大数据挖掘方法与应用
数据挖掘领域十大经典算法以及适用领域

数据挖掘领域⼗⼤经典算法以及适⽤领域1.AdaboostAdaboost算法是⼀种提升⽅法,将多个弱分类器,组合成强分类器。
AdaBoost,是英⽂”Adaptive Boosting“(⾃适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。
它的⾃适应在于:前⼀个弱分类器分错的样本的权值(样本对应的权值)会得到加强,权值更新后的样本再次被⽤来训练下⼀个新的弱分类器。
在每轮训练中,⽤总体(样本总体)训练新的弱分类器,产⽣新的样本权值、该弱分类器的话语权,⼀直迭代直到达到预定的错误率或达到指定的最⼤迭代次数。
总体——样本——个体三者间的关系需要搞清除总体N。
样本:{ni}i从1到M。
个体:如n1=(1,2),样本n1中有两个个体。
算法原理(1)初始化训练数据(每个样本)的权值分布:如果有N个样本,则每⼀个训练的样本点最开始时都被赋予相同的权重:1/N。
(2)训练弱分类器。
具体训练过程中,如果某个样本已经被准确地分类,那么在构造下⼀个训练集中,它的权重就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提⾼。
同时,得到弱分类器对应的话语权。
然后,更新权值后的样本集被⽤于训练下⼀个分类器,整个训练过程如此迭代地进⾏下去。
(3)将各个训练得到的弱分类器组合成强分类器。
各个弱分类器的训练过程结束后,分类误差率⼩的弱分类器的话语权较⼤,其在最终的分类函数中起着较⼤的决定作⽤,⽽分类误差率⼤的弱分类器的话语权较⼩,其在最终的分类函数中起着较⼩的决定作⽤。
换⾔之,误差率低的弱分类器在最终分类器中占的⽐例较⼤,反之较⼩。
优点(1)精度很⾼的分类器(2)提供的是框架,可以使⽤各种⽅法构建弱分类器(3)简单,不需要做特征筛选(4)不⽤担⼼过度拟合实际应⽤(1)⽤于⼆分类或多分类(2)特征选择(3)分类⼈物的baseline2.C4.5C4.5是决策树算法的⼀种。
决策树算法作为⼀种分类算法,⽬标就是将具有p维特征的n个样本分到c个类别中去。
大数据分析与挖掘的方法与技术

大数据分析与挖掘的方法与技术近年来,随着各行业的数字化进程不断加速,大数据逐渐成为了一种无所不在的存在。
各大企业和机构纷纷开始运用大数据分析和挖掘技术,从海量数据中提取出有价值的信息,这不仅提升了工作效率,同时也促进了各行各业的发展。
那么,大数据分析和挖掘究竟包含哪些方法和技术呢?本文将为您一一进行介绍。
一、数据挖掘数据挖掘是从海量数据中发掘未知、潜在、有价值的信息的过程。
在应用大数据分析和挖掘技术时,首要的步骤就是进行数据挖掘。
在这个过程中,主要的任务是发现数据中的规律和关系,以及发掘潜在的价值。
那么,数据挖掘的具体方法是什么呢?常见的几种方法包括分类、聚类、关联规则挖掘和异常检测等。
分类是指对事物进行分组;聚类是将相似的事物聚在一起;关联规则挖掘是通过数据的联系来分析数据项之间的关系;而异常检测则是针对异常数据点的寻找。
二、机器学习机器学习是一种让计算机能够自主学习的方法,通过给出大量的数据和标签,让计算机逐渐学习到其中的规律和模式。
在大数据分析和挖掘中,机器学习常被应用来进行自动分类、预测和推荐等。
机器学习的算法方法非常多,包括决策树、支持向量机、神经网络等。
其中决策树是一种用于分类和预测的常见方法,支持向量机则主要应用于分类和回归问题,神经网络是一种类人类大脑学习的技术,被广泛应用于图像识别、语音识别等领域。
三、数据可视化数据可视化是将抽象的数据通过图表和图形等形式进行视觉化呈现的过程。
在大数据分析和挖掘中,数据可视化常被用于帮助人们更好地理解和分析复杂的数据信息。
数据可视化的方法和技术非常多,例如线图、柱状图、饼图、气泡图、散点图等。
这些方法和技术可以将数据信息转化为图形化的呈现,使得人们更加直观地了解数据的关系和趋势。
四、自然语言处理自然语言处理是一种使计算机能够理解和处理自然语言的方法。
在大数据分析和挖掘中,自然语言处理常被用于处理文本数据,例如情感分析、命名实体识别、关键词抽取等。
医学大数据分析和挖掘

医学大数据分析和挖掘引言医学大数据分析和挖掘是当前医学研究的热门领域。
随着时间的推移,今天的医学已经不再仅仅是以过去所熟知的人工方法来进行研究和分析。
通过使用计算机技术和各种算法转换,我们现在可以从各种各样的医学数据中更精准地获得信息和洞察力,以推动医学的发展。
