北京市高考数学试卷(文科)
北京市高考数学试卷(文科)

2021年北京市高考数学试卷〔文科〕一、选择题共8小题,每题5分,共40分。
在每题列出的四个选项中,选出符合题目要求的一项。
1.〔分〕集合A={x||x|<2},B={﹣2,0,1,2},那么A∩B=〔〕A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2}D.{﹣1,0,1,2}2.〔分〕在复平面内,复数的共轭复数对应的点位于〔〕A.第一象限B.第二象限C.第三象限D.第四象限3.〔分〕执行如下列图的程序框图,输出的s值为〔〕A.B.C.D.4.〔分〕设a,b,c,d是非零实数,那么“ad=bc是〞“a,b,c,d成等比数列〞的〔〕A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.〔分〕“十二平均律〞是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的开展做出了重要奉献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的第1页〔共19页〕前一个单音的频率的比都等于.假设第一个单音的频率为f,那么第八个单音的频率为〔〕A.fB.f C.f D.f6.〔分〕某四棱锥的三视图如下列图,在此四棱锥的侧面中,直角三角形的个数为〔〕A.1B.2C.3D.47.〔分〕在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧〔如图〕,点P其中一段上,角α以Ox为始边,OP为终边.假设tanα<cosα<sinα,那么P所在的圆弧是〔〕A.B.C.D.8.〔分〕设集合A={〔x,y〕|x﹣y≥1,ax+y>4,x﹣ay≤2},那么〔〕A.对任意实数a,〔2,1〕∈AB.对任意实数a,〔2,1〕?AC.当且仅当a<0时,〔2,1〕?A D.当且仅当a≤时,〔2,1〕?A第2页〔共19页〕二、填空共6小,每小5分,共30分。
9.〔分〕向量=〔1,0〕,=〔1,m〕.假设⊥〔m〕,m=.10.〔分〕直l点〔1,0〕且垂直于x.假设l被抛物y2=4ax截得的段4,抛物的焦点坐.11.〔分〕能明“假设a>b,<〞假命的一a,b的依次.12.〔分〕假设双曲=1〔a>0〕的离心率,a=.13.〔分〕假设x,y足x+1≤y≤2x,2y x的最小是.14.〔分〕假设△ABC的面〔a2+c2b2〕,且∠C角,∠B=;的取范是.三、解答共6小,共80分。
2024年北京卷数学高考试卷(原卷+答案)

1. 一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的第一部分(选择题共403.考试结束后,将本试卷和答题卡一并交回。
本试卷共12页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦数2024年普通高等学校招生全国统一考试(北京绝密★启用前卷)学注意事项:干净后,再选涂其他答案标号。
回答非选择题时,将答案书写在答题卡上,写在本试卷上无效。
.分)一项.已知集合 M x x =−<<{|31},N x x =−≤<{|14},则M N ⋃=()A. x x −≤<11}{ B. {x x >−3}C. x x −<<|34}{D.x x <4}2. {已知zi=−−1i ,则z =().A.−−1i B.−+1i C. −1i D. 3. +1i 圆x y x y +−+=26022的圆心到直线x y −+=20的距离为()A.B. 2C. 3D.4.在x4x 3(的展开式中,的系数为()A.6 B.−6 C. 12 D. 5. 设−12a ,b 是向量,则“(a b a b +−=)·)0”是(“a b =−或a b =6. B. 必要不充分条件D. A. 充分不必要条件C. ”的().充要条件既不充分也不必要条件设函数ωω(()f x 1=−f x x =>sin 0).已知1(),f x 2)=1(,且x x −12的最小值为2π,则D. C. B. ω=()234A. 17. 生物丰富度指数ln d =NS −1是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由N 1变为N 2,生物丰富度指数由 2.1提高到 3.15,则()A. 32=N N 21 B. 23=N N 21C.N N =2123D.N N =218. 32如图,在四棱锥−P ABCD 中,底面是边长为4ABCD 的正方形,PA PB ==4,PC PD ==,该棱锥的高为( B. A. ).12C.D.9. 已知),(x y 11,),(x y 22是函数y =2x 的图象上两个不同的点,则()A. < ++y y x x 22log 21212B. > ++y y x x 22log 21212C. +2log 212y y 12<+x x D. +2log 21210. y y 12>+x x 已知==+−≤≤≤≤2)(){(,|,12,01M x y y x t xx x t }是平面直角坐标系中的点集.设d 是M 中两点间距离的最大值, S 是 M 表示的图形的面积,则()A. S <d =3,1 B. S >d =3,1C.d =S <1D.d =,11. 二、填空题共5小题,每小题5分,共25分第二部分(非选择题共110S >1分).抛物线y x 12. 的焦点坐标为________2=16.在平面直角坐标系xOy 中,角α与角为始边,它们终边关于原点对称.β均以Ox 若⎣⎦α⎡⎤∈63,π13. 的最大值为________cos ,则π⎢⎥β.若直线(y k x =−3)与双曲线4y 2−=1x 2只有一个公共点,则k 的一个取值为230mm ,则斗量器的高为65mm,325mm,325mm 状均可视为圆柱.若升、斗、斛量器的容积成公比为1014. 汉代刘歆设计的“铜嘉量”________.是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形的等比数列,底面直径依次为,且斛量器的高为______mm ,升量器的高为________的.15. mm 设}{a n 与}是两个不同的无穷数列,且都不是常数列.{b n 记集合k k M k a b k ==∈|,N *结论:①},给出下列4{个若}{a n 与}{b n 均②等差数列,则M 中最多有1个元素;若} {a n 与}③均为等比数列,则M 中最多有2{b n 个元素;若} {a n 为等差数列,}④为等比数列,则M 中最多有3{b n 个元素;若}{a n 为递增数列,}16. 其中正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程为递减数列,则M 中最多有1个元素{b n ..在ABC 中,内角A B C ,,的对边分别为a b c ,,,∠A 为钝角,a =7, =7sin 2cos B B (1).