流体流型的观察与测定(包括误差分析及思考题答案)

合集下载

流体流型的观察与测定

流体流型的观察与测定

流体流型的观察与测定首先,观察流体流型可以利用实验室中的设备进行。

比如,通过在流体中加入颜料或者荧光粉等物质,可以观察流体流动时的颜色和亮度变化,从而了解流体运动的特性。

此外,还可以利用流线管和涡流计等仪器来观察流体流动的线条和涡旋状况。

这些设备可以帮助我们直观地了解流体的流型。

其次,测定流体流型需要借助一些测量仪器和技术。

最常用的技术之一是测速仪器。

测速仪器可以用来测定流体流动的速度和方向,根据流体速度的分布可以得到流体流动的轨迹和流型。

其中,常见的测速仪器有激光多普勒测速仪、超声波测速仪和热线测速仪等。

这些仪器可以通过测量流体中流动粒子或者声波的频率和位移来计算出流体的速度和方向。

此外,还可以利用压力传感器和压力测量仪器来测定流体流型。

流体流动时的压力分布与流体的速度和方向有密切的关系,通过测量不同位置处的压力,并结合流场方程和质量守恒定律等基本理论,可以计算出流体的速度和流型。

一种常见的压力测量方法是利用测压法来确定流体流动的静压和动压。

此外,还可以利用摄影和高速摄像技术来观察和记录流体流型。

通过高速摄像机可以捕捉流体流动时的细微变化,比如湍流的形成和消失,从而对流体流型进行定量分析。

这种技术非常适用于研究高速流动和复杂流动现象。

最后,还可以借助数值模拟和计算流体力学方法来观察和测定流体流型。

数值模拟是利用计算机模拟流体流动的过程和行为,通过求解流体力学方程和边界条件,可以得到流体流动的速度、压力和流型等信息。

这种方法尤其适用于复杂的三维流动和非定常流动。

总之,流体流型的观察与测定是流体力学中重要的研究内容。

通过实验观察、测速仪器、压力测量、摄影和数值模拟等方法,我们可以了解和测定流体流动的速度、压力和流型等信息,从而深入研究流体力学的各个方面。

这些技术和方法在航空、水利、化工等领域有着广泛的应用和研究价值。

流体力学思考题解答

流体力学思考题解答

流体力学实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

2、 当0<B p 时,试根据记录数据确定水箱的真空区域。

答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度为0∇-∇=H AP γ的一段水注亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H AP γ。

3、 若再备一根直尺,试采用另外最简便的方法测定0γ。

答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。

4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4= 式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。

常温C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。

水与玻璃的浸润角θ很小,可认为0.1cos =θ。

于是有dh 7.29= ()mm d h 单位均为、 一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。

化工原理实验思考题以及答案

化工原理实验思考题以及答案

化工原理实验思考题以及答案1.什么是判断流体流动类型的依据,它的计算式是什么?其在什么范围内为湍流,在什么范围内为层流?答:判断流体流动类型的依据是雷诺数,它的计算式是Re 当Re4000时,形成湍流,当Re≤20XX年时为层流。

2.在雷诺演示实验中,为什么要将顶上水槽内的液面维持恒定?答:为了保持水压稳定从而使流速稳定。

对于一定温度的流体,在特定的圆管内du , 流体在直圆管内流动时,流动,雷诺准数只与流速有关。

本实验是改变水在管内的速度,观察不同雷诺准数下流体流型的变化。

要想观察不同雷诺数下的流体类型,那么在某一雷诺准数下的流速要维持恒定。

假如顶上水槽的液面不断变化,那么管中流体的流速也会不断改变,无法达到实验要求。

所以,顶上水槽内的液面要维持恒定。

3.液液萃取实验的原理是什么?实验中塔高的计算方法是什么?答:液液萃取实验的原理是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。

萃取塔的有效接触高度H HOR NOR NOR xF xRxm4.测定全回流和部分回流总板效率与单板效率时各需测几个参数?取样位置在何处?答:测定全回流总板效率要测定塔顶浓度和塔底浓度,分别在塔顶回流液处、塔底处取样;同时还应已知相平衡关系,全塔实际板数。

测定全回流单板效率要测定yn、yn+1、xn;分别取第n块塔板上下汽相样及第n块板降液管内的液样;同时还应已知相平衡关系。

5.筛板精馏塔实验中,查取进料液的汽化潜热时定性温度取何值?答:应取进料液的泡点温度作为定性温度。

6.过滤的基本原理是什么?影响过滤速度的主要因素有那些?答:过滤是以某种多孔物质为介质来处理悬浮液以达到固、液分离的一种操作过程,即在外力的作用下,悬浮液中的液体通过固体颗粒层(即滤渣层)及多孔介质的孔道而固体颗粒被截留下来形成滤渣层,从而实现固、液分离。