一. 医学大数据的概念和特点医学大数据是指以医学研究为目的,获得的海量数据。
医学大数据的来源包括医院患者的病例记录、临床试验数据、生命科学数据等。
医学大数据的特点是样本数量庞大、特征复杂、数据精度高。
二. 医学大数据应用1. 电子病历数据分析随着信息技术的快速发展,越来越多的医院采用了电子病历系统。
医生可以通过电子病历系统快速记录、查看和管理患者的病历信息。
电子病历还可以与临床试验和公共卫生计划等其他医疗系统进行互联,从而实现更加智能化的医学服务。
医学大数据分析可以从电子病历系统中提取各种医疗信息,如就诊记录、实验室数据、处方信息等,为医疗保健提供更加准确和有效的支持。
2. 医学生物信息学医学生物信息学是一门交叉学科,将计算机科学和生物学相结合,用于分析生物学和医学系统中的数据。
生物技术已经开始广泛应用于新药研发、癌症研究、基因组学等领域。
医学大数据分析为这些生物技术的研究和发展提供了巨大的潜力,例如基因组学、转录组学和蛋白质组学,这些已经成为当代医学和生物科学研究的主要方法。
3. 临床试验数据分析临床试验数据是医学大数据中一项非常重要的领域。
临床试验一般是在新药上市前的必经之路,为了保证试验结果的科学性和客观性,需要进行多中心、大样本、双盲、随机、对照试验,从而产生大量高质量的数据。
医学大数据分析可以处理这些数据,以找到药物在不同人群中的疗效差异,以及药物副作用和安全性问题,并为临床试验的设计提供支持和改进。
三. 医学数据挖掘的方法和应用1. 聚类分析聚类分析是用于识别数据集中固有的结构的一种方法。
它将数据分组,并找到具有相似性的对象或数据点,并为每个组分配一个标签。
大数据分析和挖掘的方法和技术

大数据分析和挖掘的方法和技术大数据分析和挖掘是指通过对大规模、高速生成的数据进行收集、整理、分析和挖掘,从中提取出有价值的信息和知识的过程。
随着信息技术的发展和互联网的普及,大数据分析和挖掘的应用越来越广泛,涉及到各个领域,如金融、医疗、零售、交通等。
本文将介绍大数据分析和挖掘的方法和技术。
1.数据收集与清洗:数据收集是大数据分析和挖掘的第一步,需要收集到足够的数据量。
数据清洗是指对收集到的数据进行预处理,包括去除重复数据、处理缺失数据、数据转换等。
数据清洗对后续的分析和挖掘过程起到至关重要的作用,保证数据的准确性和完整性。
2. 数据存储与管理:大数据分析和挖掘需要处理海量的数据,因此需要使用分布式存储系统来存储和管理数据。
常见的分布式存储系统有Hadoop和Spark等。
这些系统可以将数据分散存储在多个节点上,提高数据的处理能力和可扩展性。
3.数据预处理:在进行大数据分析和挖掘之前,需要对数据进行预处理,包括数据清洗、数据变换和数据规约等。
数据变换是指对原始数据进行变换,以便更好地适应挖掘算法。
例如,对于文本数据,可以进行词袋模型或TF-IDF等转换。
数据规约是指对数据进行降维处理,以减少数据的复杂度和提高挖掘算法的效率。
4.数据分析与挖掘:数据分析和挖掘是大数据分析的核心环节,目的是从大数据中挖掘出有价值的模式、规律和知识。
常见的数据分析和挖掘方法包括统计分析、机器学习、数据挖掘和深度学习等。
通过这些方法,可以对数据进行分类、聚类、预测和关联分析等。
5.可视化与报告:大数据分析和挖掘的结果通常通过可视化和报告呈现,以便用户更好地理解和利用这些结果。
可视化可以通过图表、地图和仪表盘等形式展示数据分析和挖掘的结果。
报告可以将结果进行总结和解释,以便用户能够更好地理解数据的意义和应用。
6.故障检测与调优:大数据分析和挖掘的过程中,可能会遇到各种故障和性能问题。
因此,需要进行故障检测和调优。
故障检测是指识别和解决可能存在的错误和异常,以确保分析和挖掘的结果的准确性。
大数据挖掘基础知识解析

大数据挖掘基础知识解析随着互联网和物联网的迅速发展,各种形式的数据不断涌现,大数据时代已经到来。
如何从海量数据中找到有用的信息,并为企业和个人决策提供依据,已经成为当今社会所关注和追求的问题。
而大数据挖掘作为从数据中发掘规律和知识的一种重要手段,正在被广泛应用。
本文将对大数据挖掘的基础知识进行解析。
一、什么是大数据挖掘?大数据挖掘是指在大数据集中发现新的、有价值的、难以被发现的知识和信息的过程,它是通过挖掘数据的内在联系和规律来获得有用的信息。
大数据挖掘需要结合多个学科的理论和技术,如企业决策分析、机器学习、数据库管理、高性能计算等。
