2016.4.北京西城高三一模_文科数学__真题

合集下载

北京市西城区2016届高三一模考试数学文试题 含答案

北京市西城区2016届高三一模考试数学文试题 含答案

北京市西城区2016年高三一模试卷数 学(文科) 2016.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1。

设集合2{|}4A x x x =≤,集合{1,2,3,4}B =--,则AB =( )(A ){1,2}- (B){2,4} (C ){3,1}-- (D){1,2,3,4}-- 2. 设命题p :0,sin 21xx x ∃>>-,则⌝p 为( )(A)0,sin 21xx x ∀>-≤ (B )0,sin 21xx x ∃><- (C )0,sin 21xx x ∀><- (D )0,sin 21x x x ∃>-≤3。

如果()f x 是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是( )(A )()y x f x =+ (B )()y xf x = (C )2()y x f x =+ (D )2()y x f x =4.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示。

若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )(A ){2} (B ){1,2} (C){0,1,2} (D){2,3}5。

在平面直角坐标系xOy 中,向量OA =(-1, 2),OB=(2, m ) , 若O , A , B 三点能构成三角形,则( )(A )4m =- (B )4m ≠- (C )1m ≠ (D)m ∈R甲队 乙队 890 1m8236。

执行如图所示的程序框图,若输入的,A S 分别为0, 1,则输出的S =( )(A )4 (B )16 (C )27 (D )36 7. 设函数12()log f x x x a=+-,则“(1,3)a ∈”是 “函数()f x 在(2,8)上存在零点”的( )(A)充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D)既不充分也不必要条件 8。

2016届高三西城一模文科数学试卷与答案解析-无水印

2016届高三西城一模文科数学试卷与答案解析-无水印
出 a , b , c 的值 值. (结论不要求证明)
2 2 2 1 (注: s 2 x1 x x2 x xn x ,其中 x 为数据 为 x1 , x2 ,…, xn 的平均 n





数) (本小题满分 分 14 分) 19.
x2 y 2 1 m 0 的长 长轴长为 2 6 , O 为坐标 标原点. 3m m (Ⅰ)求椭圆 圆 C 的方程和 和离心率;
且当 当x (本小题满分 16. ( 分 13 分)
a1 d a1 5d 10 , 【解 解析】⑴由题 题意,得 a1 d a1 5d 21.
π 1 co os 2 x 2 2
1 sin s 2x 2
(4 分)
1 1 1 π sin 2 x cos 2 x s 2 2 2 2
1 1 1 s 2 x sin 2 x sin 2 2 2
1 . 2 所以函数 数 f x 的最小 小正周期为 n . sin n 2x
因为 为0≤ x≤
所以 以
π 1 1 3 1 ≤ sin 2 x ≤ . 3 2 2 2 2
(11 分) )
π 5π 1 时, , f x 取到最大值 取 ; 6 12 2 π 3 1 当 x 0 时, f x 取到 到最小值 . 2 2 6
2016 高三一模
北京 京市西城区 区 2016 年高三一模 模试卷 数学(文科)2016.4
本试卷分 分第Ⅰ卷和第 第Ⅱ卷两部 部分,第Ⅰ卷 卷 1 至 2 页,第Ⅱ卷 页 3 至 6 页, ,共 150 0 分. 考试时 时长 120 分钟 钟. 考生务必 必将答案答 答在答题纸上 上, 在试卷上 上作答无效 效. 考 试结 结束后,将 将本试卷和答 答题纸一并 并交回. 第Ⅰ卷 卷(选择题 共 40 分)

