回溯PPT课件

合集下载

算法分析与设计回溯法ppt课件

算法分析与设计回溯法ppt课件

问题求解的方法
硬性处理法
– 列出所有候选解,逐个检查是否为所需要的解 – 理论上,候选解数量有限,并且通过检查所有或部分
候选解能够得到所需解时,上述方法可行
– 实际中则很少使用,因为候选解的数量通常都非常大 (比如指数级,甚至是大数阶乘),即便采用最快的 计算机也只能解决规模较小的问题。
回溯或分枝限界法
这种以深度优先方式搜索问题的解的方法称为 回溯法
回溯法思想
第一步:为问题定义一个状态空间(state space)。这 个空间必须至少包含问题的一个解
第二步:组织状态空间以便它能被容易地搜索。典型 的组织方法是图或树
第三步:按深度优先的方法从开始结点进行搜索
– 开始结点是一个活结点(也是 E-结点:expansion node) – 如果能从当前的E-结点移动到一个新结点,那么这个新结点将
权衡:限界函数生成结点数和限界函数 本身所需的计算时间
效率分析
效率分析中应考虑的因素
– (1)—(3)与实例无关 – (4)与实例相关
有可能只生成O(n)个结点,有可能生成 几乎全部结点
最坏情况时间
– O(p(n)2n),p(n)为n的多项式 – O(q(n)n!),q(n)为n的多项式
Monte Carlo效率估计(1)
解空间
隐式约束描述了xi必须彼此相关的情况, 如0/1背包问题中的背包重量M
回溯法求解的经典问题(1) 8-皇后问题
在一个8*8棋盘上放置8个皇后,且使得每两个 之间都不能互相“攻击”,也就是使得每两个 都不能在同一行、同一列及同一条斜角线上。
8皇后问题的解可以表示为8-元组(x1,…,x8) , 其中其中xi是第i行皇后所在的列号。
回溯法求解的经典问题(2) 子集和数问题

回溯法_ppt课件

回溯法_ppt课件
//h(i)表示在当前扩展节点处x[t]的第i个可选值
实 现 递 归
} }
if (Constraint(t) &&Bound(t) ) { if (Solution(t)) Output(x); else t ++; } else t --;
if (Constraint(t) &&Bound(t) ) { if (Solution(t)) Output(x); else t ++; } else t --; 分析:
算法设计与分析 >回溯法
5、回溯法解题步骤: 1).针对所给问题,定义问题的解空间 2).确定解空间结构. 3).以深度优先方式搜索解空间.
算法模式 Procedure BACKTRACK(n); {k:=l; repeat if TK (x1,x2,...xK-1 )中的值未取遍 then { xK:=TK (x1,x2,..., x K-1 )中未取过的一个值; if BK (x1, x2, ..., x K) then //状态结点(x1,...xk)被激活 if k=n then output(x1, x2, ..., xk) //输出度优先 e1se k:=k-l; //回溯 until k=0; end;{BACKTRACK}
if (Constraint(t)&&Bound(t) ) Backtrack(t + 1); if语句含义:Constraint(t)和Bound(t)表示当前扩展 节点处的约束函数和限界函数。 Constraint(t): 返回值为true时,在当前扩展节点处 x[1:t]的取值问题的约束条件,否则不满足问题的约束条 件,可剪去相应的子树 Bound(t): 返回的值为true时,在当前扩展节点处 x[1:t]的取值为时目标函数越界,还需由Backtrack(t+1) 对其相应的子树做进一步搜索。否则,当前扩展节点处 x[1:t]的取值是目标函数越界,可剪去相应的子树 for循环作用:搜索遍当前扩展的所有未搜索过的 子树。 递归出口:Backtrack(t)执行完毕,返回t-1层继续 执行,对还没有测试过的x[t-1]的值继续搜索。当t=1时, 若以测试完x[1]的所有可选值,外层调用就全部结束。