二、大数据挖掘的应用领域(1)金融领域。
通过大数据挖掘,可以对金融市场的趋势和风险进行分析和预测,以便制定有效的投资策略。
(2)医疗领域。
医疗数据是一个重要的大数据源,大数据挖掘可以帮助医生和医院进行患者诊治方面的决策,判断病情的严重性,诊断疾病,对医疗资源进行优化调配。
(3)市场营销。
大数据挖掘可以分析和预测消费者的购物行为和购买趋势,以便制定更加精准的市场营销策略和增加销售额。
(4)社交媒体。
大数据挖掘可以对社交媒体数据进行分析,帮助企业了解和掌握用户的需求和喜好,以便进行更有针对性的产品研发和服务。
三、大数据挖掘的主要技术与方法(1)数据集成。
大数据挖掘需要从各个数据源中搜集数据,并将其进行整合和清洗,以便于后续的处理与分析。
(2)数据预处理。
数据预处理是大数据挖掘中的一个重要步骤,它包括数据采样、数据过滤、数据转换、数据标准化等。
通过对数据进行预处理,可以确保数据的质量和可信度。
(3)数据探索性分析。
数据探索性分析可以帮助挖掘潜在的模式和知识。
它主要包括可视化和统计分析两个方面。
(4)分类预测。
分类预测是大数据挖掘中的一项重要任务,它可以将数据集中的对象分为几个不同的类别,以便于后续的决策分析。
(5)聚类分析。
聚类分析是大数据挖掘中的一种无监督学习方法,它可以将数据集中的对象分为若干个不同的簇,以便于挖掘簇内的规律和知识。
数据挖掘的技术与方法

数据挖掘的技术与方法数据挖掘是一种从大规模的数据集中提取有价值的信息和知识的过程。
它涉及到多种技术和方法,以帮助我们在海量数据中发现隐藏的模式和规律。
本文将介绍数据挖掘的一些常见技术和方法。
一、聚类分析聚类分析是一种无监督学习方法,可将数据集中的对象分成不同的组或簇。
聚类算法尝试将相似的数据对象放入同一组,同时将不相似的对象分配到不同的组。
常见的聚类方法包括K均值聚类、层次聚类和密度聚类等。
K均值聚类是一种常用的聚类算法,它将数据通过计算样本之间的距离,将样本划分为K个簇。
其基本思想是将数据集中的样本划分为K个簇,使得簇内的样本相似度最大化,而簇间的样本相似度最小化。
二、分类分析分类分析是一种有监督学习方法,旨在根据已知的数据样本进行分类预测。
分类算法将已知类别的训练集输入模型,并根据训练集中的模式和规律进行分类。
常见的分类算法包括决策树、朴素贝叶斯和支持向量机等。
决策树是一种基于树状图模型的分类算法,它通过一系列的判断节点将数据集划分为不同的类别。
朴素贝叶斯是一种基于贝叶斯定理的分类算法,它假设各个特征之间相互独立。
支持向量机是一种基于最大间隔的分类算法,它通过寻找一个最优超平面,将不同的类别分开。
三、关联规则挖掘关联规则挖掘是一种用于识别数据项之间关联关系的方法。
它可以用于发现频繁项集以及项集之间的关联规则。
Apriori算法是一种常用的关联规则挖掘算法。
它基于候选项集的生成和剪枝,通过逐层扫描数据集来发现频繁项集。
同时,根据频繁项集可以生成关联规则,以揭示数据项之间的关联关系。
四、异常检测异常检测是一种用于识别与预期模式和行为不符的数据项或事件的方法。
异常检测可以帮助我们发现数据中的异常值、离群点或潜在的欺诈行为。
常见的异常检测算法包括基于统计学的方法、聚类方法和支持向量机等。
基于统计学的方法通过对数据进行概率分布建模,来识别与模型不符的数据项。
聚类方法通过将数据进行分组,并检测离群点所在的簇。
大数据挖掘与分析

大数据挖掘与分析摘要:随着科技的发展和数字化时代的到来,大数据成为了各个行业无法忽视的重要资源。
大数据的数量庞大、多样性和速度快等特点为企业提供了许多机会和潜在价值。
然而,光有数据还不够,对大数据进行挖掘和分析才能揭示出隐藏在其中的有价值信息。
本文将介绍大数据挖掘与分析的概念和方法,并探讨其在商业和科学领域的应用。
一、引言随着互联网和物联网的普及,大量的数据被生成和记录,这些数据涵盖了各个方面的信息,储藏着宝贵的知识。
然而,如何从这些大数据中找到有价值的信息,成为了一个挑战。
大数据挖掘与分析应运而生,它借助于计算机技术和数据分析方法,旨在发现数据中的模式、规律和相关性,并通过这些分析结果为决策提供支持。
二、大数据挖掘的概念大数据挖掘是指通过运用各种算法和技术,从海量数据中提取出有价值的信息或知识的过程。
这些信息可以是隐含在数据背后的模式、规律、趋势或关联关系。
大数据挖掘的目标是帮助企业和组织更好地理解其数据,发现其中的价值并利用这些信息来做出更准确的决策。