北京市西城区高考一模考试数学试题(文)含答案解析

北京市西城区高考一模考试数学试题(文)含答案解析

西城区高三统一测试数学(文科) .4第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{1,2,3,4,5,6}U =,集合{1,3,5}A =,{1,4}B =,那么UA B =(A ){3,5} (B ){2,4,6} (C ){1,2,4,6} (D ){1,2,3,5,6}2.在复平面内,复数1ii+的对应点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3.双曲线2213x y -=的焦点坐标是(A )2),(0,2) (B )2,0),(2,0) (C )(0,2),(0,2)-(D )(2,0),(2,0)-4.函数21()()log 2x f x x =-的零点个数为 (A )0(B )1(C )2 (D )35.函数()f x 定义在(,)-∞+∞上.则“曲线()y f x =过原点”是“()f x 为奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件6.在ABC △中,点D 满足3BC BD −−→−−→=,则 (A )1233AD AB AC −−→−−→−−→=+ (B )1233AD AB AC −−→−−→−−→=- (C )2133AD AB AC −−→−−→−−→=+(D )2133AD AB AC −−→−−→−−→=-7.在正方形网格中,某四面体的三视图如图所示.如果小正方形网格的边长为1,那么该四面体最长棱的棱长为 (A )3(B )6 (C )42(D )258.函数()f x 的图象上任意一点(,)A x y 的坐标满足条件||x 质P .下列函数中,具有性质P 的是 (A )2()f x x = (B )21()1f x x =+ (C )()sin f x x = (D )()ln(1)f x x =+第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.函数()xf x 的定义域为____. 10.执行如图所示的程序框图. 当输入1ln 2x =时,输出的y 值为____.11.圆22:2210C x y x y +--+=的圆心坐标是____; 直线 :0l x y -=与圆C 相交于,A B 两点,则||AB =____. 12.函数sin 4()1cos4xf x x=+的最小正周期是____.13.实数,x y 满足1,2,220,x y x y ⎧⎪⎨⎪+-⎩≤≤≥则22x y +的最大值是____;最小值是____.14. 如图,正方体1111ABCD A B C D -的棱长为2,点P 在正方形ABCD 的边界及其内部运动.平面区域W 由所有满足15A P P 组成,则W 的面积是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知{}n a 是等比数列,13a =,424a =.数列{}n b 满足11b =,48b =-,且{}n n a b +是等差数列.(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和.16.(本小题满分13分)在△ABC 中,角,,A B C 的对边分别为,,a b c ,且tan 2sin a C c A =. (Ⅰ)求角C 的大小; (Ⅱ)求sin sin A B +的最大值.17.(本小题满分13分)在测试中,客观题难度的计算公式为ii R P N=,其中i P 为第i 题的难度,i R 为答对该题的人数,N 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:题号 1 2 3 4 5 考前预估难度i P 0.90.80.70.60.4测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):学生编号 题号 1 234 5 1 × √ √ √ √2 √ √ √ √ ×3 √ √ √ √× 4 √ √√ ××5√ √ √ √ √ 6 √ × × √ × 7 × √ √√× 8 √ × × × × 9 √ √ ××× 10 √ √√√×(Ⅰ)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;题号 1 2 3 4 5 实测答对人数 实测难度(Ⅱ)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率; (Ⅲ)定义统计量22211221[()()()]n n S P P P P P P n'''=-+-++-,其中i P '为第i 题的实测难度,i P 为第i 题的预估难度(1,2,,)i n =.规定:若0.05S <,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.18.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA AC =.过点A 的平面与棱,,PB PC PD 分别交于点,,E F G (,,E F G 三点均不在棱的端点处).(Ⅰ)求证:平面PAB ⊥平面PBC ; (Ⅱ)若PC ⊥平面AEFG ,求PFPC的值; (Ⅲ)直线AE 是否可能与平面PCD 平行?证明你的结论.19.(本小题满分14分)如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,F 为椭圆C 的右焦点.(,0)A a -, ||3AF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,P 为椭圆上一点,AP 的中点为M .直线OM 与直线4x =交于点D ,过O 作OE DF ⊥,交直线4x =于点E .求证://OE AP .20.(本小题满分13分)已知函数21()e 2x f x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-.(Ⅰ)求直线l 的方程(用0x 表示); (Ⅱ)求直线l 在y 轴上的截距的取值范围;(Ⅲ)设直线y a =分别与曲线()y f x =和射线1([0,))y x x =-∈+∞交于,M N 两点,求||MN 的最小值及此时a 的值.西城区高三统一测试高三数学(文科)参考答案及评分标准.4一、选择题:本大题共8小题,每小题5分,共40分. 1.A 2.D 3.C 4.B 5.B 6.C 7.B 8.C二、填空题:本大题共6小题,每小题5分,共30分.9.{|0x x ≥,且1}x ≠ 10.12 11.(1,1);212.π2 13.5;4514.π44-注:第11,13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)设等比数列{}n a 的公比为q ,由题意得3418a q a ==, 解得 2q =. [ 2分] 所以 11132(1,2,)n n n a a q n --=⋅=⋅=. [ 4分]设等差数列{}n n a b +的公差为d ,由题意得4411()()1644413a b a b d +-+-===-. [ 6分]所以 11()(1)4n n a b a b n d n +=++-=. [ 8分] 从而 1432(1,2,)n n b n n -=-⋅=.[ 9分](Ⅱ)由(Ⅰ)知1432(1,2,)n n b n n -=-⋅=.数列{4}n 的前n 项和为2(1)n n +;数列1{32}n -⋅的前n 项和为3(21)n ⋅-.[12分]所以,数列{}n b 的前n 项和为 222323n n n +-⋅+. [13分]16.(本小题满分13分) 解:(Ⅰ) 由 tan 2sin a C c A =,得sin 2sin cos a C A c C⋅=. [ 1分] 由正弦定理得 sin sin 2sin sin cos A CA C C⋅=. [ 3分] 所以 1cos 2C =. [ 4分] 因为 (0,π)C ∈, [ 5分] 所以 π3C =. [ 6分] (Ⅱ) sin sin A B +2πsin sin()3A A =+- [ 7分] 33sin 2A A = [ 9分] π3sin()6A +. [11分]因为 π3C =,所以 2π03A <<, [12分]所以 当π3A =时,sin sin AB +3 [13分]17.(本小题满分13分)解:(Ⅰ)每道题实测的答对人数及相应的实测难度如下表:题号 1 2 3 4 5 实测答对人数 8 8 7 7 2 实测难度0.80.80.70.70.2[ 4分]所以,估计120人中有1200.224⨯=人答对第5题. [ 5分](Ⅱ)记编号为i 的学生为(1,2,3,4,5)i A i =,从这5人中随机抽取2人,不同的抽取方法有10种.其中恰好有1人答对第5题的抽取方法为12(,)A A ,13(,)A A ,14(,)A A ,25(,)A A ,35(,)A A ,45(,)A A ,共6种. [ 9分]所以,从抽样的10名学生中随机抽取2名答对至少4道题的学生,恰好有1人答对第5题的概率为63105P ==. [10分](Ⅲ)i P '为抽样的10名学生中第i 题的实测难度,用i P '作为这120名学生第i 题的实测难度.222221[(0.80.9)(0.80.8)(0.70.7)(0.70.6)(0.20.4)]5S =-+-+-+-+-0.012=. [12分]因为 0.0120.05S =<,所以,该次测试的难度预估是合理的. [13分]18.(本小题满分14分) 解:(Ⅰ)因为PA ⊥平面ABCD ,所以PA BC ⊥. [ 1分] 因为ABCD 为正方形,所以AB BC ⊥, [ 2分] 所以BC ⊥平面PAB . [ 3分] 所以平面PAB ⊥平面PBC . [ 4分] (Ⅱ)连接AF . [ 5分]因为 PC ⊥平面AEFG ,所以 PC AF ⊥. [ 7分]又因为 PA AC =,所以 F 是PC 的中点. [ 8分] 所以12PF PC =. [ 9分] (Ⅲ)AE 与平面PCD 不可能平行. [10分]证明如下:假设//AE 平面PCD ,因为 //AB CD ,AB ⊄平面PCD .所以 //AB 平面PCD . [12分] 而 AE AB ⊂,平面PAB ,所以 平面//PAB 平面PCD ,这显然矛盾! [13分] 所以假设不成立,即AE 与平面PCD 不可能平行. [14分]19.(本小题满分14分)解:(Ⅰ)设椭圆C 的半焦距为c .依题意,得12c a =,3a c +=. [ 2分] 解得 2a =,1c =. 所以 2223b a c =-=,所以椭圆C 的方程是 22143x y +=. [ 5分](Ⅱ)解法一:由(Ⅰ)得 (2,0)A -.