求(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得∠A ;ABC 存在,求ABC 条件①的面积.:;条件②b =7:14cos B =;条件③13:=c A sin 17. 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.如图,在四棱锥−P ABCD 中,BC AD //,AB BC ==1,AD =3,点E 在AD 上,且(1)PE DE ==2⊥PE AD ,.若PE F 为线段中点,求证:PCD BF //平面.为(2)若PAB PAD AB ⊥平面,求平面与平面18. 某保险公司为了了解该公司某种保险产品索赔情况,从合同险期限届满的保单中随机抽取1000份,记录PCD 夹角的余弦值.并整理这些保单的索赔情况,获得数据如下表:(i 假设:一份保单保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.)记X 为一份保单的毛利润,估计X 的数学期望(ⅱE X )(;)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加的数学期望估计值与(i 20%,试比较这种情况下一份保单毛利润)中19. E X )(估计值的大小.(结论不要求证明)已知椭圆E :a b22(x y 22a b E 的焦点和短轴端点为顶点的四边形是边长为2的正方形+=>>10),以椭圆.过点t t >0,)((且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和C (0,1)的直线AC 与椭圆E的另一个交点为(1)D .求椭圆(2)若直线BD 的斜率为0,求t E 的方程及离心率;的值.的20. 设函数)f x x k x k =++≠ln 10)(((),直线l 是曲线 =y f x )(在点,(1)(t f (t ))(t >0)处的切线.当 k =−1时,求((2)f x )的单调区间.求证:l 不经过点k =(0,0).1时,设点A t f t t >,0)(())(,(0,C f t ))(,O (0,0),B 为l 与y 轴的交点,SACO 与SABO分别△(3)当表示ACO 与ABO 的面积.是否存在点 A 使得△△215S S ACO ABO =成立?若存在,这样的点A 有几个?(参考数据:<<1.09ln31.10,<<1.60ln51.61,21. <<1.94ln71.95)已知集合=∈∈∈∈+++{}{}{}{}){(,,,1,2,3,4,5,6,7,8,且:,,,M i j k w i j k w i j k w 为偶数}.给定数列128A a a a ,和序列T T T s Ω:,,12,,,1,2,,,其中T i j k w M t s )=∈=t t t t t ()(,对数列A 进行如下变换:将A 的第i j k w ,,,1111项均加1,其余项不变,得到的数列记作T 1T (A );将1(A )的第i j k w ,,,2222项均加1,其余项不变,得到数列记作21(T T A );……;以此类推,得到(21T T T A )s,简记为(1)Ω(A ).给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7,2,4,6,8,1,3,5,7)()((2)Ω(A )(,写出);是否存在序列Ω,使得Ω(A )为a a a a a a a a 2,6,4,2,8,2,4,412345678++++++++,若存在,写出一个符合条件(3)Ω;若不存在,请说明理由;若数列A 的各项均为正整数,且+++a a a a 1357为偶数,求证:“存在序列Ω,使得等”的充要条件为Ω(A )的各项都相“12345678a a a a a a a a +=+=+=+”.的1. 答案解析已知集合 M x x =−<<{|31},N x x =−≤<{|14},则M N ⋃=()A. {x x −≤<11}B. {x x >−3}C. −<<{x x |34}D.【答案】C 【详解】{x x <4}由题意得−<<N 2. 故选:M ⋃={x x |34}.C.已知zi=−−1i ,则z =().A.−−1i B.−+1i C.−1i D. 【答案】C 【详解】+1i 由题意得i 1i 3. 故选:z =−−=−(1i ).C.圆 22x y x y +−+=260的圆心到直线x y −+=20的距离为()A.B. 2C. 3D.x y x y +−+=【答案】D 【详解】由题意得26022,即x y −++=131022))((,则其圆心坐标为−(1,3),则圆心到直线x y −+=20=故选:D.4. 在x 4x (的展开式中,3的系数为()A.6B.−6 C. 12 D. 【答案】−12A【详解】x 4(的二项展开式为==−=r rr rrr +T xxr r C C 1,0,1,2,3,414424−4−(())(,令−= r243,解得r =2,故所求即为22)5. 设故选:C 16(−=4.A.a ,b 是向量,则“(a b a b +−=)·)0”是“(a b =−或a b =”的().B. 必要不充分条件D. 既不充分也不必要条件【详解】A. 充分不必要条件C. 充要条件【答案】B 因为a b a b a b 22)()0+⋅−=−=(,可得a b 22=,即a b =,可知a b a b +⋅−=)()0(等价于a b =若,a b =或a b =−,可得a b =,即a b a b +⋅−=)()0 (,可知必要性成立;若a b a b +⋅−=)()0(,即a b =,无法得出a b =或a b =−,例如()(a b ==1,0,0,1),满足a b =,但a b ≠且a b ≠− 综上所述,,可知充分性不成立;“a b a b +⋅−=)()0”是(“a b ≠且a b ≠−故选:B.6. ”的必要不充分条件.设函数ωω(()f x f x x =>sin 0).已知1)=−1(,f x 2)=1(,且x x −12的最小值为2π,则D. C. B. ω=()234x A. 1【答案】B 【详解】由题意可知:1为f x )(的最小值点,x 2为f x )(的最大值点,则T 22πminx x 12−==,即T =π,且ω>0,所以T故选:B.7. ω==22π.生物丰富度指数ln d =NS −1是河流水质的一个评价指标,其中总数.生物丰富度指数d S N ,分别表示河流中的生物种类数与生物个体越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由N 1变为 N 2,生物丰富度指数由 2.1提高到3.15,则()A. 32=N N 21 B. 23=N N 21C. N N =2123D. N N =21【详解】【答案】32D 由题意得N N S S ln ln ==2.1, 3.15−−1112,则=122.1ln 3.15ln N N ,即122ln 3ln =N N ,所以N N =218. 