三、大数据分析的方法1. 数据预处理在进行大数据挖掘之前,首先需要对数据进行预处理。
这包括数据清洗、数据集成、数据变换和数据规约等步骤。
数据预处理的目的是清除数据中的噪声、缺失值和不一致的项,以保证后续分析的准确性和可靠性。
2. 数据挖掘算法大数据挖掘中有许多常用的算法和技术,包括关联规则挖掘、聚类分析、分类和预测、异常检测和文本挖掘等。
每个算法都有其特定的应用场景和优劣势,根据具体的需求选择合适的算法是进行大数据分析的关键。
3. 数据可视化和解释大数据分析的结果通常是海量的、复杂的数据集,难以直接理解和解释。
因此,数据可视化和解释是大数据分析的重要环节。
通过将分析结果可视化,可以更直观地展示数据中的模式和关联,从而帮助决策者更好地理解数据和做出正确的决策。
四、大数据挖掘的商业应用大数据挖掘在商业领域有着广泛的应用。
其中,营销和销售方面是最常见的应用场景。
大数据分析和挖掘的技术和方法

大数据分析和挖掘的技术和方法在信息时代,大数据已经成为了企业和机构决策的基础。
对于大数据的分析和挖掘已经成为了一项非常重要的技术。
本文将从技术和方法两个方面探讨大数据分析和挖掘。
技术方面1.数据存储技术大量的数据需要存储才能用于分析和挖掘。
目前常用的存储技术包括关系型数据库、非关系型数据库和分布式文件系统。
其中,关系型数据库适合于数据之间存在着明确的关联和依赖关系的数据,而非关系型数据库适合于数据之间关联极少或不存在关联关系的数据。
分布式文件系统则是适合于无序数据和大规模数据,且能够扩展数据存储。
2.数据采集技术数据的采集需要借助于各种采集技术。
常见的数据采集技术包括数据挖掘、爬虫、传感器、日志和网络日志等。
数据采集技术的关键之一是保证数据的准确性和完整性,因此需要在采集过程中设计合理的机制来保证数据的质量。
3.数据清洗技术大数据的数据量之大会导致数据中的噪音和错误增多,需要采用数据清洗技术去掉其中的噪音和错误。
数据清洗技术常用的算法有相似性匹配、规范化、数据仓库和自适应过滤等。
4.数据挖掘技术数据挖掘是大数据分析的核心技术,其目标是挖掘数据中的规律、趋势和模式等信息。
数据挖掘技术可分为聚类、分类、关联分析、回归分析等。
方法方面1.业务理解和问题定义大数据分析和挖掘需要基于业务理解对问题进行定义和分析,从而明确研究需要解决的具体问题。
通过定义问题并深入理解问题,才能采取到正确的数据分析和挖掘方法。
2.数据探索和可视化数据探索和可视化是另一个重要的环节。
通过数据可视化可以快速发现数据中的问题和异常,同时可以更加直观的发现数据之间的关联关系和趋势。
数据探索和可视化可以帮助研究者更快速的收集和组织数据,从而为深度研究做好准备。
3.模型建立和分析模型建立和分析是数据分析和挖掘中最重要的部分之一。
在这里,分析者需要找到合适的算法,设计合适的模型进行建立和分析。
例如,可以使用机器学习中的分类、回归等算法,寻求解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
decentralized control, and seeks to explore
Complex and
Evolving relationships among data. 9
大数据数据挖掘的挑战
students’ satisfaction
2
舍布鲁克大学主校区
3
舍布鲁克大学主校园
4
舍布鲁克大学主校园
5
舍布鲁克大学医学院校区
6
舍布鲁克大学蒙特利尔分校
7
Agenda
大数据数据挖掘的挑战 超高维数据挖掘的若干问题
异常检测 聚类和分类
序列数据的聚类算法
显著模式的发现和应用
序列数据的统计模型 应用
images or videos for X-ray examination and CT scan microarray expression images and sequences for a DNA or
genomic-related test,
Heterogeneous features : different types of representations for the same individuals,
Fraud detection Fault diagnosis Intrusion detection Satellite image analysis Public health monitoring Etc.