设AP 的中点00(,)M x y ,11(,)P x y .设直线AP 的方程为:(2)(0)y k x k =+≠,将其代入椭圆方程,整理得2222(43)1616120k x k x k +++-=, [ 7分] 所以 21216243k x k --+=+. [ 8分]所以 202843k x k -=+,0026(2)43k y k x k =+=+,即 22286(,)4343k kM k k -++. [ 9分]所以直线OM 的斜率是 22263438443k k k k k +=--+, [10分]所以直线OM 的方程是 34y x k =-.令4x =,得3(4,)D k-. [11分] 由(1,0)F ,得直线DF 的斜率是 3141k k-=--, [12分]因为OE DF ⊥,所以直线OE 的斜率为k , [13分] 所以直线//OE AP . [14分]解法二:由(Ⅰ)得 (2,0)A -.设111(,)(2)P x y x ≠±,其中221134120x y +-=.因为AP 的中点为M ,所以 112(,)22x y M -. [ 6分] 所以直线OM 的斜率是 112OM y k x =-, [ 7分] 所以直线OM 的方程是 112y y x x =-.令4x =,得114(4,)2y D x -. [ 8分] 由(1,0)F ,得直线DF 的斜率是 1143(2)DF y k x =-. [ 9分]因为直线AP 的斜率是 112AP y k x =+, [10分] 所以 2121413(4)DF APy k k x ⋅==--, [12分] 所以 AP DF ⊥. [13分] 因为 OE DF ⊥,所以 //OE AP . [14分]20.(本小题满分13分)解:(Ⅰ) 对()f x 求导数,得()e x f x x '=-, [ 1分]所以切线l 的斜率为000()e x x f x '=-, [ 2分] 由此得切线l 的方程为:000002(1(e 2))e ()x x x x x y x ----=,即 000020(e )(1)1e 2x x x x y x x =+-+-. [ 3分](Ⅱ) 由(Ⅰ)得,直线l 在y 轴上的截距为0020(1)1e 2x x x +-. [ 4分]设 2()(1)1e 2x g x x x +=-,[1,1]x ∈-. 所以 ()(1e )x g x x '=-,令()0g x '=,得0x =. ()g x ,()g x '的变化情况如下表:x1-(1,0)- 0 (0,1) 1()g x '-0 -()g x21e 2+ ↘ 1↘12所以函数()g x 在[1,1]-上单调递减, [ 6分]所以max 21[()](1)e 2g x g =-=+,min 1[()](1)2g x g ==, 所以直线l 在y 轴上的截距的取值范围是121[,]2e 2+. [ 8分](Ⅲ)过M 作x 轴的垂线,与射线1y x =-交于点Q ,所以△MNQ 是等腰直角三角形. [ 9分]所以 21|||||()()||e 1|2x MN MQ f x g x x x ==-=--+. [10分] 设 21()e 12x h x x x =--+,[0,)x ∈+∞, 所以 ()e 1x h x x '=--.令 ()e 1x k x x =--,则()e 10(0)x k x x '=->>, 所以 ()()k x h x '=在[0,)+∞上单调递增, 所以 ()(0)0h x h ''=≥,从而 ()h x 在[0,)+∞上单调递增, [12分] 所以 min [()](0)2h x h ==,此时(0,1)M ,(2,1)N .11 / 11 所以 ||MN 的最小值为2,此时1a . [13分]。

2016年北京高考数学文科试题及答案

2016年北京高考数学文科试题及答案

绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题:共8个小题,每小题5分,共40 1.已知集合={|24}A x x <<,B =A B =()A.{|25}x x << B.{|4x x <或5}x >2x <或x >2.复数122i i+=-() A.i B.1i + C.i -D.1i -3.执行如图所示的程序框图,输出的s4. A.5.圆(x +6.概率为825D.925 7.已知(2,5)A ,(4,1)B ,若点(,)P x y 在线段AB 上,则2x y -的最大值为()A.?1B.3C.7D.88.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A.2号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛二、填空题共69.已知向量=a b 10.函数()(1x f x x x =≥-12.,则_____________.a =,则bc =_________. 14.19种商品,第二天售出13种商品,3种,后两天都售出的商品有4种,则该网店: 种;②这三天售出的商品最少有_______种.15.(本小题13分)已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =.(1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和.16.(本小题13分)已知函数)0(2cos cos sin 2)(>+=ωωωωx x x x f 的最小正周期为π.(1)求ω的值;(2)求)(x f 的单调递增区间.17.(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I )如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II )假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.18.(本小题14分)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面;(II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB .19.(本小题14分)已知椭圆C :22221x y a b+=过点(Ⅱ)设P 为第三象限内一点且在椭圆C 上,N ,求证:四边形20.(本小题13c 的取值范围;.C考点:集合交集【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.2.【答案】A【解析】 试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 考点:复数运算【名师点睛】项式的合并同类项,再将3.的条件)D 符合题意,故选D.(2)(减)函数与一个减(增)函数的差是增(减)函数;(3).5.【答案】C考点:直线与圆的位置关系【名师点睛】点),(00y x 到直线b kx y +=(即0=--b kx y )的距离公式2001||k b kx y d +--=记忆容易,对于知d 求k ,b 很方便.6.【答案】B【解析】试题分析:所求概率为142525C P C ==,故选B. 考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式nm A P =)(求出事件A 的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m ,n,再运用公式7.(1);④数形结合法;⑤换元法(;⑦不等式法,如(4),(5)问题,如应重点掌握.B分别是3,6,7,10,(1,5并列),49号需进30秒跳绳比赛名,,10,9,还需3个编号为1-8的同学进决赛,而(1,5)与4的成绩仅相隔1,故只能1,5,4进30秒跳绳的决赛,故选B.考点:统计【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.9.【答案】30考点:平面向量数量积 【名师点睛】由向量数量积的定义θcos ||||⋅⋅=⋅(θ为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.10.【答案】2【解析】 试题分析:1()11f x x =+-(1);④数形结合法;⑤换元法(;⑦不等式法,如(4),(5)问题,如(5)3.2.常见的有以下几对应的几何体为圆锥;④三视图为一个三角.12.【答案】1,2a b ==.【解析】试题分析:依题意有2c b a ⎧=⎪⎨=-⎪⎩,结合222c a b =+,解得1,2a b ==.考点:双曲线的基本概念【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数. 求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.13.【答案】1考点:解三角形【名师点睛】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关14.试题分析:①由于前二天都售出的商品有3种,②同①第三售出的商品中有14时,是第三天中14,,A B C是能力立意的好题,关键在于分析商品出.1,2,3,⋅⋅⋅);(2)2312-+n n 21n =-,13n n b -=.1213n n -=-+.n 的前n 项和2312n n -=+. 考点:等差、等比数列的通项公式和前n 项和公式,考查运算能力.【名师点睛】1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一;2.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,1=q 或1≠q )等.16.【答案】(Ⅰ)1ω=(Ⅱ)3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). 考点:两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间(III )棱PB 上存在点F平面C F E ,C F E .常作的辅助线是在其中一个面内(必要时可以通过平面几何的.19.【答案】(Ⅰ)2214x y +=;2=e (Ⅱ)见解析.所以离心率c e a ==. 从而四边形ABNM 的面积为定值.考点:椭圆方程,直线和椭圆的关系,运算求解能力.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.20.【答案】(Ⅰ)y bx c =+;(Ⅱ)320,27c ⎛⎫∈ ⎪⎝⎭;(III )见解析. (II )当4a b ==时,()3244f x x x x c =+++,所以()2384f x x x '=++.。