故选:32.D 如图,在四棱锥P ABCD −中,底面ABCD 是边长为4的正方形,4PA PB ==,,该PC PD ==.棱锥的高为( B. A. ).12C.D.【答案】D 【详解】如图,底面ABCD 为正方形,当相邻的棱长相等时,不妨设PA PB AB PC PD =====4,,分别取AB CD ,的中点E F ,,连接,,PE PF EF ,则⊥⊥PE AB EF AB ,,且 PE EF E ⋂=,,PE EF ⊂平面PEF ,可知AB ⊥平面 PEF ,且AB ⊂平面ABCD ,所以平面PEF ⊥平面ABCD ,过P 作 EF 的垂线,垂足为O ,即PO EF ⊥,由平面PEF平面ABCD EF =,PO ⊂平面PEF ,所以PO ⊥平面ABCD ,由题意可得: 2,4PE PF EF PE PF EF ===,则+=222,即PE PF ⊥,则⋅=⋅22PE PF PO EF 11,可得 ⋅EFPO ==PE PF ,当相对的棱长相等时,不妨设PA PC ==4,PB PD ==因为==+BD PB PD ,此时不能形成三角形PBD 9. 故选:,与题意不符,这样情况不存在.D.已知,)(x y 11,,y =2x )(x y 22是函数的图象上两个不同的点,则()A. <++y y x x 22log 21212B. >++y y x x 22log 21212C. +2log 212y y 12<+x x D. +2log 212y y 12>+xxx x 12【答案】B 【详解】由题意不妨设<,因为函数022y =2x是增函数,所以<<x x 12,即对于选项AB 0<<y y 12,:可得++2>=222x x 212x x 12,即++2 2y y 12>>20x x 12,根据函数y x =log 2是增函数,所以>=+++y y x x 22log log 22221212对于选项D ,故B 正确,A x x 12错误;:例如x x ==0,112,则y y 12==1,2,可得+22322y y 12=∈(log log 0,1),即 +2对于选项C log 1212,故D y y 12<=+x x 错误;:例如x x =−=−1,212,则y y ==24,1112,可得+282223==−∈−−y y 12(log log log 332,1),即 +2故选:B.10. log 3212,故C y y 12>−=+x x 错误,已知==+−≤≤≤≤2)(){(,|,12,01M x y y x t xx x t }是平面直角坐标系中的点集.设d 是 M 中两点间距离的最大值,S 是 M 表示的图形的面积,则()A. d =3, S <1 B. d =3,S >1C. d =S <1D.d =,x ∈[1,2【答案】C 【详解】S >1对任意给定],则xx x x −=−≥102)(,且t ∈[0,1],可知x x t x x x x x x ≤+−≤+−=222)(,即⎩再结合x x y x 2≤≤,的任意性,所以所求集合表示的图形即为平面区域≤≤⎪≥≤x ⎪⎨y x 12⎧y x 2,如图阴影部分所示,其中()()(A B C 1,1,2,2,2,4),可知任意两点间距离最大值d AC ==;阴影部分面积△ABC 2y x 的焦点坐标为________2=故选:C.11. S S <=⨯⨯=1211.抛物线16.【答案】【详解】(4,0)由题意抛物线的标准方程为y x2=16,所以其焦点坐标为(4,0).故答案为:12. (4,0).在平面直角坐标系xOy 中,角α与角β均以为始边,它们的终边关于原点对称.Ox 若⎣⎦⎢⎥α⎡⎤∈63,πcos β的最大值为________π,则.【答案】 −21##【详解】−0.5由题意βα=++∈,Z ππ2k k ,从而=++=−cos cos cos βαα(π2k π),因为⎣⎦⎢⎥α⎡⎤∈63,ππ,所以cos α的取值范围是⎣⎦⎢⎡22,1,cos β的取值范围是⎣⎦−− ⎡⎤22⎢⎥1,当且仅当α=3π,即3π2k k β=+∈,Z 4π时,cos β取得最大值,且最大值为 −21.故答案为: −213. 1.若直线(y k x =−3)与双曲线 4y −=12x 2只有一个公共点,则k 的一个取值为________.【答案】21(或 −2【详解】1,答案不唯一)联立⎩⎨⎪4y −=12⎪y k x =−3⎧x 2)(,化简并整理得:−+−−=k x k x k2222)(14243640,由题意得140k −=2或2222)kk k )(()Δ=++−=(244364140,解得k =±21或无解,即 k =±2,经检验,符合题意1.故答案为:21(或−2230mm ,则斗量器的高为65mm,325mm,325mm 14. 汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10,答案不唯一)1.的等比数列,底面直径依次为,且斛量器的高为______mm ,升量器的高为________②. ①. .mm 【答案】2357.5##2【详解】115设升量器的高为h 2h 1,斗量器的高为(单位都是mm ),则⎝⎭⎝⎭⎛⎫⎛⎫h h ⎛⎫⎛⎫ ⎪ ⎪22ππ⎝⎭⎝⎭==1022⨯230 ⎪ ⎪ππ12 6532522h 232532522,故h 2=23mm , 2mm h 1115=.故答案为: 223mm,mm 15. 115.设}{a n 与}是两个不同的无穷数列,且都不是常数列.{b n 记集合k k M k a b k ==∈|,N *①},给出下列4{个结论:若}{a n 与②}均为等差数列,则M 中最多有1{b n 个元素;若} {a n 与}③均为等比数列,则M 中最多有2{b n 个元素;若}{a n 等差数列,}④为等比数列,则M 中最多有3{b n 个元素;若}{a n 为递增数列,} 其中正确结论的序号是______.【答案】①③④【详解】对于①为递减数列,则M 中最多有1个元素{b n .,因为n n },{{a b }均为等差数列,故它们的散点图分布在直线上,而两条直线至多有一个公共点,故对于②中至多一个元素,故①正确M .,取n n n −1n −1a b ==−−2,2,()则a b n n ,{}{}均为等比数列,但当n n n 为偶数时,有22n −1对于③M 中有无穷多个元素,故②错误n −1a b ===−−)(,此时.,设n n(b AqAq q =≠≠±0,1),n (a kn b k =+≠0),若M 中至少四个元素,则关于n 的方程Aq kn b 至少有4n=+个不同的正数解,若q q >≠0,1,则由y Aq n=和y kn b =+的散点图可得关于Aq kn b nn 的方程=+至多有两个不同的解,矛盾;若q q <≠±0,1,考虑关于n 的方程Aq kn b n=+奇数解的个数和偶数解的个数,当Aq kn b n=+有偶数解,此方程即为 A q kn b n=+,方程至多有两个偶数解,且有两个偶数解时Ak q ln 0>,为否则Ak q <ln 0,因 ==+y A q y kn b n,单调性相反,方程A q kn b n=+至多一个偶数解,当Aq kn b n=+有奇数解,此方程即为−=+A q kn b n,方程至多有两个奇数解,且有两个奇数解时Ak q −>ln 0即 Ak q <ln 0否则Ak q ln 0>,因 =−=+y A q y kn b n,单调性相反,方程A q kn b n=+至多一个奇数解,因为Ak q >ln 0,Ak q <ln 0不可能同时成立,故对于④Aq kn b 不可能有4个不同的整数解,即M 中最多有3个元素,故③正确n =+.,因为}{a n 为递增数列,}16. 