第四节事后回溯设计ppt课件

第四节事后回溯设计ppt课件
概述
• 事后回溯设计是指所研究的对象是已发生 过的事件,而且在研究过程中,研究者不 需要选择与分配被试。
• 在研究过程中,研究者不需要设计实验处 理或操纵自变量,只需通过观察存在的条 件或事实,将这种已自然发生的处理或自 变量与某种结果或因变量联系起来加以分 析,以便从中发现某种可能的简单关系。
设计模式
两类事后回溯设计
• (1)相关研究设计 • (2)准则组设计
(1)相关研究设计
• 相关研究设计是在一个被试组内收集两个集 合的数据,其中一个数据集合是观察到的结 果,另一个则是被追溯的数据集合,研究的 目的是确定这两个数据集合之间的关系(正 相关、负相关和无关)。
• 相关研究设计模式
(1)相关研究设计
均为等级影响!
• 皮尔逊简单积差相关: 用来度量定距型变量间的线 性相关系数。如:收入储蓄、身高体重、工龄和 收入等变量之间的线性相关关系。
• 斯皮尔曼等级相关:用于度量定序变量间的线性 相关关系。如:军队较远的军衔与职称、产品质 量的等级和返修次数等变量之间的线性关系。
评价
• 优点:可提供各个变量或现象之间相关的 程度和方向;可以在相关研究的基础上, 进一步设计严格的实验方案来讨论变量间 的因果关系。
• 缺点:不能操纵相关的实验过程,只能对 特定被试的特征既反映效果进行事后分析 ,只能得出相关关系不能得出因果关系。
• 编制心理测验时,相关研究不可缺少。
(2)准则组设计
相关研究与准则组研究
• 相关研究与准则组研究是事后回溯设计的两种主 要形式,这两种研究是相辅相成的。
• 相关研究的主要用途是辨认两个变量或两种现象 之间是否存在一定的关系及存在什么形式的关系;
• 准则组研究的主要用途则是通过准则组与非准则 组的对比,研究存在一定关系的两变量之间具有 什么样的状态特征。

第5章回溯法PPT课件

第5章回溯法PPT课件

二、回溯的一般描述
一旦某个j元组(x1,x2,…,xj)违反D中仅涉及 x1,x2,…,xj 的一个约束,就可以肯定,以(x1, x2,…,xj)为前缀的任何n元组
(x1,x2,…,xj,xj+1,…,xn)都不会是问题P 的解。
三、回溯的一般步骤
回溯法正是针对这类问题,利用这类问题的 上述性质而提出来的比枚举法效率更高的算 法。
由于这是第一次用计算机证明数学定理,所以哈肯 和阿佩尔的工作,不仅是解决了一个难题,而且从 根本上拓展了人们对“证明”的理解,引发了数学 家从数学及哲学方面对“证明”的思考。
实例—n皇后问题
在一个n×n的棋盘上放置n个国际象棋中 的皇后,要求所有的皇后之间都不形成攻 击。请你给出所有可能的排布方案数。
n
4
5
6
7
8
总数
2
10
4
40
92
n皇后问题
对于n皇后问题而言,我们很难找出很合适的方法 来快速的得到解,因此,我们只能采取最基本的枚 举法来求解。
但我们知道,在n×n的棋盘上放置n个棋子的所有
回溯算法(一)
什么是回溯
入口回溯
▪迷宫游戏
回溯
➢什么是回溯法
回溯
▪回溯法是一个既带
有系统性又带有跳跃
性的的搜索算法
回溯
▪回溯法是以深度优先的方式系统地搜索问题 出口 的解, 它适用于解一些组合数较大的问题。
回溯(Trackback)是什么?
为什么回溯?
怎样回溯?
What
Why
How
一、回溯的概念
解问题P的最朴素的方法就是枚举法,即对E 中的所有n元组逐一地检测其是否满足D的全 部约束,显然,其计算量是相当大的。