北京市西城区2016届高三上学期期末考试文数试题解析(解析版)

北京市西城区2016届高三上学期期末考试文数试题解析(解析版)

第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|}A x x a =>,集合{1,1,2}B =-,若A B B =,则实数a 的取值范围是( )(A )(1,)+∞ (B )(,1)-∞(C )(1,)-+∞(D )(,1)-∞-【答案】D 【解析】 试题分析:由AB B =,知B A ⊆,所以1a <-,故选D .考点:集合的运算,集合的关系.2. 下列函数中,值域为[0,)+∞的偶函数是( )(A )21y x =+ (B )lg y x = (C )||y x = (D )cos y x x = 【答案】C 【解析】试题分析:B ,D 不是偶函数,A 是偶函数,但值域为[1,)+∞,C 是偶函数,值域也是[0,)+∞.故选C . 考点:函数的奇偶性与值域.3.设M 是ABC ∆所在平面内一点,且BM MC =,则AM =( )(A )AB AC - (B )AB AC + (C )1()2AB AC - (D )1()2AB AC +【答案】D 【解析】试题分析:AM AB BM =+,又AM AC CM AC MC =+=-,所以2AM AB AC =+,即1()2AM AB AC =+.故选D . 考点:向量的线性运算.4.设命题p :“若e 1x >,则0x >”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为真命题(C )“p ⌝”为真命题 (D )以上都不对 【答案】B 【解析】试题分析:命题p :“若1x e >,则0x >”是真命题, 命题q :“若a >b ,则11a b<”,如:a=1,b=﹣1,故命题q 是假命题, 故p∨q 是真命题, 故选:B .考点:复合命题的真假. 考点:5. 一个几何体的三视图如图所示,那么这个几何体的表面积是( )(A)16+ (B)16+ (C)20+ (D)20+【答案】B 【解析】试题分析:由已知中的三视图可得:该几何体是一个以主视图为底面的四棱柱, 其底面面积为:×(1+2)×2=3, 底面周长为:高为:2,故四棱柱的表面积S=2×3+(16+, 故选:B侧(左)视图正(主)视图俯视图考点:由三视图求面积、体积.6. “0mn <”是“曲线221x y m n+=是焦点在x 轴上的双曲线”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B 【解析】试题分析:“曲线221x y m n+=是焦点在x 轴上的双曲线”,则0,0m n ><,0mn <,但当0mn <时,可能有0,0m n <>,此时双曲线的焦点在y 轴上,因此“0mn <”是“曲线221x ym n+=是焦点在x 轴上的双曲线”的必要而不充分条件.故选B . 考点:充分必要条件7. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( )(A )32 (B )32- (C )14 (D )14- 【答案】C 【解析】试题分析:由约束条件13y x x y y m -≤⎧⎪+≤⎨⎪≥⎩作出可行域如图,联立13y x x y -=⎧⎨+=⎩,解得A (1,2),联立1y my x =⎧⎨-=⎩,解得B (m ﹣1,m ),化z=x+3y ,得33x zy =-+. 由图可知,当直线33x zy =-+过A 时,z 有最大值为7,当直线33x zy =-+过B 时,z 有最大值为4m ﹣1, 由题意,7﹣(4m ﹣1)=7,解得:m=14.故选:C .考点:简单线性规划.8. 某市乘坐出租车的收费办法如下:相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1处应填( )(A )12[]42y x =-+ (B )12[]52y x =-+ (C )12[]42y x =++ (D )12[]52y x =++ 【答案】D 【解析】试题分析:由已知中,超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费); 当车程超过4千米时,另收燃油附加费1元. 可得:当x >4时,所收费用y=12+[x ﹣4+12]×2+1=12[]52x ++, 故选:D考点:程序框图;分段函数的应用;函数模型的选择与应用.第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____. 【答案】13i -- 【解析】试题分析:由z (1+i )=2﹣4i ,得24(24)(1)26131(1)(1)2i i i iz i i i i -----====--++-. 故答案为:﹣1﹣3i .考点:复数代数形式的乘除运算.10.若抛物线22C y px =:的焦点在直线30x y +-=上,则实数p =____;抛物线C 的准线方程为____. 【答案】6 , 3x =- 【解析】试题分析:抛物线2:2C y px =的焦点是(,0)2p ,由题意的0302p+-=,6p =,准线方程为3x =-. 考点:抛物线的几何性质.11.某校某年级有100名学生,已知这些学生完成家庭作业的时间均在区间[0.5,3.5)内(单位:小时),现将这100人完成家庭作业的时间分为3组:[0.5,1.5),[1.5, 2.5),[2.5,3.5)加以统计,得到如图所示的频率分布直方图.在这100人中,采用分层抽样的方法抽取10名学生研究其视力状况与完成作业时间的相关性,则在抽取样本中,完成作业的时间小于2.5个小时的有_____人.【答案】9 【解析】试题分析:由直方图知抽取的10人中完成作业的时间多于2.5个小时的有100.11⨯=人,因此完成作业的时间小于2.5个小时的有10-1=9人. 考点:频率分布直方图12.已知函数()f x 的部分图象如图所示,若不等式2()4f x t -<+<的解集为(1,2)-,则实数t 的值为____.【答案】1 【解析】试题分析:由题意03x t <+<,3t x t -<<-,所以132t t -=-⎧⎨-=⎩,1t =.考点:函数的单调性.13. 在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若πsin cos()2A B =-,3a =,2c =,则cos C =____;∆ABC 的面积为____.【答案】79,【解析】试题分析:由已知sin cos()sin 2A B B π=-=,又,A B 是三角形的内角,所以A B =,所以3b a ==,则2222223327cos 22339a b c C ab +-+-===⨯⨯,sin C ===,11sin 3322ABC S ab C ∆==⨯⨯=. 考点:余弦定理,三角形的面积.14. 某食品的保鲜时间t (单位:小时)与储藏温度x (恒温,单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.○1 该食品在8C 的保鲜时间是_____小时;○2 已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,那么到了此日13时,甲所购买的食品是否过了保鲜时间______.(填“是”或“否”) 【答案】①4 , ②是 【解析】试题分析:①∵食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系664,02,0kx x t x +≤⎧=⎨>⎩且该食品在4℃的保鲜时间是16小时. ∴24k+6=16,即4k+6=4,解得:k=﹣12, ∴16264,02,0x x t x -+≤⎧⎪=⎨⎪>⎩,当x=8时,t=4,故①该食品在6℃的保鲜时间是4小时;②到了此日10时,温度超过8度,此时保鲜时间不超过4小时,故到13时,甲所购买的食品不在保鲜时间内,故填是.考点:命题的真假判断与应用.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知数列{}n a 是等比数列,并且123,1,a a a +是公差为3-的等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n n b a =,记n S 为数列{}n b 的前n 项和,证明:163n S <. 【答案】(Ⅰ)42n n a -=;(Ⅱ)证明见解析.(Ⅱ)证明:因为122214n n n n b a b a ++==, 所以数列{}n b 是以124b a ==为首项,14为公比的等比数列. ……………… 8分所以14[1()]4114n n S -=- ……………… 11分 16116[1()]343n =-<. ……………… 13分 考点:等比数列的通项公式,等比数列的前n 项和. 16.(本小题满分13分)已知函数()cos (sin )f x x x x =+,x ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若(0,π)x ∈,求函数()f x 的单调增区间. 【答案】(Ⅰ)π;(Ⅱ)增区间为π(0]12,,7π[,π)12.(Ⅱ)由ππππ2π+23222x k k -+≤≤,k ∈Z , ……………… 9分得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ……………… 11分 所以当(0,π)x ∈时,()f x 的增区间为π(0]12,,7π[,π)12. ……………… 13分(注:或者写成增区间为π(0)12,,7π(,π)12. )考点:三角函数的周期,单调性. 17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=,侧面PAB ⊥底面ABCD ,90BAP ∠=,6AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ; (Ⅲ)当12PM MD =时,求四棱锥M ECDF -的体积. 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)24. 【解析】试题分析:(Ⅰ)证明AB⊥AC.EF⊥AC.推出PA⊥底面ABCD ,即可说明PA⊥EF,然后证明EF⊥平面PAC . (Ⅱ)证明MF∥PA,然后证明MF∥平面PAB ,EF∥平面PAB .即可证明平面MEF∥平面PAB ,从而证明ME∥平面PAB .(Ⅲ)四棱锥M ECDF -的底面面积是四边形ABCD 面积的一半,高为点M 到平面ABCD 的距离,实际上有已知12PM MD =得23DM DP =,因此点M 到平面ABCD 的距离与点P 到平面ABCD 的距离的距离之比为23,而P 到平面ABCD 的距离的距离就是PA 的长,由此体积易得. 