后者的散点图呈下降趋势,两者至多一个交点,故④正确.故答案为:{b n 为递减数列,前者散点图呈上升趋势,①③④.在ABC 中,内角A B C ,,的对边分别为a b c ,,,∠A 为钝角,a =7,=7(1)sin 2cos B B .求(2)从条件①、条件②、条件③∠A ;这三个条件中选择一个作为已知,使得ABC 存在,求ABC 条件①的面积.:;条件②b =7:14cos B =;条件③13:=c A sin 【答案】(1注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.) A =3(2)选择①无解;选择②和③△ABC 2π;面积均为 4【解析】【小问1.详解】由题意得 =B B b B 72sin cos cos ,因为A 为钝角,则cos 0B ≠,则=2sin B,则===BA A b a sin sin sin 7,解得 2sin A =,因为A 为钝角,则A =3选择【小问22π.详解】①b =7,则B sin 7===A =32π,则B 为锐角,则B π=3,此时选择A B +=π,不合题意,舍弃;②14cos B =13,因为B为三角形内角,则14B sin ==,则代入=72sin B得b 1472⨯=,解得b =3, ⎪=+=+=+333⎛⎫C A B B B B ⎝⎭sin sin sin sin cos cos sin 2π2π2π)(⎝⎭ ⎪ =+−⨯=⎛⎫21421414131,则ABCSab C ==⨯⨯⨯=22144sin 73选择11.③=c A sinc ⨯=2c =5,则由正弦定理得=sin sin a c A C=sin C 5,解得 14sin C =,因为C为三角形内角,则C 14cos ==11,则 ⎪=+=+=+333⎛⎫B AC C C C ⎝⎭sin sin sin sin cos cos sin 2π 2π2π)(⎝⎭ ⎪ =+−⨯=⎛⎫21421414111,则 △S ac B ==⨯⨯⨯=ABC 22144sin 7517. 11如图,在四棱锥−P ABCD 中,//BC AD ,AB BC ==1,E AD =3,点在AD 上,且PE DE ==2PE AD ⊥,.(1)若F 为线段PE 中点,求证:(2)PCD BF //平面.若AB ⊥平面 PAD ,求平面PAB 与平面(2【答案】(1)PCD 夹角的余弦值.证明见解析)30【解析】【小问1详解】取PD 的中点为S ,接,SF SC ,则 ==2SF ED SF ED //,11,而 =ED BC ED BC //,2,故=//,SF BC SF BC ,故四边形SFBC 为平行四边形,故BF SC //,而BF ⊄平面 PCD ,SC ⊂平面PCD ,所以BF //平面【小问2PCD .详解】因为ED =2,故AE =1,故//,=AE BC AE BC ,故四边形 AECB 为平行四边形,故//CE AB ,所以CE ⊥平面PAD ,而PE ED ⊂,平面PAD ,故⊥⊥,PE ED CE PE CE ED ,而⊥,故建立如图所示的空间直角坐标系,则A B C D P () )()−−)((则PA PB PC PD (0,1,0,1,1,0,1,0,0,0,2,0,0,0,2),()()()(0,1,2,1,1,2,1,0,2,0,2,2,=−−=−−=−=− )设平面PAB 的法向量为(,,m x y z=),则由m PA ⋅=0m PB ⋅=0⎩⎪⎨⎪⎧可得⎩⎨x y z −−=y z 20⎧−−=20,取m =−(0,2,1),设平面PCD 的法向量为n a b c =(,,),则由n PC ⋅=0n PD ⋅=0⎩⎪⎨⎪⎩b c ⎧可得−=⎨220⎧a b −=20,取n =(2,1,1),1故cos ,m n −==−⨯ 530,故平面PAB 与平面PCD 夹角的余弦值为3018. 某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:(i 假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.)记X 为一份保单的毛利润,估计X 的数学期望(ⅱE X )(;)如果无索赔的保单的保费减少 4%,有索赔的保单的保费增加的数学期望估计值与(i 20%,试比较这种情况下一份保单毛利润)中【答案】(1E X )(估计值的大小.(结论不要求证明))10(2)(i)0.122万元;(ii) 这种情况下一份保单毛利润的数学期望估计值大于(i 1)中【解析】【小问1E X )(估计值详解】设A 为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得++++ ++80010060301010(ⅰ【小问2P A )6030101==(.详解】)设0,0.8,1.6,2.4,3ξξ为赔付金额,则可取,由题设中的统计数据可得10005100010P P ξξ0,0.880041001) ()(======,ξ100050P ( 1.6)===603, ξ1000100P ( 2.4)===303,ξ1000100P (3)===101,故 51050100100E (ξ)=⨯+⨯+⨯+⨯+⨯=4133100.8 1.6 2.430.278故(ⅱ(万元)E X )=−=0.40.2780.122(.)由题设保费的变化为 ⨯⨯+⨯⨯=550.496%0.4 1.20.4032 41,故E Y =+−=0.1220.40320.40.1252()(万元),从而()<(19. E X E Y ).已知椭圆E :a b a b+=>>1022E 的焦点和短轴端点为顶点的四边形是边长为2的正方形)x y 22(,以椭圆.过点t t >0,)((且斜率存在的直线与椭圆E 交于不同的两点A B ,,过点A 和C (0,1)的直线AC 与椭圆E的另一个交点为(1)D .求椭圆【答案】(1(2)若直线BD 的斜率为0,求t E 的方程及离心率;的值.)