影响过滤速度的主要因素有压力差△p,滤饼厚度L,滤饼和悬浮液的性质、组成、特性,悬浮液温度,过滤介质的阻力等。

流体力学实验思考题解答

流体力学实验思考题解答

流体力学实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

2、 当0<B p 时,试根据记录数据确定水箱的真空区域。

答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度为0∇-∇=H AP γ的一段水注亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H AP γ。

3、 若再备一根直尺,试采用另外最简便的方法测定0γ。

答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。

4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。

常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。

水与玻璃的浸润角θ很小,可认为0.1cos =θ。

于是有一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。

另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。

流体思考题参考答案

流体思考题参考答案

部分思考题参考答案流速测定实验思考题1、直读式光电流速仪显示的流速值是质点流速还是空间点流速?答:空间点流速2、为什么每个测点要读三次读数,并取算术平均值?答:减小水体紊流脉动影响,提高实验精度。

3、为什么在使用光电传感器时要避免振动?答:振动会引起测针产生位移,损坏仪器。

流量测量实验思考题1、答:理想流体的h ∆比实际流体的小。

2、答:因为有水头损失存在。

体积法的精度高。

3、答:影响因素有εν,,,,21T d d 等,其中最为敏感的是21,d d能量方程(伯努利方程)实验1、答:总水头线总是沿程下降,而测压管水头线有时下降,有时升高,取决于管路中动能与势能的相互转化。

2、答:降低。

因为流量增大,速度变大,动能增大,相应的测压管水头减小。

3、答:测点2、3为恒定渐变流断面上两个测点,压强符合静水压强分布规律。

测点10,11为恒定急变流断面上两个测点,压强不符合静水压强分布规律。

不能取该断面列能量方程。

4、答:措施有:增大管径;减小流量;降低水箱水位。

水箱水位降低,则喉管处压强减小。

5、答:毕托管所测流速为探头对准点的速度,而不等于断面的平均速度,所以毕托管水面与总水头线略有差异,只有当测点距管壁0.12d 时,两速度才近似相等,误差才会较小。

动量方程实验1、答:原因:①调节水箱水位时,系统为非定常流动,未待系统稳定就开始读数,引起系统误差,②体积法测流量时,接水与计时存在偶然误差,③测压管读数误差2、答:无关。

因为此时所获得的力矩在沿x轴方向的投影为零,对沿x轴方向的动量力就没有影响3、答:若出流角度偏离90°角,会引起x轴方向上的动量分量不为零。

实验要求出流角度与入流角度成90°角。

所以出流角度对实验有影响。

沿程阻力系数测定实验1、答:对定常均匀流动,断面平均速度沿程不变,即两断面上动能相等,所以沿程损失等于测压管水头之差。

管道倾斜安装不影响实验结果。

2、答:管径、断面平均速度、水的密度和粘度、水体温度、管壁粗糙度。

化工原理实验课后思考题答案

化工原理实验课后思考题答案

精品文档实验流体流动阻力的测定1、进行测试系统的排气工作时,是否应关闭系统的出口阀门?为什么?答:在进行测试系统的排气时,不应关闭系统的出口阀门,因为出口阀门是排气的通道,若关闭,将无法排气,启动离心泵后会发生气缚现象,无法输送液体。

2、如何检验系统内的空气已经被排除干净?答:可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;若开机后真空表和压力表的读数为零,则表明,系统内的空气没排干净。

3、在U形压差计上装设“平衡阀”有何作用?在什么情况下它是开着的,又在什么情况下它应该关闭的?答:用来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,平衡阀能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例精品文档.精品文档增减,仍然满足当前气候需要下的部份负荷的流量需求,起到平衡的作用。

平衡阀在投运时是打开的,正常运行时是关闭的。

4、U行压差计的零位应如何校正?答:先打开平衡阀,关闭二个截止阀,即可U行压差计进行零点校验。

5、为什么本实验数据须在对数坐标纸上进行标绘?答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。

6、你在本实验中掌握了哪些测试流量、压强的方法,它们各有什么特点?答:测流量用转子流量计、测压强用U形管压差计,差压变送器。

转子流量计,随流量的大小,转子可以上、下浮动。

U形管压差计结构简单,使用方便、经济。

差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测精品文档.精品文档大流量下的压强差。

实验离心泵特性曲线的测定1、离心泵启动前为什么要先灌水排气?本实验装置中的离心泵在安装上有何特点?答:为了防止打不上水、即气缚现象发生。

2、启动泵前为什么要先关闭出口阀,待启动后,再逐渐开大?而停泵时,也要先关闭出口阀?答:防止电机过载。

流体中流动阻力系数的测定思考题答案

流体中流动阻力系数的测定思考题答案

流体中流动阻力系数的测定思考题答案
1、如何检验测试系统内的空气已经被排除干净?若测压管道中存有气体将对测量带来什么影响?
答:实验开始前和结束后,都应关闭泵的出口阀,检查倒U型压差计各臂读数是否相同,如不相等,则测压系统中有气泡,需重新排气。