试题解析:(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分 因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分 又因为PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………5分FADPM(Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点,所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB ,所以//MF 平面PAB . ………………7分同理,得//EF 平面PAB .又因为=MF EF F ,MF ⊂平面MEF ,EF ⊂平面MEF ,所以平面//MEF 平面PAB . ………………9分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………10分(Ⅲ)在PAD ∆中,过M 作//MN PA 交AD 于点N (图略),由12PM MD =,得23MN PA =, 又因为6PA =,所以4MN =, ……………… 12分因为PA ⊥底面ABCD ,所以MN ⊥底面ABCD ,所以四棱锥M ECDF -的体积1166424332M ECDF ECDF V S MN -⨯=⨯⨯=⨯⨯=. …… 14分 考点:线面垂直的判断,线面平行的判断,几何体的体积.18.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:F CAD PMB E(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x y +的值;(Ⅱ)如果6x =,10y =,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a ,b ,求b a ≥的概率;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)【答案】(Ⅰ)15;(Ⅱ)12;(Ⅲ)x 的可能取值为6,7,8. 【解析】试题分析:(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,说明,x y 中至少有一个小于6,从而可得15x y +≤,又在4局比赛中,乙的平均得分高于甲的平均得分,可得14x y +>,从而得15x y +=.本小题只要按常规想法分析题意即可;(Ⅱ)把,a b 组成有序数对(,)a b ,这样总的事件可通过列举法列举出来,总数为16,满足a b ≥的有8种,概率可得;(Ⅲ)由平均得分相同得14x y +=, 又由乙的发挥更稳定,知乙的成绩与均值偏差较小(这样方差较小),因此,x y 的值不小于6,不大于9,这样可得x 的可能值是6,7,8.试题解析:(Ⅰ)由题意,得79669944x y ++++++>,即14x y +>. ……………… 2分 因为在乙的4局比赛中,随机选取1局,则此局得分小于6分的概率不为零,所以,x y 中至少有一个小于6, ……………… 4分又因为10,10x y ≤≤,且,x y ∈N ,所以15x y +≤,所以15x y +=. ……………… 5分(Ⅱ)设 “从甲、乙的4局比赛中随机各选取1局,且得分满足b a ≥”为事件M ,……………… 6分记甲的4局比赛为1A ,2A ,3A ,4A ,各局的得分分别是6,6,9,9;乙的4局比赛为1B ,2B ,3B ,4B ,各局的得分分别是7,9,6,10.则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种, 它们是:11(,)A B , 12(,)A B ,13(,)A B ,14(,)A B ,21(,)A B ,22(,)A B ,23(,)A B ,24(,)A B ,31(,)A B ,32(,)A B ,33(,)A B ,34(,)A B ,41(,)A B ,42(,)A B ,43(,)A B ,44(,)A B . ……………… 7分而事件M 的结果有8种,它们是:13(,)A B ,23(,)A B ,31(,)A B ,32(,)A B ,33(,)A B ,41(,)A B ,42(,)A B ,43(,)A B , ……………… 8分因此事件M 的概率81()162P M ==. ……………… 10分 (Ⅲ)x 的可能取值为6,7,8. ……………… 13分考点:古典概型,统计的应用.19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x A 在椭圆C 上,O 为坐标原点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,且l 与圆225x y +=的相交于不在坐标轴上的两点1P ,2P ,记直线1OP ,2OP的斜率分别为1k ,2k ,求证:12k k ⋅为定值. 【答案】(Ⅰ)2214x y +=;(Ⅱ)当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足斜率之积k 1k 2为定值14-. 【解析】试题分析:(Ⅰ)利用离心率列出方程,通过点在椭圆上列出方程,求出a ,b 然后求出椭圆的方程. (Ⅱ)当直线l 的斜率不存在时,验证直线OP 1,OP 2的斜率之积.当直线l 的斜率存在时,设l 的方程为y=kx+m 与椭圆联立,利用直线l 与椭圆C 有且只有一个公共点,推出m 2=4k 2+1,通过直线与圆的方程的方程组,设P 1(x 1,y 1),P 2(x 2,y 2),结合韦达定理,求解直线的斜率乘积,推出k 1•k 2为定值即可.试题解析:(Ⅰ)由题意,得c a =a 2=b 2+c 2,…又因为点A 在椭圆C 上,所以221314a b+=, 解得a=2,b=1,c =所以椭圆C 的方程为2214x y +=.… (Ⅱ)结论:存在符合条件的圆,且此圆的方程为x 2+y 2=5.…证明如下:假设存在符合条件的圆,并设此圆的方程为x 2+y 2=r 2(r >0).当直线l 的斜率存在时,设l 的方程为y=kx+m .… 由方程组2214y kx m x y =+⎧⎪⎨+=⎪⎩得(4k 2+1)x 2+8kmx+4m 2﹣4=0,… 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即m 2=4k 2+1.… 由方程组222y kx mx y r =+⎧⎨+=⎩得(k 2+1)x 2+2kmx+m 2﹣r 2=0,… 则22222(2)4(1)()0km k m r ∆=-+->.设P 1(x 1,y 1),P 2(x 2,y 2),则12221km x x k -+=+,221221m r x x k -=+,… 设直线OP 1,OP 2的斜率分别为k 1,k 2, 所以221212121212121212()()()y y kx m kx m k x x km x x M k k x x x x x x +++++=== 222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+,… 将m 2=4k 2+1代入上式,得221222(4)14(1)r k k k k r -+=+-. 要使得k 1k 2为定值,则224141r r-=-,即r 2=5,验证符合题意.所以当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足k 1k 2为定值14-.… 当直线l 的斜率不存在时,由题意知l 的方程为x=±2,此时,圆x 2+y 2=5与l 的交点P 1,P 2也满足1214k k =-. 综上,当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足斜率之积k 1k 2为定值14-. 考点:圆锥曲线的定值问题;椭圆的标准方程.20.(本小题满分13分) 已知函数21()2f x x x =+,直线1l y kx =-:. (Ⅰ)求函数()f x 的极值;(Ⅱ)求证:对于任意k ∈R ,直线l 都不是曲线()y f x =的切线;(Ⅲ)试确定曲线()y f x =与直线l 的交点个数,并说明理由.【答案】(Ⅰ)极小值(1)3f =,无极大值;(Ⅱ)见解析;(Ⅲ)当2k =时,曲线()y f x =与直线l 没有交点,而当2k ≠时,曲线()y f x =与直线l 有且仅有一个交点.【解析】试题分析:(Ⅰ)求出导函数'()f x ,解方程'()0f x =,列出相应表格,确定函数的单调性,以确定极点是极大值还是极小值;(Ⅱ)用反证法,假设有一条直线是切线,同时设切点是00(,)x y ,由此写出此切点处的切线方程,与直线1y kx =-比较,看能否解出0x ,如不能解出(无实解),说明切线不存在,如能解出0x ,说明切线存在;(Ⅲ)关键是问题转化,由题意即研究方程()1f x kx =-的解,分离参数后有3112k x x=++,设1t x=,由考察方程32k t t =++(0)t ≠的解的个数,这又要考虑直线y k =与函数3()2h t t t =++(0)t ≠的图象交点个数即可.解题时用了换元法,要注意新元的取值范围.试题解析:(Ⅰ)函数()f x 定义域为{|0}x x ≠, ……………… 1分 求导,得32()2f x x '=-, ……………… 2分 令()0f x '=,解得1x =.当x 变化时,()f x '与()f x 的变化情况如下表所示:所以函数()y f x =的单调增区间为(,0)-∞,(1,)+∞,单调减区间为(0,1),……………… 3分 所以函数()y f x =有极小值(1)3f =,无极大值. ……………… 4分 (Ⅱ)证明:假设存在某个k ∈R ,使得直线l 与曲线()y f x =相切, ……………… 5分 设切点为00201(,2)A x x x +,又因为32()2f x x'=-, 所以切线满足斜率3022k x =-,且过点A , 所以002300122(2)1x x x x +=--, ……………… 7分 即2031x =-,此方程显然无解, 所以假设不成立.所以对于任意k ∈R ,直线l 都不是曲线()y f x =的切线. ……………… 8分 (Ⅲ)“曲线()y f x =与直线l 的交点个数”等价于“方程2121x kx x +=-的根的个数”. 由方程2121x kx x +=-,得3112k x x =++. ……………… 9分 令1t x=,则32k t t =++,其中t ∈R ,且0t ≠. 考察函数3()2h t t t =++,其中t ∈R ,因为2()310h t t '=+>时,所以函数()h t 在R 单调递增,且()h t ∈R . ……………… 11分 而方程32k t t =++中, t ∈R ,且0t ≠.所以当(0)2k h ==时,方程32k t t =++无根;当2k ≠时,方程32k t t =++有且仅有一 根,故当2k =时,曲线()y f x =与直线l 没有交点,而当2k ≠时,曲线()y f x =与直线l 有 且仅有一个交点. ……………… 13分 考点:导数与极值,导数的几何意义(导数与切线),数形结合思想,函数的零点与方程的根.:。