+==4221,e (2x y 22)【解析】【小问1t =2详解】由题意b c ===,从而 a ==2,所以椭圆方程为42+=1x y 22,离心率为e =2【小问2;详解】直线AB AB 斜率不为0,否则直线与椭圆无交点,矛盾,从而设AB y kx t k t =+≠>:,0,(,,,,1122)((A x y B x y ),联立⎩=+⎪⎪y kx t ⎨42+=1⎧x y 22,化简并整理得+++−=k x ktx t 222)(124240,由题意k t k t k t1682128420Δ=−+−=+−>222222)()()(,即k t ,应满足420kt 22+−>,所以++−−k k x x x x +==1221, 424221212kt t 2,若直线斜率为0BD ,由椭圆的对称性可设 D x y 22)(−,,所以+x x −AD y x x y 12:=−+11y y 12)(,在直线AD 方程中令x =0,得+x x x x x x kt ty t +++−x y x y 42121212122112211212k t 2−(x kx t x kx t kx x t x x )42)()2()C ====+==1(+++++,所以t =2,此时k 应满足⎩⎨k ≠k t k +−=−>0⎧42420222,即k应满足k <−2或k >2,综上所述,t =2满足题意,此时k <2或 k >220. .设函数f x x k x k =++≠ln 10)(()(),直线l 是曲线 =y f x )(在点, (1)(t f (t ))(t >0)处的切线.当k =−1时,求(2)的单调区间f x )(.求证:l 不经过点k =1(0,0).时,设点A t f t t ,0)(())(>,C f t 0,O (0,0)(()),,B 为l 与Sy 轴的交点,ACO 与SABO分别△(3)当表示ACO 与ABO 的面积.是否存在点 A 使得△△215S S ACO ABO =成立?若存在,这样的点A 有几个?(参考数据: 1.09ln31.10<<,1.60ln51.61<<, 【答案】(1)1.94ln71.95<<)单调递减区间为−(1,0),单调递增区间为(3)+∞(0,).2(2)证明见解析【解析】【小问1详解】=−+=−=>− 'f x x x f x x 11++xx x()ln(1),()1(1)1,当('x ∈−1,0)时,(f x )<0;当(0,x ∈+∞),fx∴f x ();在(1,0)−上单调递减,在(0,)上单调递增+∞.则f x ()的单调递减区间为(1,0)−,单调递增区间为(0,)+∞.【小问2详解】'1+k x f x ()1=+,切线l 的斜率为 1+k t1+,则切线方程为⎝⎭⎪ −=+−>1+⎛⎫k t y f t x t t ()1()(0),将(0,0)代入则⎝⎭⎝⎭−=−+=+ f t t f t t ⎛⎫⎛⎫ ⎪ ⎪11k k t t ()1,()1++,即t k t t t+++=+t k 1ln(1),则t 1+t t ln(1)+=, +−=t 1+tt ln(1)0,令F t t =+−1+tt()ln(1),假设l 过(0,0),则F t ()在存在零点t ∈+∞(0,).'=−=>t t t 1(1)(1)+++11+−t t t 22∴F t ()F t ()0,在(0,)+∞上单调递增,∴F t F t F ()(0)0>=,()在+∞(0,)无零点,∴与假设矛盾,故直线l 不过k =【小问3(0,0).详解】1时,' 11++x +x x()ln(1),()10f x x x f x =++=+=>12.Stf t ACO=2()1,设l 与y 轴交点B 为qt >(0,),0时,若q <0,则此时l 与 由(2必有交点,与切线定义矛盾f x ().)知.q ≠0所以q >0,则切线l 的方程为⎝ 1+t y t t ⎛⎫−−+=+⎭1(x t )ln 1) ⎪1−(,令x =0,则 ===+−t +t 1215SS y q y t ln(1).ACOABO =,则⎣⎦tf t t t ⎡⎤⎢⎥t +t 12()15ln(1)=+−,t t 1+t t13ln(1)2150∴+−−=,记1+=+−−>h t t t t t ∴()13ln(1)2(0)15t,满足条件的A 有几个即h t ()有几个零点.'++++++−++−t t t t t t t t t 1(1)(1)(1)(1)h t ()2=−−===1315294(21)(4)13132211522222+−−+−2t t t )(,当⎝⎭⎪t ⎛⎫∈20,1时, '(h t )<0,此时(h t )单调递减;当⎝⎭⎪t ⎛⎫∈2,4 1时,'h t )>0(,此时h t )(单调递增;当(4, 't ∈+∞)时,(h t )<0,此时(h t )单调递减;因为⎝⎭⎪ ⎛⎫2(0)0,0,(4)13ln 52013 1.6200.80h h h ==−⨯−=>1, =−−=−−<⨯−−=−<⨯2555h (24)13ln 254826ln 54826 1.614820.54015247272,所以由零点存在性定理及h t ()的单调性,h t ()在⎝⎭⎪⎛⎫2 ,41上必有一个零点,在(4,24)上必有一个零点,综上所述,h t ()有两个零点,即满足215S S =ACO ABO 的21. 关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题A 有两个.【点睛】.已知集合=∈∈∈∈+++{}{}{}{}){(,,,1,2,3,4,5,6,7,8,且:,,,M i j k w i j k w i j k w 为偶数}.给定数列128A a a a ,和序列T T T s Ω:,,12,,,1,2,,,其中T i j k w M t s )=∈=t t t t t ()(,对数列A 进行如下变换:将A 的第i j k w ,,,1111项均加1,其余项不变,得到的数列记作T 1(A );将T 1(A )的第i j k w ,,,2222项均加1,其余项不变,得到数列记作21((21T T A );……;以此类推,得到T T T A )s,简记为(1)Ω(A ).给定数列A :1,3,2,4,6,3,1,9和序列)()(((2)Ω(A Ω:1,3,5,7,2,4,6,8,1,3,5,7),写出);是否存在序列Ω,使得Ω(A )为a a a a a a a a 2,6,4,2,8,2,4,412345678++++++++,若存在,写出一个符合条件的(3)Ω;若不存在,请说明理由;若数列A 的各项均为正整数,且+++1357a a a a 为偶数,求证:“存在序列Ω,使得 等”的充要条件为Ω(A )的各项都相“ +=+=+=+12345678【答案】(1a a a a a a a a ”.)(2)Ω(A ):3,4,4,5,8,4,3,10不存在符合条件的(3)证明见解析【解析】【小问1Ω,理由见解析详解】因为数列A :1,3,2,4,6,3,1,9,由序列 T 1(1,3,5,7)可得1T A ):2,3,3,4,7,3,2,9(;由序列T 2 (2,4,6,8)可得21(T T A ):2,4,3,5,7,4,2,10;由序列 T 3(1,3,5,7)可得321T T T A ):3,4,4,5,8,4,3,10(;所以【小问2详解】Ω(A ):3,4,4,5,8,4,3,10.