五大常用算法ppt课件

五大常用算法ppt课件

桥了。
A B→ 2 A←1
AC → 5 A←1
AD → 8
一共就是2+1+5+1+8=17分钟。
Your company slogan
贪心算法
但其实有更快的办法: AB→2 A←1 CD→8 B←2 AB→2
一共是2+1+8+2+2=15分钟。这个办法的聪明之处在于让两个走得最慢的人同时过桥, 这样花去的时间只是走得最慢的那个人花的时间,而走得次慢的那位就不用另花时间过 桥了。可以把所有可能的方案都列举一遍,就会发现这是最快的方案了。
Your company slogan
贪心算法
2015年周得水等人提出一种基于Dijkstra的贪心算法来实现模糊连接度的快速计算。 基于模糊连接度的图像分割过程如下: (1)由用户在图像中选取种子点; (2)计算图像中各点相对于种子点的模糊连接度,同时得到各点到种子点的最优路径; (3)对得到的最优路径进行各点相对于种子点的属性相似度计算,同时得到图像中各点新 的隶属度; (4)用户通过选取阈值来分割图像。
1. if |P|≤n0
2. then return(ADHOC(P)) 3. 将P分解为较小的子问题 P1 ,P2 ,...,Pk
4. for i←1 to k 5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi 6. T ← MERGE(y1,y2,...,yk) △ 合并子问题
后将各子问题的解合并得到原问题的解。(分治与递归)
适用情况: 1) 该问题的规模缩小到一定的程度就可以容易地解决; 2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; 3) 利用该问题分解出的子问题的解可以合并为该问题的解; 4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

最大团问题-回溯法ppt课件

最大团问题-回溯法ppt课件
G的最大团是指G中所含顶点数最多的团。
下图G中,子集{1,2}是G的大小为2的完全子图。这
个完全子图不是团,因为它被G的更大的完全子图{1,2,
5}包含。{1,2,5}是G的最大团。{1,4,5}和{2,3,5}
也是G的最大团。
1
2
3
4
5
01
问题描述
4
03 算法设计
无向图G的最大团问题可以看作是图G的顶点集V的子集选取问题。因此可 以用子集树表示问题的解空间。设当前扩展节点Z位于解空间树的第i层。在 进入左子树前,必须确认从顶点i到已入选的顶点集中每一个顶点都有边相连。 在进入右子树之前,必须确认还有足够多的可选择顶点使得算法有可能在右 子树中找到更大的团。
8
07 改进
•选择合适的搜索顺序,可以使得上界函数更有效的发挥作用。 例如在搜索之前可以将顶点按度从小到大排序。这在某种意义上 相当于给回溯法加入了启发性。 •定义Si={vi,vi+1,...,vn},依次求出Sn,Sn-1,...,S1的解。从 而得到一个更精确的上界函数,若cn+Si<=max则剪枝。同时注意 到:从Si+1到Si,如果找到一个更大的团,那么vi必然属于找到 的团,此时有Si=Si+1+1,否则Si=Si+1。因此只要max的值被更 新过,就可以确定已经找到最大值,不必再往下搜索了。
1
i=3 cn=2 bestn=0 2
i=4 tn=3
1
i=2 cn=0 bestn=3
2
2
i=3 cn=1 bestn=3
3
4
4
3
3
i=5 cn=2 bestn=0
4
4

回溯法ppt课件

回溯法ppt课件
分析:
可能解由一个等长向量(x1, x2, …, xn)组成, 其中
xi=1(1≤i≤n)表示物品i装入背包 xi=0(1≤i≤n)表示物品i没有装入背包
如:
当n=3时,其解空间是:
{ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
第5章 回溯法
学习要点
5.1 回溯法概述 5.2 回溯法的典型示例 5.3 回溯法的效率分析 本章小结
1
5.1 回溯法概述
5.1.1 问题的解空间 问题的解空间 两类典型的解空间
5.1.2 回溯法的基本思想 回溯法的基本思想 算法的框架 例:排列与组合 小结
15
排列树
分析
求赋权图G的具有最小权的Hamilton圈1
1解空间30:
2
2 34
64
5 10
3 42 4 2 3
3
4
20
4
34
23
2
当起点1固定时,上图有3!个周游路线(排列问题)
16
回溯法的基本思想
回溯法
回溯法是一种选优搜索法,按选优条件向前搜 索,以达到目标。
但当探索到某一步时,发现原先选择并不优或 达不到目标,就退回一步重新选择,这种走不 通就退回再走的技术为回溯法,而满足回溯条 件的某个状态的点称为“回溯点”。
若(x1, x2,… xi xi+1)满足约束条件, 则继续添加 xi+2 ;
若所有可能的xi+1 si+1均不满足约束条件,则去 掉xi , 回溯到(x1, x2,… xi-1), 添加尚未考虑过的xi;

