SSB 调制信号只能用相干解调方法解调。

解调原理和AM 的线性解调原理相同,解调原理图如图3-3所示。

3.4.2 SSB 调制解调仿真电路根据以上SSB 信号的调制与解调原理,用system view 仿真的电路图如图3-12所示。

图3-12 SSB调制解调仿真电路图具体设计参数为:Token0:正弦基带信号,幅度为0.5V,频率为10HZ; Token1、3、8:乘法器;Token5、6:加法器;Token4:相反器;Token2、11:正弦载波信号,幅度为1V,频率300HZ; Token10:低通滤波器,截止频率为10HZ,极点数为2。

采样频率=3000HZ,采样点数=1024。

3.4.3 SSB调制解调仿真结果与分析仿真后的波形如图3-13所示:图3-13(a)SSB下边带已调信号图3-13(b)SSB上边带已调信号图3-13(c)SSB下边带解调信号图3-13 SSB调制解调波形图其中解调后信号频谱、上边带信号频谱、下边带信号频谱及如下图3-14所示:图3-14(a)SSB下边带已调信号频谱图图3-14(b)SSB上边带已调信号频谱图图3-14(c)SSB下边带解调信号频谱图图3-14 频谱比较图分析:SSB调制信号与DSB调制信号的波形及频谱基本一致,与DSB相比较,SSB信号是将双边带信号中的一个边带滤掉而形成的,只包含了一个边带的信号,节省了带宽资源,调制效率仍是100%,带宽利用率高。

相关文档
最新文档