解法一:假设存在符合条件的Ω,可知Ω(A )的第1,2项之和为a a s 12++,第3,4项之和为a a s 34++,则⎩+++=++⎪+++=++3434)42⎪1212)(⎨(a a a a s)26)(⎧(a a a a s,而该方程组无解,故假设不成立,故不存在符合条件的解法二:由题意可知:对于任意序列,所得数列之和比原数列之和多4Ω;,假设存在符合条件的Ω,且 ⋅⋅⋅):,,,128Ω(A b b b ,因为+++++++4共有8=826428244,即序列Ω项,由题意可知:−−n n n n b b a a n 8,1,2,3,4212212+−+== ) )((,检验可知:当n =2,3时,上式不成立,即假设不成立,所以不存在符合条件的s ...【小问3详解】Ω.解法一:我们设序列21(T T T A )为s n ,}(≤≤0,{a n 18),特别规定nn (T T T 必要性:aa n =≤≤18).若存在序列sΩ:,,12,使得Ω(A )的各项都相等.则=======s s s s s s s s ,1,2,3,4,5,6,7,8 a a a a a a a a ,所以+=+=+=+s s s s s s s s ,1,2,3,4,5,6,7,8a a a a a a a a .根据s ...21( T T T A )的定义,显然有−−−−s j s j s j s j ,21,21,211,2j =a a a a +=++1,这里1,2,3,4,s =1,2,....所以不断使用该式就得到+=+=+=+=+−s s 12345678,1,2a a a a a a a a a a s ,必要性得证.充分性:若+=+=+=+12345678a a a a a a a a .由已知,+++1357a a a a 为偶数,而+=+=+=+12345678a a a a a a a a ,所以+++=+−+++2468121357)(4(a a a a a a a a a a )也是偶数.我们设s ...21T T T A )(是通过合法的序列Ω的变换能得到的所有可能的数列Ω(A )中,使得−+−+−+−a a a a a a a a s s s s s s s s ,1,2,3,4,5,6,7,8最小的一个.上面已经说明−−−−s j s j s j s j a a a a +=++1,21,21,211,2,这里j =1,2,3,4,s =1,2,....从而由+=+=+=+12345678 a a a a a a a a 可得+=+=+=+=++s s s s s s s s ,1,2,3,4,5,6,7,812a a a a a a a a a a s .同时,由于+++i j k w t t t t 总是偶数,所以+++t t t t ,1,3,5,7a a a a 和+++t t t t ,2,4,6,8a a a a 的奇偶性保持不变,从而+++s s s sa a a a ,1,3,5,7和+++a a a a s s s s ,2,4,6,8都是偶数.下面证明不存在j =1,2,3,4使得−a a s j s j −≥2,21,2.假设存在,根据对称性,不妨设j =1,−a a s j s j −≥2,21,2,即s s 情况1a a ,1,2−≥2.:若s s s s s s ,3,4,5,6,7,8a a a a a a −+−+−=0,则由+++s s s s a a a a ,1,3,5,7和+++a a a a s s s s ,2,4,6,8都是偶数,知s s a a ,1,2−≥4.对该数列连续作四次变换)()()((2,3,5,8,2,4,6,8,2,3,6,7,2,4,5,7)后,新的−+−+−+−++++++++a a a a a a a a s s s s s s s s 4,14,24,34,44,54,64,74,8相比原来的−+−+−+−a a a a a a a a s s s s s s s s ,1,2,3,4,5,6,7,8减少4,这与情况2−+−+−+−a a a a a a a a s s s s s s s s ,1,2,3,4,5,6,7,8的最小性矛盾;:若s s s s s s ,3,4,5,6,7,8a a a a a a −+−+−>0,不妨设s s 情况2-1a a ,3,4−>0:如果s s a a ,3,4−≥1,则对该数列连续作两次变换2,4,5,7,2,4,6,8)()(后,新的−+−+−+−++++++++a a a a a a a a s s s s s s s s 2,12,22,32,42,52,62,72,8相比原来的−+−+−+−a a a a a a a a s s s s s s s s ,1,2,3,4,5,6,7,8至少减少2,这与−+−+−+−a a a a a a a a s s s s s s s s ,1,2,3,4,5,6,7,8情况2-2的最小性矛盾;:如果s s a a ,4,3−≥1,则对该数列连续作两次变换)((2,3,5,8,2,3,6,7)后,新的−+−+−+−++++++++a a a a a a a a s s s s s s s s 2,12,22,32,42,52,62,72,8相比原来的−+−+−+−a a a a a a a a s s s s s s s s ,1,2,3,4,5,6,7,8至少减少2,这与−+−+−+−a a a a a a a a s s s s s s s s ,1,2,3,4,5,6,7,8的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有−,21,2a a s j s j −≤1.假设存在j =1,2,3,4使得−,21,2.a a s j s j −=1,则−+,21,2a a s j s j 是奇数,所以+=+=+=+s s s s s s s s ,1,2,3,4,5,6,7,8N a a a a a a a a 都是奇数,设为+21.则此时对任意j =1,2,3,4,由−a a s j s j −≤1,21,2可知必有−s j s j{}=+,21,2{a a N N ,,1}.而+++s s s s a a a a ,1,3,5,7和+++a a a a s s s s ,2,4,6,8都是偶数,故集合s m =,{m a N }中的四个元素i j k w ,,,之和为偶数,对该数列进行一次变换,,,(i j k w ),则该数列成为常数列,新的−+−+−+−++++++++a a a a a a a a s s s s s s s s 1,11,21,31,41,51,61,71,8等于零,比原来的−+−+−+−a a a a a a a a s s s s s s s s ,1,2,3,4,5,6,7,8更小,这与−+−+−+−a a a a a a a a s s s s s s s s ,1,2,3,4,5,6,7,8最小性矛盾.