回溯法 ppt课件

回溯法 ppt课件

回溯法举例:
[旅行商问题] 在这个问题中 ,给出一个n 顶点网络(有向 或无向) ,要求找出一个包含所有n 个顶点的具有最小耗 费的环路 。任何一个包含网络中所有n 个顶点的环路被称 作一个旅行(t o u r )。在旅行商问题中 ,要设法找到一 条最小耗费的旅行。 [分析]图给出了一个四顶点网络 。在这个网络中 ,一些旅
Bound(t) : 返回的值为true时 , 在当前扩展节点处 x[1: t]的取值为时 目标函数越界 , 还需由Backtrack(t+1) 对其相应的子树做进一步搜索 。否则 , 当前扩展节点处 x[1: t]的取值是目标函数越界 ,可剪去相应的子树
for循环作用: 搜索遍当前扩展的所有未搜索过的 子树。
si+1均不满足约束条件,则去掉xi , 回溯到(x 1 , x 2 , … xi-1), 添加尚 未考虑过的xi , 如此反复进行,直到(x1 , x2 , … xk) k n满足所有的 约束条件或证明无解.
E= { (x1 , x2 , … xn), xi si , si为有限集 }称为问题的解空间.
5. 1 回溯法基本思想
穷举法技术建议我们先生成所有的候选解 , 然后找出那个 具有需要特性的元素
1 、 回溯法主要思想是每次只构造解的一个分量 ,然后按照 鲜明的方法来评估这个部分构造解 。如果一个部分构造解可以进一 步构造而不会违反问题的约束 , 我们就接受对下一个分量所作的第 一个合法选择 。如果无法对下一个分量进行合法的选择 , 就不对剩 下的任何分量再做任何选择了 。在这种情况下 ,该算法进行回溯 , 把部分构造解的最后一个分量替换为它的下一个选择。
算法模式 Procedure BACKTRACK (n); {k := l;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 5 章 回溯
➢教学要求
➢ 了解回溯算法的概念与回溯设计要领 ➢ 掌握应用回溯算法求解桥本分数式、素数环、
数码串珠以及情侣拍照等典型案例
➢本章重点
➢ 理解回溯法 “向前走,碰壁回头”的实现
5.1 回溯概述
1. 回溯的概念
(1) 回溯法(Backtracking method)有“通用解题法”之 美称,是一种比枚举“聪明”的效率更高的搜索技术。
void iterativeBacktrack () {
int t=1; while (t>0) {
if (f(n,t)<=g(n,t)) for (int i=f(n,t);i<=g(n,t);i++) { x[t]=h(i); if (constraint(t)&&bound(t)) { if (solution(t)) output(x); else t++;} }
宽度优先的问题状态生成法:在一个扩展结点变成死结 点之前,它一直是扩展结点
回溯法:为了避免生成那些不可能产生最佳解的问题状 态,要不断地利用限界函数(bounding function)来处 死那些实际上不可能产生所需解的活结点,以减少问题 的计算量。具有限界函数的深度优先生成法称为回溯法8
子集树与排列树
从解的角度理解,回溯法将问题的候选解按某种顺序进行枚举和 检验。当发现当前候选解不可能是解时,就选择下一个候选解。 在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回 溯。若当前候选解除了不满足问题规模要求外,满足所有其他要 求时,继续扩大当前候选解的规模,并继续试探。如果当前候选 解满足包括问题规模在内的所有要求时,该候选解就是问题的一 个解。
如何在4×4的方格棋盘上放置4个皇后,使它们互不攻击:
4皇后搜索过程
4皇后问题(First Checking)
8皇后问题()
皇后数与解的个数
皇后数 解个数 11 20 30 42 5 10 64 7 40 8 92 9 352 10 724 11 2680 12 14200
3. 回溯剖析与描述