2016年北京市西城区高三年级第一学期期末练习数学(文科)试卷(含答案)

2016年北京市西城区高三年级第一学期期末练习数学(文科)试卷(含答案)

市西城区2015 — 2016学年度第一学期期末试卷高三数学(文科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|}A x x a =>,集合{1,1,2}B =-,若AB B =,则实数a 的取值X 围是()(A )(1,)+∞(B )(,1)-∞(C )(1,)-+∞(D )(,1)-∞-2. 下列函数中,值域为[0,)+∞的偶函数是()(A )21y x =+(B )lg y x =(C )||y x =(D )cos y x x =3.设M 是ABC ∆所在平面内一点,且BM MC =,则AM =() (A )AB AC -(B )AB AC +(C )1()2AB AC -(D )1()2AB AC +4.设命题p :“若e 1x >,则0x >”,命题q :“若a b >,则11a b<”,则() (A )“p q ∧”为真命题(B )“p q ∨”为真命题 (C )“p ⌝”为真命题(D )以上都不对5. 一个几何体的三视图如图所示,那么 这个几何体的表面积是() (A)16+ (B)16+(C)20+(D)20+侧(左)视图正(主)视图 俯视图6. “0mn <”是“曲线221x y m n+=是焦点在x 轴上的双曲线”的( )(A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥若3z x y =+的最大值与最小值的差为7,则实数m =() (A )32(B )32-(C )14(D )14-8.某市乘坐出租车的收费办法如下:相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中1处应填()(A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)24i z +=-,那么z =____.10.若抛物线22C y px =:的焦点在直线30x y +-=上,则实数p =____;抛物线C 的准线方程为____.11.某校某年级有100名学生,已知这些学生完成家庭作业的时间均在区间[0.5,3.5)内(单位:小时),现将这100人完成家庭作业的时间分为3组:[0.5,1.5),[1.5,2.5),[2.5,3.5)加以统计,得到如图所示的频率分布直方图.在这100人中,采用分层抽样的方法抽取10名学生研究其视力状况与完成作业时间的相关性,则在抽取样本中,完成作业的时间小于个小时的有_____人.12.已知函数()f x 的部分图象如图所示,若不等式2()4f x t -<+<的解集为(1,2)-,则实数t 的值为____.13. 在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若πsin cos()2A B =-,3a =,2c =,则cos C =____;∆ABC 的面积为____.14. 某食品的保鲜时间t (单位:小时)与储藏温度x (恒温,单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤且该食品在4C 的保鲜时间是16小时.1该食品在8C 的保鲜时间是_____小时;2已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,那么到了此日13时,甲所购买的食品是否过了保鲜时间______.(填“是”或“否”)a三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知数列{}n a 是等比数列,并且123,1,a a a +是公差为3-的等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n n b a =,记n S 为数列{}n b 的前n 项和,证明:163n S <.16.(本小题满分13分)已知函数()cos (sin )f x x x x =+x ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若(0,π)x ∈,求函数()f x 的单调增区间.17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=,侧面PAB ⊥底面ABCD ,90BAP ∠=,6AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ;(Ⅲ)当12PM MD =时,求四棱锥M ECDF -的体积.FADPMB E18.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x y +的值;(Ⅱ)如果6x =,10y =,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a ,b ,求b a ≥的概率;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)19.(本小题满分14分)已知椭圆C :22221(0)x y a b a b +=>>,点A 在椭圆C 上,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,且l 与圆225x y +=的相交于不在坐标轴上的两点1P ,2P ,记直线1OP ,2OP 的斜率分别为1k ,2k ,求证:12k k ⋅为定值.20.(本小题满分13分)已知函数21()2f x x x =+,直线1l y kx =-:. (Ⅰ)求函数()f x 的极值;(Ⅱ)求证:对于任意k ∈R ,直线l 都不是曲线()y f x =的切线; (Ⅲ)试确定曲线()y f x =与直线l 的交点个数,并说明理由.市西城区2015 — 2016学年度第一学期期末高三数学(文科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.C 3.D 4.B 5.B 6.B 7.C 8.D 二、填空题:本大题共6小题,每小题5分,共30分. 9.13i -- 10.63x =-11. 9 12.1 13.7914.4 是 注:第10,13,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:设等比数列{}n a 的公比为q , 因为123,1,a a a +是公差为3-的等差数列,所以213213,(1)3,a a a a +=-⎧⎨=+-⎩……………… 2分即112114,2,a q a a q a q -=-⎧⎪⎨-=-⎪⎩……………… 3分解得118,2a q ==. ……………… 5 分所以114118()22n n nn a a q ---==⨯=.……………… 7分(Ⅱ)证明:因为122214n n n n b a b a ++==, 所以数列{}n b 是以124b a ==为首项,14为公比的等比数列. ……………… 8分 所以14[1()]4114n n S -=-……………… 11分 16116[1()]343n =-<. ……………… 13分16.(本小题满分13分)(Ⅰ)解:()cos (sin )f x x x x =-2sin cos 1)2x x x =+-1sin 2222x x =+……………… 4分πsin(2)3x =+,……………… 6分所以函数()f x 的最小正周期2π=π2T =. ……………… 8分 (Ⅱ)解:由22ππππ2π+232k k x -+≤≤,k ∈Z ,……………… 9分得5ππππ+1212k k x -≤≤,所以函数()f x 的单调递增区间为[5ππππ+]1212k k -,,k ∈Z . ……………… 11分 所以当(0,π)x ∈时,()f x 的增区间为π(0]12,,7π[,π)12. ……………… 13分(注:或者写成增区间为π(0)12,,7π(,π)12. )17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB , 所以EF AC ⊥.………………1分因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD , 所以PA EF ⊥.………………3分 又因为PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC .………………5分(Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以//MF 平面PAB .………………7分 同理,得//EF 平面PAB . 又因为=MFEF F ,MF ⊂平面MEF ,EF ⊂平面MEF ,所以平面//MEF 平面PAB . ………………9分又因为ME ⊂平面MEF ,所以//ME 平面PAB .………………10分(Ⅲ)解:在PAD ∆中,过M 作//MN PA 交AD 于点N (图略), 由12PM MD =,得23MN PA =, 又因为6PA =,所以4MN =,……………… 12分 因为PA ⊥底面ABCD ,所以MN ⊥底面ABCD ,所以四棱锥M ECDF -的体积1166424332M ECDF ECDFV S MN -⨯=⨯⨯=⨯⨯=.…… 14分18.(本小题满分13分)F CADPMB E(Ⅰ)解:由题意,得79669944x y ++++++>,即14x y +>. ……………… 2分因为在乙的4局比赛中,随机选取1局,则此局得分小于6分的概率不为零, 所以,x y 中至少有一个小于6,……………… 4分 又因为10,10x y ≤≤,且,x y ∈N , 所以15x y +≤,所以15x y +=. ……………… 5分 (Ⅱ)解:设 “从甲、乙的4局比赛中随机各选取1局,且得分满足b a ≥”为事件M , ……………… 6分记甲的4局比赛为1A ,2A ,3A ,4A ,各局的得分分别是6,6,9,9;乙的4局比赛 为1B ,2B ,3B ,4B ,各局的得分分别是7,9,6,10.则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种,它们是:11(,)A B ,12(,)A B ,13(,)A B ,14(,)A B ,21(,)A B ,22(,)A B ,23(,)A B ,24(,)A B ,31(,)A B ,32(,)A B ,33(,)A B ,34(,)A B ,41(,)A B ,42(,)A B ,43(,)A B ,44(,)A B . (7)分而事件M 的结果有8种,它们是:13(,)A B ,23(,)A B ,31(,)A B ,32(,)A B ,33(,)A B ,41(,)A B ,42(,)A B ,43(,)A B , ……………… 8分因此事件M 的概率81()162P M ==. ……………… 10分 (Ⅲ)解:x 的可能取值为6,7,8. ……………… 13分19.(本小题满分14分)(Ⅰ)解:由题意,得c a =,222a b c =+,……………… 2分又因为点(1,2A 在椭圆C 上, 所以221314a b+=, ……………… 3分解得2a =,1b =,c =所以椭圆C 的方程为2214x y +=. ……………… 5分(Ⅱ)证明:当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 易得直线1OP ,2OP 的斜率之积1214k k ⋅=-. …………… 6分 当直线l 的斜率存在时,设l 的方程为y kx m =+. …………… 7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kmx m +++-=,……………… 8分因为直线l 与椭圆C 有且只有一个公共点,所以222(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ……………… 9分由方程组22,5,y kx m x y =+⎧⎨+=⎩得222(1)250k x kmx m +++-=,……………… 10分 设111(,)P x y ,222(,)P x y ,则12221kmx x k -+=+,212251m x x k -⋅=+,……………… 11分 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++⋅=== 222222222252511551m kmk km m m k k k m m k --⋅+⋅+-++==--+,……………… 13分 将2241m k =+代入上式,得212211444k k k k -+⋅==--. 综上,12k k ⋅为定值14-. ……………… 14分20.(本小题满分13分)(Ⅰ)解:函数()f x 定义域为{|0}x x ≠,……………… 1分 求导,得32()2f x x '=-,……………… 2分 令()0f x '=,解得1x =.当x 变化时,()f x '与()f x 的变化情况如下表所示:所以函数()y f x =的单调增区间为(,0)-∞,(1,)+∞,单调减区间为(0,1),……………… 3分所以函数()y f x =有极小值(1)3f =,无极大值.……………… 4分(Ⅱ)证明:假设存在某个k ∈R ,使得直线l 与曲线()y f x =相切,……………… 5分 设切点为00201(,2)A x x x +,又因为32()2f x x'=-, 所以切线满足斜率3022k x =-,且过点A , 所以002300122(2)1x x x x +=--,……………… 7分 即2031x =-,此方程显然无解, 所以假设不成立.所以对于任意k ∈R ,直线l 都不是曲线()y f x =的切线. ……………… 8分(Ⅲ)解:“曲线()y f x =与直线l 的交点个数”等价于“方程2121x kx x+=-的根的个数”. 由方程2121x kx x +=-,得3112k x x =++. ……………… 9分 令1t x=,则32k t t =++,其中t ∈R ,且0t ≠. 考察函数3()2h t t t =++,其中t ∈R ,因为2()310h t t '=+>时,所以函数()h t 在R 单调递增,且()h t ∈R . ……………… 11分 而方程32k t t =++中,t ∈R ,且0t ≠.所以当(0)2k h ==时,方程32k t t =++无根;当2k ≠时,方程32k t t =++有且仅有一根,故当2k =时,曲线()y f x =与直线l 没有交点,而当2k ≠时,曲线()y f x =与直线l 有且仅有一个交点. ……………… 13分。