的综上,只可能−s j s j ,21,2(a a j −==01,2,3,4),而+=+=+=+a a a a a a a a s s s s s s s s ,1,2,3,4,5,6,7,8,故s n ,}=Ω(是常数列,充分性得证{a A ).解法二:由题意可知:Ω中序列的顺序不影响Ω(A )的结果,且,,,,,,,12345678)()()((ⅰ(a a a a a a a a )相对于序列也是无序的,)若+=+=+=+12345678a a a a a a a a ,不妨设≤≤≤a a a a 1357,则≥≥≥a a a a 2468①,当===a a a a 1357,则===8642a a a a ,分别执行a 1个序列(2,4,6,8)、a 2个序列(1,3,5,7),可得++++++++,,,,,,,1212121212121212②a a a a a a a a a a a a a a a a ,为常数列,符合题意;当a a a a ,,,1357中有且仅有三个数相等,不妨设==a a a 135,则==246a a a ,即,,,,,,,12121278a a a a a a a a ,分别执行a 2个序列a (1,3,5,7)、7个序列(2,4,6,8)可得++++++++,,,,,,,1227122712272778a a a a a a a a a a a a a a a a ,即++++++++,,,,,,,1227122712272712a a a a a a a a a a a a a a a a ,因为+++1357a a a a 为偶数,即3a a 17+为偶数,可知,a a 17的奇偶性相同,则−2aa71∈N *,分别执行−a a 271个序列(1,4,5,8)(2,3,5,8)(1,3,6,8)(1,3,5,7),,,,可得+−+−+−+−+−+−+−+−a a a a a a a a a a a a a a a a a a a a a a a 22222222,,,,,,,③,323232323232323272172172172172172172172为常数列,符合题意;若=<=1357a a a a ,则=>=2468a a a a ,即,,,,,,,12125656a a a a a a a a ,分别执行a 5个(1,3,6,8)、a 1个(2,4,5,7),可得++++++++a a a a a a a a a a a a a a a a ,,,,,,,1512151215561556,因为+=+a a a a 1256,可得++++++++a a a a a a a a a a a a a a a a ,,,,,,,1512151215121512④即转为①,,可知符合题意;当a a a a ,,,1357中有且仅有两个数相等,不妨设a a =13,则a a =24,即,,,,,,,12125678a a a a a a a a ,分别执行a 1个(2,4,5,7)、a 5个(1,3,6,8),可得++++++++,,,,,,,1512151215561758a a a a a a a a a a a a a a a a ,且+=+a a a a 1256,可得++++++++,,,,,,,1512151215121758a a a a a a a a a a a a a a a a ,因为+++=++21357157a a a a a a a 为偶数,可知,a a 57的奇偶性相同,则+++++++=++15151517157)43)()()((a a a a a a a a a a a 为偶数,且+=+=+<+15151517⑤a a a a a a a a ,即转②,可知符合题意;若<<<1357a a a a ,则>>>a a a a 2468,即,,,,,,,12345678a a a a a a a a ,分别执行a 1个(2,3,5,8)、a 3个(1,4,6,7),可得++++++++,,,,,,,1312133415363718a a a a a a a a a a a a a a a a ,且+=+1234a a a a ,可得++++++++,,,,,,,1312131215363718a a a a a a a a a a a a a a a a ,因为+++1357a a a a 为偶数,则+++++++=+++++13131537131357)()2()()()((a a a a a a a a a a a a a a )为偶数,且+=+<+<+13131537a a a a a a a a ,即转为④,可知符合题意;综上所述:若+=+=+=+12345678Ωa a a a a a a a ,则存在序列,使得 (ⅱΩ(A )为常数列;)若存在序列Ω,使得Ω(A )为常数列,为因为对任意⋅⋅⋅):,,,128Ω(A b b b ,均有+−+=+−+12123434)()()((b b a a b b a a )56567878)=+−+=+−+)( )()((b b a a b b a a 成立,若Ω(A )为常数列,则+=+=+=+b b b b b b b b 12345678,所以+=+=+=+12345678综上所述:“a a a a a a a a ;存在序列Ω,使得Ω(A )为常数列”的充要条件为“+=+=+=+a a a a a a a a 12345678”.。
2024年北京市高考数学试卷

2024年北京市高考数学试卷A.{x|-1≤x<1}B.{x|x>-3}C.{x|-3<x<4}D.{x|x<4}A.-1-iB.-1+iC.1-iD.1+iA.B.2C.3D.3(2024•北京)已知集合M={x|-3<x<1},N={x|-1≤x<4},则M∪N=( )答案:C解析:结合并集的定义,即可求解.解答:解:集合M={x|-3<x<1},N={x|-1≤x<4},则M∪N={x|-3<x<4}.故选:C.(2024•北京)若复数z满足=-1-i ,则z=( )z i答案:C解析:结合复数的四则运算,即可求解.解答:解:=-1-i,则z=i(-1-i)=1-i.故选:C.z i(2024•北京)圆x 2+y 2-2x+6y=0的圆心到x-y+2=0的距离为( )√2√2答案:D解析:求解圆的圆心坐标,利用点到直线的距离公式求解即可.解答:解:圆x 2+y 2-2x+6y=0的圆心(1,-3),圆x 2+y 2.故选:D.√2A.6B.-6C.12D.-12A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2024•北京)在的展开式中,x 3的系数为( )(x -)√x 4答案:A解析:利用二项式定理,求解即可.解答:解:的通项公式为:(-1)r •,4-r +=3,可得r=2,二项展开式中x 3的系数:•(-1)2=6.