(1) 回溯求解的问题P: 对于已知的由n元组(x1,x2,…,xn)组成的一个状态空
间E={(x1,x2,…,xn)|xi∈si,i=1,2,…,n},给定关于n元 组中的约束集D,要求E中满足D的全部约束条件的所有n元 组。 对于约束集D具有完备性的问题P,一旦检测断定某个j 元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约 束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组 (x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就 不必去搜索它们,省略了对部分元素(xj+1,…,xn)的操作 与测试。
(2) 回溯法是一种试探求解的方法:通过对问题的归纳分 析,找出求解问题的一个线索,沿着这一线索往前试 探,若试探成功,即得到解;若试探失败,就逐步往 回退,换其他路线再往前试探。
(3) 回溯法可以形象地概括为“向前走,碰壁回头”,若 再往前走不可能得到解,就回溯,退一步另找线路, 这样可省去大量的无效操作,提高搜索效率。
void backtrack (int t) {
if (t>n) output(x); else
for (int i=f(n,t);i<=g(n,t);i++) { x[t]=h(i); if (constraint(t)&&bound(t)) backtrack(t+1); }
}
迭代回溯
采用树的非递归深度优先遍历算法,可将回溯法表示为一个非递 归迭代过程。
if(i<n && g) {i++;a[i]=<取值点>;continue;}
while(a[i]=<回溯点> &&a&& i==1) break; // 退出循环,结束
else a[i]=a[i]+1;
}
递归回溯
回溯法对解空间作深度优先搜索,因此,在一般情况下 用递归方法实现回溯法。
2. 回溯实现
回溯法的试探搜索,是一种组织得井井有条的、能避免一些不必 要搜索的枚举式搜索。回溯法在问题的解空间树中,从根结点出 发搜索解空间树,搜索至解空间树的任意一点,先判断该结点是 否包含问题的解;如果肯定不包含,则跳过对该结点为根的子树 的搜索,逐层向其父结点回溯;否则,进入该子树,继续搜索。
else t--; } }
生成问题状态的基本方法
扩展结点:一个正在产生儿子的结点称为扩展结点
活结点:一个自身已生成但其儿子还没有全部生成的节点 称做活结点
死结点:一个所有儿子已经产生的结点称做死结点
深度优先的问题状态生成法:如果对一个扩展结点R,一 旦产生了它的一个儿子C,就把C当做新的扩展结点。在 完成对子树C(以C为根的子树)的穷尽搜索之后,将R 重新变成扩展结点,继续生成R的下一个儿子(如果存在 )
遍历子集树需O(2n)计算时间
void backtrack (int t) { if (t>n) output(x); else for (int i=0;i<=1;i++) { x[t]=i; if (legal(t)) backtrack(t+1); }
遍历排列树需要O(n!)计算时间
void backtrack (int t)
{
if (t>n) output(x);
else
for (int i=t;i<=n;i++) {
swap(x[t], x[i]);
if (legal(t)) backtrack(t+1);
swap(x[t], x[i]);
9
}
4. 4皇后问题的回溯举例
4皇后问题回溯描述
(2) 回溯描述
对于一般含参量m,n的搜索问题,输入正整数n,m,(n≥m)
i=1;a[i]=<元素初值>;
while (1)
{for(g=1,k=i-1;k>=1;k--)
if( <约束条件1> ) g=0; // 检测约束条件,不满足则返回
if(g && <约束条件2>) printf(a[1:m]); // 输出解
相关文档
最新文档