(全优试卷)北京市西城区高三一模考试数学(文)试题 Word版含答案

(全优试卷)北京市西城区高三一模考试数学(文)试题 Word版含答案

西城区高三统一测试数学(文科) 2017.4第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{1,2,3,4,5,6}U =,集合{1,3,5}A =,{1,4}B =,那么U A B =ð(A ){3,5} (B ){2,4,6} (C ){1,2,4,6} (D ){1,2,3,5,6}2.在复平面内,复数1ii+的对应点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3.双曲线2213x y -=的焦点坐标是(A ),(0, (B ),( (C )(0,2),(0,2)-(D )(2,0),(2,0)-4.函数21()()log 2x f x x =-的零点个数为 (A )0(B )1(C )2 (D )35.函数()f x 定义在(,)-∞+∞上.则“曲线()y f x =过原点”是“()f x 为奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件6.在ABC △中,点D 满足3BC BD −−→−−→=,则(A )1233AD AB AC −−→−−→−−→=+(B )1233AD AB AC −−→−−→−−→=-(C )2133AD AB AC −−→−−→−−→=+ (D )2133AD AB AC −−→−−→−−→=-7.在正方形网格中,某四面体的三视图如图所示.如果小 正方形网格的边长为1,那么该四面体最长棱的棱长为 (A) (B )6 (C) (D)8.函数()f x 的图象上任意一点(,)A x y 的坐标满足条件||||x y ≥,称函数()f x 具有性 质P .下列函数中,具有性质P 的是 (A )2()f x x = (B )21()1f x x =+ (C )()sin f x x = (D )()ln(1)f x x =+第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.函数()f x 的定义域为____. 10.执行如图所示的程序框图. 当输入1ln 2x =时,输出的y 值为____.11.圆22:2210C x y x y +--+=的圆心坐标是____;直线 :0l x y -=与圆C 相交于,A B 两点,则||AB =____. 12.函数sin4()1cos4xf x x=+的最小正周期是____.13.实数,x y 满足1,2,220,x y x y ⎧⎪⎨⎪+-⎩≤≤≥则22x y +的最大值是____;最小值是____.14. 如图,正方体1111ABCD A B C D -的棱长为2,点P 在正方形ABCD 的边界及其内部运动.平面区域W 由所有满足1A P P 组成,则W 的面积是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知{}n a 是等比数列,13a =,424a =.数列{}n b 满足11b =,48b =-,且{}n n a b +是等差数列.(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和.16.(本小题满分13分)在△ABC 中,角,,A B C 的对边分别为,,a b c ,且tan 2sin a C c A =. (Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的最大值. 17.(本小题满分13分)在测试中,客观题难度的计算公式为ii R P N=,其中i P 为第i 题的难度,i R 为答对该题的人数,N 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:题号 1 2 3 4 5 考前预估难度i P0.90.80.70.60.4测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):学生编号 题号123 4 5 1 ×√ √ √ √2 √ √ √ √ ×3 √ √ √ √× 4 √ √ √ ××5 √ √√√ √6 √××√ × 7 ×√√√× 8 √ ×× × × 9 √ √ ××× 10√√√√×(Ⅰ)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;题号 1 2 3 4 5 实测答对人数 实测难度(Ⅱ)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率; (Ⅲ)定义统计量22211221[()()()]n n S P P P P P P n'''=-+-++-,其中i P '为第i 题的实测难度,i P 为第i 题的预估难度(1,2,,)i n =.规定:若0.05S <,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.18.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA AC =.过点A 的平面与棱,,PB PC PD 分别交于点,,E F G (,,E F G 三点均不在棱的端点处).(Ⅰ)求证:平面PAB ⊥平面PBC ;(Ⅱ)若PC ⊥平面AEFG ,求PFPC的值; (Ⅲ)直线AE 是否可能与平面PCD 平行?证明你的结论.19.(本小题满分14分)如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,F 为椭圆C 的右焦点.(,0)A a -, ||3AF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,P 为椭圆上一点,AP 的中点为M .直线OM 与直线4x =交于点D ,过O 作OE DF ⊥,交直线4x =于点E .求证://OE AP .20.(本小题满分13分)已知函数21()e 2xf x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-.(Ⅰ)求直线l 的方程(用0x 表示);(Ⅱ)求直线l 在y 轴上的截距的取值范围;(Ⅲ)设直线y a =分别与曲线()y f x =和射线1([0,))y x x =-∈+∞交于,M N 两点,求||MN 的最小值及此时a 的值.西城区高三统一测试高三数学(文科)参考答案及评分标准2017.4一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.D 3.C 4.B 5.B 6.C 7.B 8.C二、填空题:本大题共6小题,每小题5分,共30分.9.{|0x x ≥,且1}x ≠ 10.1211.(1,1);212.π2 13.5;4514.π44-注:第11,13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)设等比数列{}n a 的公比为q ,由题意得3418a q a ==, 解得 2q =. [ 2分]所以 11132(1,2,)n n n a a q n --=⋅=⋅=. [ 4分]设等差数列{}n n a b +的公差为d ,由题意得4411()()1644413a b a b d +-+-===-. [ 6分]所以 11()(1)4n n a b a b n d n +=++-=. [ 8分]从而 1432(1,2,)n n b n n -=-⋅=. [ 9分](Ⅱ)由(Ⅰ)知1432(1,2,)n n b n n -=-⋅=.数列{4}n 的前n 项和为2(1)n n +;数列1{32}n -⋅的前n 项和为3(21)n ⋅-.[12分]所以,数列{}n b 的前n 项和为 222323n n n +-⋅+. [13分]16.(本小题满分13分)解:(Ⅰ) 由 tan 2sin a C c A =,得sin 2sin cos a CA c C⋅=. [ 1分]由正弦定理得sin sin 2sin sin cos A CA C C⋅=. [ 3分]所以 1cos 2C =. [ 4分]因为 (0,π)C ∈, [ 5分]所以 π3C =. [ 6分](Ⅱ) sin sin A B +2πsin sin()3A A =+- [ 7分]3sin 2A A = [ 9分]π)6A +. [11分]因为 π3C =,所以 2π03A <<, [12分]所以 当π3A =时,sin sin A B +取得最大值. [13分]17.(本小题满分13分)解:(Ⅰ)每道题实测的答对人数及相应的实测难度如下表:题号 1 2 3 4 5 实测答对人数 8 8 7 7 2 实测难度0.80.80.70.70.2[4分]所以,估计120人中有1200.224⨯=人答对第5题.[ 5分] (Ⅱ)记编号为i 的学生为(1,2,3,4,5)i A i =,从这5人中随机抽取2人,不同的抽取方法有10种.其中恰好有1人答对第5题的抽取方法为12(,)A A ,13(,)A A ,14(,)A A ,25(,)A A ,35(,)A A ,45(,)A A ,共6种. [ 9分]所以,从抽样的10名学生中随机抽取2名答对至少4道题的学生,恰好有1人答对第5题的概率为63105P ==. [10分](Ⅲ)i P '为抽样的10名学生中第i 题的实测难度,用i P '作为这120名学生第i 题的实测难度.222221[(0.80.9)(0.80.8)(0.70.7)(0.70.6)(0.20.4)]5S =-+-+-+-+-0.012=. [12分]因为 0.0120.05S =<,所以,该次测试的难度预估是合理的. [13分]18.(本小题满分14分)解:(Ⅰ)因为PA ⊥平面ABCD ,所以PA BC ⊥. [ 1分] 因为ABCD 为正方形,所以AB BC ⊥, [ 2分] 所以BC ⊥平面PAB . [ 3分] 所以平面PAB ⊥平面PBC . [ 4分](Ⅱ)连接AF . [ 5分]因为 PC ⊥平面AEFG ,所以 PC AF ⊥. [ 7分] 又因为 PA AC =,所以 F 是PC 的中点. [ 8分]所以12PF PC =.[ 9分] (Ⅲ)AE 与平面PCD 不可能平行. [10分]证明如下:假设//AE 平面PCD ,因为 //AB CD ,AB ⊄平面PCD .所以 //AB 平面PCD . [12分] 而 AE AB ⊂,平面PAB ,所以 平面//PAB 平面PCD ,这显然矛盾! [13分] 所以假设不成立,即AE 与平面PCD 不可能平行.[14分]19.(本小题满分14分)解:(Ⅰ)设椭圆C 的半焦距为c .依题意,得12c a =,3a c +=. [ 2分] 解得 2a =,1c =.所以 2223b a c =-=,所以椭圆C 的方程是 22143x y +=. [ 5分](Ⅱ)解法一:由(Ⅰ)得 (2,0)A -.设AP 的中点00(,)M x y ,11(,)P x y .设直线AP 的方程为:(2)(0)y k x k =+≠,将其代入椭圆方程,整理得2222(43)1616120k x k x k +++-=, [ 7分]所以 21216243k x k --+=+. [ 8分]所以 202843k x k -=+,0026(2)43k y k x k =+=+,即 22286(,)4343k kM k k -++. [ 9分]所以直线OM 的斜率是22263438443k k k k k +=--+, [10分]所以直线OM 的方程是 34y x k =-.令4x =,得3(4,)D k-. [11分] 由(1,0)F ,得直线DF 的斜率是 3141k k-=--, [12分]因为OE DF ⊥,所以直线OE 的斜率为k , [13分] 所以直线//OE AP . [14分] 解法二:由(Ⅰ)得 (2,0)A -.设111(,)(2)P x y x ≠±,其中221134120x y +-=. 因为AP 的中点为M ,所以 112(,)22x y M -.[ 6分] 所以直线OM 的斜率是 112OM y k x =-, [ 7分]所以直线OM 的方程是 112y y x x =-.令4x =,得114(4,)2y D x -. [ 8分] 由(1,0)F ,得直线DF 的斜率是 1143(2)DF y k x =-. [ 9分]因为直线AP 的斜率是 112AP y k x =+, [10分]所以 2121413(4)DF APy k k x ⋅==--, [12分] 所以 AP DF ⊥. [13分]因为 OE DF ⊥,所以 //OE AP . [14分]20.(本小题满分13分)解:(Ⅰ) 对()f x 求导数,得()e x f x x '=-, [ 1分]所以切线l 的斜率为000()e x x f x '=-, [ 2分]由此得切线l 的方程为:000002(1(e 2))e ()x x x x x y x ----=,即 000020(e )(1)1e 2x x x x y x x =+-+-. [ 3分](Ⅱ) 由(Ⅰ)得,直线l 在y 轴上的截距为0020(1)1e 2x x x +-. [ 4分]设 2()(1)1e 2x g x x x +=-,[1,1]x ∈-. 所以 ()(1e )x g x x '=-,令()0g x '=,得0x =. ()g x ,()g x '的变化情况如下表:全优试卷所以函数()g x 在[1,1]-上单调递减, [ 6分]所以max 21[()](1)e 2g x g =-=+,min 1[()](1)2g x g ==, 所以直线l 在y 轴上的截距的取值范围是121[,]2e 2+. [ 8分](Ⅲ)过M 作x 轴的垂线,与射线1y x =-交于点Q ,所以△MNQ 是等腰直角三角形. [ 9分] 所以 21|||||()()||e 1|2x MN MQ f x g x x x ==-=--+. [10分]设 21()e 12x h x x x =--+,[0,)x ∈+∞, 所以 ()e 1x h x x '=--.令 ()e 1x k x x =--,则()e 10(0)x k x x '=->>, 所以 ()()k x h x '=在[0,)+∞上单调递增, 所以 ()(0)0h x h ''=≥,从而 ()h x 在[0,)+∞上单调递增, [12分]所以 min [()](0)2h x h ==,此时(0,1)M ,(2,1)N .所以 ||MN 的最小值为2,此时1a =. [13分]。