2.怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净?
答:启动离心泵用大流量水循环把残留在系统内的空气带走。

关闭出口阀后,
打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。

3.排气的目的?
答:为了排走管路中的气泡,防止对实验数据的测量造成误差。

4在不同设备(包括相对粗糙度相同而管径不同)、不同温下测定的λ-Re 数据能否关联在一条曲线上?
答:不一定,因为λ和Re与流体的密度和粘度有关。

密度与粘度与温度有关。

所以不一定呢能关联到同一条曲线上
5、以水作工作流体所测得的λ-Re关系能否适用于其他种类的牛顿型流体?为什么?
答:其他牛顿型流体的物理性质,如密度,黏度等和水不同,而λ、Re和密度,黏度有关,所以不适用于其他流体。

6.如果要增加雷诺数的范围,可采取那些措施?
答:更改管径,更改流体温度,从而更改流体的粘度和密度。

1/ 1。

流体力学实验思考题解答

流体力学实验思考题解答

流体力学实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

2、 当0<B p 时,试根据记录数据确定水箱的真空区域。

答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度为0∇-∇=H AP γ的一段水注亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H A P γ。

3、 若再备一根直尺,试采用另外最简便的方法测定0γ。

答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。

4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4= 式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。

常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。

水与玻璃的浸润角θ很小,可认为0.1cos =θ。

于是有dh 7.29= ()mm d h 单位均为、 一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 流体流型观测及临界雷诺数的测定
一.实验数据记录
1.实验设备基本参数: 试验导管内径d=Φ23mm
转子流量计 公称通径=25mm
2.实验数据记录:
二.实验数据处理
1.查表知18℃水的相关物理参数如下: 密度 ρ= m 3
黏度μ=2
-⋅⋅m
s mN
2.数据处理
17.88)898885908988(616
16
1
11=+++++==
∑=i i
Q Q L ·h -1
33.188)208181180191190180(6
16
16
2
22
=+++++==∑=i i Q Q L ·h -1
由u d Q 24
π
=

ρ
du =
Re 知,d
Q μπρ
4Re =
代入数据得:
12821023100559.136005.9981017.884Re 333
1332
=⨯⨯⨯⋅⋅⨯⨯⋅⨯⋅⨯⨯=------m
m s N m kg s m π下
27381023100559.136005.9981033.1884Re 3
233
133=⨯⨯⨯⋅⋅⨯⨯⋅⨯⋅⨯⨯=------m
m s N m kg s m π上
三.实验误差分析
Re 文献理论值: 下临界值为下Re =2000,上限临界值为上Re =4000 实验产生误差的主要原因:
1.实验中未调节红墨水流量。

红墨水的注射速度应与主体流速相随,随水流速增加,需相应增加红墨水的注射流量。

这是实验产生误差的主要原因。

2.每次调节后,都要等到流动型态稳定后,再记录数据,这是实验产生误差的一个重要
原因。

3.由于个人对流体流型的判断差异,也是实验产生误差的主要原因。

4.实验前未对转子流量计进行标定,由于转子流量计具有恒压差,需进行系统读数校正,这也是引起读数误差的一个主要原因。

5.稳压水槽中的溢流水量,随着操作流量的改变需相应调节,既不能让水位下降亦不能发生泛滥。

稳压水槽中的水位变化会使流速不稳定也会产生一定误差。

6.实验中碰撞设备,操作应轻巧缓慢,大声说话等都会干扰流体的稳定状态。

7.实验中未检查针头。

针头位置应与液体流速平行且应位于管轴线上方为佳。

四.思考题
1.雷诺数的物理意义是什么
答:雷诺数的物理意义是表征惯性力与黏性力之比。

惯性力加剧湍动,黏性力拟制湍动。

若流体的流速大或黏度小,Re 便大,表示惯性力占主导地位;雷诺数愈大,湍动程度愈激烈。

若流体的速度小或黏度大,Re 便小,小到临界值以下,则黏性力占主导地位。

2.有人说可以只用流体的速度来判断管中流体的流动形态,当流速低于某一具体数值是层流,否则是湍流,你认为这种看法对否,在什么条件下可以用流速来判断流体的流动形态
答:不对。

()μρ,,,Re u d f =,仅通过流体的速度来判断流体流型是不合理的。

只有对某一确定的流体,在相同的条件下,在一定的管径内流动时,才可以用流速u 来判断流体的流动形态。

相关文档
最新文档