15
Outline of the work
Defining a new measurement weighted holo-entropy
大数据挖掘方法与应用
王声瑞 舍布鲁克大学
2014-12-06
1
加拿大舍布鲁克大学
37000 students from more than 100 countries Coop programs (Work/Study) Exceptional human and natural environments Strong research in healthcare, sciences and
Diverse features : variety of the features involved to represent each single observation
11
大数据数据挖掘的挑战
12
主要合作单位
CHUS
13
高维数据挖掘的若干问题:异常检测
Outlier detection and recommendation systems
According to IBM (2012), 2.5 quintillion bytes of data are generated each data
1 quintillion = 10 18 bytes 90 percent of the data in the world today were
Proposing two practical, 1-parameter algorithms for detecting outliers in large-scale categorical datasets
16
Holo-entropy
Holo-entropy
is the sum of the entndom vector .
Entropy describes the uncertainty related to a whole data set.
Total correlation is the sum of mutual information measuring the shared information of a dataset.
S. Wu and S. Wang, “Parameter-free Outlier Detection for Large-scale Categorical Data”, IEEE Trans. on Knowledge and Data Engineering, 2013
14
INFORMATION-THEORETIC OUTLIER DETECTION FOR LARGE-SCALE CATEGORICAL DATA
Formulating as an optimization problem
Defining differential holo-entropy Computing and updating the outlier factor of an object Providing upper bound on outliers
produced within the past two years
10
大数据数据挖掘的挑战
A single human being in a biomedical world can be represented by using
simple demographic information such as gender, age, family disease history
engineering, and business administration $185M in research fundings per year 7th to 14th places in Macleans rankings, 235th place in global Leiden rankings 1st in Canada in terms of invention revenues, and
社交媒体数据挖掘
8
大数据数据挖掘的挑战
5V : Volume + Variety + Velocity + Variability + Veracity
HACE Theorem (Wu et al, IEEE TKDE, 2014): Big Data starts with large-volume,