2016年北京高考数学真题及答案(文科)

2016年北京高考数学真题及答案(文科)

数学(文)(北京卷) 第 1 页(共 10 页)绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试数 学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{|24}A x x =<<,{|3B x x =<或5}x >,则A B =I(A ){|25}x x << (B ){|4x x <或5}x > (C ){|23}x x << (D ){|2x x <或5}x >(2)复数12i2i+=- (A )i (B )1i + (C )i -(D )1i -(3)执行如图所示的程序框图,输出的s 值为(A )8 (B )9 (C )27 (D )36(4)下列函数中,在区间(1,1)-上为减函数的是(A )11y x=- (B )cos y x = (C )ln(1)y x =+(D )2x y -=数学(文)(北京卷) 第 2 页(共 10 页)(5)圆22(1)2x y ++=的圆心到直线3y x =+的距离为(A )1 (B )2 (C(D)(6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(A )15(B )25 (C )825(D )925(7)已知(2,5),(4,1)A B .若点(,)P x y 在线段AB 上,则2x y -的最大值为(A )1- (B )3 (C )7(D )8(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(A )2号学生进入30秒跳绳决赛 (B )5号学生进入30秒跳绳决赛 (C )8号学生进入30秒跳绳决赛(D )9号学生进入30秒跳绳决赛数学(文)(北京卷) 第 3 页(共 10 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2016年高三一模试卷数 学(文科) 2016.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 设集合2{|}4A x x x =≤,集合{1,2,3,4}B =--,则A B = ( )(A ){1,2}- (B ){2,4} (C ){3,1}-- (D ){1,2,3,4}-- 2. 设命题p :0,sin 21x x x ∃>>-,则⌝p 为( )(A )0,sin 21x x x ∀>-≤ (B )0,sin 21x x x ∃><- (C )0,sin 21x x x ∀><- (D )0,sin 21xx x ∃>-≤3. 如果()f x 是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是( ) (A )()y x f x =+ (B )()y xf x = (C )2()y x f x =+ (D )2()y x f x =4.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示. 若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )(A ){2} (B ){1,2} (C ){0,1,2} (D ){2,3}5. 在平面直角坐标系xOy 中,向量OA =(-1, 2),OB=(2, m ) , 若O , A , B 三点能构成三角形,则( )(A )4m =- (B )4m ≠- (C )1m ≠ (D )m ∈R6. 执行如图所示的程序框图,若输入的,A S 分别为0, 1,则输出的S =( ) (A )4 (B )16 (C )27 (D )367. 设函数12()log f x x x a =+-,则“(1,3)a ∈”是 “函数()f x 在(2,8)上存在零点”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元. 已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于13,且获得一等奖的人数不能少于2人,那么下列说法中错误..的是( ) (A )最多可以购买4份一等奖奖品 (B )最多可以购买16份二等奖奖品 (C )购买奖品至少要花费100元 (D )共有20种不同的购买奖品方案甲队 乙队 891 m823第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在复平面内,复数1z 与2z 对应的点关于虚轴对称,且11i z =-+,则12z z =____. 10.在△ABC中,b =3a =,tan C =c =_____. 11.若圆22(2)1x y -+=与双曲线C :2221(0)x y a a-=>的渐近线相切,则a =_____;双曲线C 的渐近线方程是____.12.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为____.13. 有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.14. 设函数24,41,()log ,04,x f x x x x ⎧+⎪=⎨⎪<<⎩≥ 则(8)f =____;若()()f a f b c ==,()0f b '<,则,,a b c 的大小关系是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)设函数2π()sin cos sin ()4f x x x x =--.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数π()6f x -在π[0,]2上的最大值与最小值.16.(本小题满分13分)已知等差数列{}n a 的公差0d <,2610a a +=,2621a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n a n b =,记数列{}n b 前n 项的乘积..为n T ,求n T 的最大值.侧(左)视图正(主)视图俯视图如图,在四棱柱1111ABCD A B C D -中,1BB ⊥底面ABCD ,//AD BC ,90BAD ∠= ,AC BD ⊥. (Ⅰ)求证:1//B C 平面11ADD A ; (Ⅱ)求证:1AC B D ⊥;(Ⅲ)若12AD AA =,判断直线1B D 与平面1ACD 是否垂直?并说明理由.18.(本小题满分13分)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”. 已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为a b c ,,,且分别在[70,80),[80,90),[90,100]三组中,其中a b c ∈N ,,.当数据a b c ,,的方差2s 最大时,写出a b c ,,的值.(结论不要求证明)(注:2222121[()()()]n s x x x x x x n=-+-++- ,其中x 为数据12,,,n x x x 的平均数)D 1DA C 1 A 1B 1B C各分数段人数已知椭圆C :221(0)3x y m m m+=>的长轴长为O 为坐标原点.(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ) 设动直线l 与y 轴相交于点B ,点(3,0)A 关于直线l 的对称点P 在椭圆C 上,求||OB 的最小值.20.(本小题满分13分)已知函数2()ln 1f x x x ax =+-,且(1)1f '=-. (Ⅰ)求()f x 的解析式;(Ⅱ)若对于任意(0,)x ∈+∞,都有1()f x mx --≤,求m 的最小值;(Ⅲ)证明:函数2()e x y f x x x =-+的图象在直线21y x =--的下方.北京市西城区2016年高三一模试卷参考答案及评分标准高三数学(文科)2016.4一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.A 3.B 4.C 5.B 6.D 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.2- 10.211.y = 12.23313.1464 14.32b ac >≥注:第11,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为2π()sin cos sin ()4f x x x x =--π1cos(2)12sin 222x x --=-……………… 4分 111πsin 2cos(2)2222x x =-+-111sin 2sin 2222x x =-+1sin 22x =-.……………… 6分所以函数()f x 的最小正周期为π. ……………… 7分(Ⅱ)解:由(Ⅰ),得ππ1()sin(2)632f x x -=--.……………… 8分因为π02x ≤≤,所以ππ2π2333x --≤≤,所以πsin(2)13x -≤.所以1π11sin(2)2322x ---≤≤. ……………… 11分且当5π12x =时,π()6f x -取到最大值12;当0x =时,π()6f x -取到最小值12-.……………… 13分16.(本小题满分13分)(Ⅰ)(Ⅰ)解:由题意,得1111()(5)10,()(5)21,a d a d a d a d +++=⎧⎨++=⎩……………… 3分解得18,1,a d =⎧⎨=-⎩ 或12,1a d =⎧⎨=⎩(舍).……………… 5分所以1(1)9n a a n d n =+-=-. ……………… 7分(Ⅱ)解:由(Ⅰ),得92nn b -=.所以12122222n n a a a a a a n T +++=⨯⨯⨯= .所以只需求出12n n S a a a =+++ 的最大值. ……………… 9分 由(Ⅰ),得2121(1)17(1)222n n n n n S a a a na n -=+++=+⨯-=-+ . 因为2117289()228n S n =--+, ……………… 11分所以当8n =,或9n =时,n S 取到最大值8936S S ==.所以n T 的最大值为36892T T ==. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为//AD BC ,BC ⊄平面11ADD A ,AD ⊂平面11ADD A , 所以//BC 平面11ADD A . ………… 2分因为11//CC DD ,1CC ⊄平面11ADD A ,1DD ⊂平面11ADD A , 所以1//CC 平面11ADD A . 又因为1BC CC C = ,所以平面11//BCC B 平面11ADD A . ………… 3分 又因为1B C ⊂平面11BCC B ,所以1//B C 平面11ADD A . ……………… 4分 (Ⅱ)证明:因为1BB ⊥底面ABCD , AC ⊂底面ABCD ,所以1BB AC ⊥. ……………… 5分 又因为AC BD ⊥,1BB BD B = , 所以AC ⊥平面1BB D .……………… 7分D 1D AC 1 A 1 B 1B C又因为1B D ⊂底面1BB D ,所以1AC B D ⊥. ……………… 9分 (Ⅲ)结论:直线1B D 与平面1ACD 不垂直. ……………… 10分 证明:假设1B D ⊥平面1ACD ,由1AD ⊂平面1ACD ,得11B D AD ⊥. ……………… 11分 由棱柱1111ABCD A B C D -中,1BB ⊥底面ABCD ,90BAD ∠= 可得111A B AA ⊥,1111A B A D ⊥,又因为1111AA A D A = , 所以11A B ⊥平面11AA D D ,所以111A B AD ⊥. ……………… 12分 又因为1111A B B D B = , 所以1AD ⊥平面11A B D ,所以11AD A D ⊥. ……………… 13分 这与四边形11AA D D 为矩形,且1=2AD AA 矛盾,故直线1B D 与平面1ACD 不垂直. ……………… 14分18.(本小题满分13分)(Ⅰ)解:由折线图,知样本中体育成绩大于或等于70分的学生有30人,………………2分 所以该校高一年级学生中,“体育良好”的学生人数大约有30100075040⨯=人. ……4分 (Ⅱ)解:设 “至少有1人体育成绩在[60,70)”为事件M , ………………5分 记体育成绩在[60,70)的数据为1A ,2A , 体育成绩在[80,90)的数据为1B ,2B ,3B , 则从这两组数据中随机抽取2个,所有可能的结果有10种, 它们是:12(,)A A ,11(,)A B , 12(,)A B ,13(,)A B , 21(,)A B ,22(,)A B ,23(,)A B ,12(,)B B ,13(,)B B ,23(,)B B .而事件M 的结果有7种,它们是:12(,)A A ,11(,)A B ,12(,)A B ,13(,)A B , 21(,)A B ,22(,)A B ,23(,)A B , ………………7分因此事件M 的概率7()10P M =. ………………9分 (Ⅲ)解: a ,b ,c 的值分别是为70,80,100. ………………13分19.(本小题满分14分) (Ⅰ)解:因为椭圆C :2213x y m m+=,所以23a m=,2b m=, ………………1分故2a ==2m =,所以椭圆C 的方程为22162x y +=. ………………3分因为2c ,所以离心率c e a == ………………5分 (Ⅱ)解:由题意,直线l 的斜率存在,设点000(,)(0)P x y y ≠,则线段AP 的中点D 的坐标为003(,)22x y +, 且直线AP 的斜率003AP y k x =-, ………………7分 由点(3,0)A 关于直线l 的对称点为P ,得直线l AP ⊥, 故直线l 的斜率为0031AP x k y --=,且过点D , 所以直线l 的方程为:000033()22y x x y x y -+-=-, ………………9分 令0x =,得2200092x y y y +-=,则220009(0,)2x y B y +-, 由2200162x y +=,得220063x y =-,化简,得20023(0,)2y B y --. ………………11分 所以20023||||2y OB y --= 003||2||y y =+≥= ………………13分 当且仅当003||2||y y =,即0[y =时等号成立. 所以||OB……………… 14分 20.(本小题满分13分) (Ⅰ)解:对()f x 求导,得()1ln 2f x x ax'=++, …………………1分所以(1)121f a '=+=-,解得1a =-,所以2()ln 1f x x x x =--. …………………3分 (Ⅱ)解:由1()f x mx --≤,得20ln x x x mx --≤, 因为(0,)x ∈+∞,所以对于任意(0,)x ∈+∞,都有ln m x x -≤. …………………4分设()ln g x x x =-,则 1()1g x x'=-. 令 ()0g x '=,解得1x =. …………………5分当x 变化时,()g x 与()g x '的变化情况如下表:所以当1x =时,max ()(1)1g x g ==-. …………………7分 因为对于任意(0,)x ∈+∞,都有()m g x ≤成立, 所以 1m -≥.所以m 的最小值为1-. …………………8分(Ⅲ)证明:“函数2()e x y f x x x =-+的图象在直线21y x =--的下方”等价于“2()e 210x f x x x x -+++<”, 即要证ln e 20x x x x x -+<, 所以只要证ln e 2x x <-.由(Ⅱ),得1()ln g x x x -=-≤,即1ln x x -≤(当且仅当1x =时等号成立).所以只要证明当(0,)x ∈+∞时,1e 2x x -<-即可. …………………10分 设()(e 2)(1)e 1x x h x x x =---=--, 所以()e 1x h x '=-, 令()0h x '=,解得0x =.由()0h x '>,得0x >,所以()h x 在(0,)+∞上为增函数. 所以()(0)0h x h >=,即1e 2x x -<-.所以ln e 2x x <-.故函数2()e x y f x x x =-+的图象在直线21y x =--的下方. …………………13分。

相关文档
最新文档