故选:A.(x -)√x4C 4r •x 4-r x r2r 2C 42(2024•北京)设a ,b 是向量,则“(a +b )•(a -b )=0”是“a =-b 或a =b ”的( )→→→→→→→→→→答案:B解析:根据已知条件,依次判断充分性,必要性的判断,即可求解.解答:解:(a +b )•(a -b )=0,则-=0,即|a |=|b |,|a |=|b |不能推出a =b 或a =-b ,充分性不成立,a =b 或a =-b 能推出|a |=|b |,必要性成立,故“(a +b )•(a -b )=0”是“a =b 或a =-b ”的必要不充分条件.故选:B.→→→→a →2b →2→→→→→→→→→→→→→→→→→→→→→→(2024•北京)设函数f(x)=sinωx(ω>0).已知f(x 1)=-1,f(x 2)=1,且|x 1-x 2|的最小值为,则ω=( )π2A.1B.2C.3D.4A.3N 2=2N 1B.2N 2=3N 1C.=D.=答案:B解析:由已知结合正弦函数的性质即可直接求解.解答:解:因为f(x)=sinωx,则f(x 1)=-1为函数的最小值,f(x 2)=1为函数的最大值,又|-==,所以T=π,ω=2.故选:B.x 1x 2|minπ2T 2(2024•北京)生物丰富度指数d =是河流水质的一个评价指标,其中S,N分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数S没有变化,生物个体总数由N 1变为N 2,生物丰富度指数由2.1提高到3.15,则( )S -1lnNN 22N 13N 23N 12答案:D解析:根据已知条件可得=2.1,=3.15,化简即可求解.S -1lnN 1S -1lnN 2解答:解:根据个体总数由N 1变为N 2可列式,=2.1,=3.15,所以2.1lnN 1=3.15lnN 2,约分可得2lnN 1=3lnN 2,故=,所以=.故选:D.S -1lnN 1S -1lnN 2lnN 12lnN 23N 12N 23(2024•北京)如图,在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,PA=PB=4,PC=PD=2,该棱锥的高为( )√2A.1B.2C.D.A.lo <C.lo <+D.lo >+√2√3答案:D解析:根据题意分析可知平面PEF⊥平面ABCD,可知PG⊥平面ABCD,再结合等体积法,即可求解.解答:解:由题意知△PAB为正三角形,因为PC 2+PD 2=CD 2,所以PC⊥PD,分别取AB,CD的中点E,F,连接PE,EF,PF,则PE=2,PF=2,EF=4,则PE 2+PF 2=EF 2,所以PE⊥PF,过点P作PG⊥EF,垂足为G.易知CD⊥PF,CD⊥EF,EF,PF ⊂平面PEF,且EF∩PF=F,所以CD⊥平面PEF.又PG ⊂平面PEF,所以CD⊥PG.又PG⊥EF,CD,EF ⊂平面ABCD,CD∩EF=F,所以PG⊥平面ABCD,所以PG为四棱锥P-ABCD的高,因为PE •PF =EF •PC ,所以PG ===.故选:D.√31212PE •PF EF 2×2√34√3(2024•北京)已知(x 1,y 1),(x 2,y 2)是函数y=2x 的图象上两个不同的点,则( )g 2+y 1y 22+x 1x 22g 2+y 1y 22x 1x 2g 2+y 1y 22x 1x 2答案:BA.d=3,S<1B.d=3,S>1C.d =,S <1D.d =,S >1解析:根据已知条件,结合基本不等式的公式,以及对数的运算性质,即可求解.解答:解:(x 1,y 1),(x 2,y 2)是y=2x 上的点,则=,=,+≥2=2,当且仅当x 1=x 2时,等号成立,故>,两边同时取对数可得,lo >.故选:B.y 12x1y 22x22x12x2√•2x 12x 2√2+x 1x 2+y 1y 222+x 1x22g 2+y 1y 22+x 1x 22(2024•北京)已知M={(x,y)|y=x+t(x 2-x),1≤x≤2,0≤t≤1}是平面直角坐标系中的点集.设d是M中两点间的距离的最大值,S是M表示的图形的面积,则( )√10√10答案:C解析:根据已知条件,作出图象,结合图象即可得出答案.解答:解:集合{y|y=x+t(x 2-x),0≤t≤1,1≤x≤2}表示的图形如下图阴影部分所示,由图象可知,d =|AB |==,S <=×(4-2)×(2-1)=1.故选:C.√(2-1+(4-1)2)2√10S △ABC 12(2024•北京)抛物线y 2=16x的焦点坐标为 (4,0).答案:见试题解答内容解析:根据抛物线的标准方程计算可得.解答:解:抛物线y2=16x的焦点坐标是(4,0).故答案为:(4,0).(2024•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于原点对称.若α∈[,],则cosβ的最大值为.π6π3答案:见试题解答内容解析:先求出β的范围,再结合余弦函数的单调性,即可求解.解答:解:α与β的终边关于原点对称可得,α+π+2kπ=β,k∈Z,cosβ=cos(α+π+2kπ)=-cosα,α∈[,],cosα∈[,],,-],故当α=,β=2kπ+,k∈Z时,cosβ的最大值为-.故答案为:-.π6π312√32212π34π31212(2024•北京)若直线y=k(x-3)与双曲线-=1只有一个公共点,则k的一个取值为x24y2答案:见试题解答内容解析:根据已知条件,设出直线方程,再与双曲线方程联立,再分类讨论,并结合判别式,即可求解.解答:解:联立,化简可得(1-4k2)x2+24k2x-36k2-4=0,因为直线y=k(x-3)与双曲线-=1只有一个公共点,故1-4k2=0,或Δ=(24k2)2+4(1-4k2)(36k2+4)=0,解得k=±或k无解,{-=1y=k(x-3)x24y2x24y212当k=±时,符合题意.故答案为:(或-).121212(2024•北京)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325 mm,且斛量器的高为230mm,则斗量器的高为 23mm,升量器的高为 57.5mm.(不计量器的厚度)答案:见试题解答内容解析:根据题意求出斛量器的体积和斗量器、升量器的体积,再求对应圆柱的高.解答:解:斛量器的体积为V 3=π••230,则斗量器的体积为V 2=V 3=π••23,所以斗量器的高为23mm;设升量器的高为h,由升量器的体积为V 1=V 2=π••2.3=π••h,解得h=57.5,所以升量器的高为57.5mm;所以升量器、斗量器的高度分别57.5mm,23mm.故答案为:23,57.5.()32522110()32522110()32522()6522(2024•北京)设{a n }与{b n }是两个不同的无穷数列,且都不是常数列.记集合M={k|a k =b k ,k∈N*},给出下列四个结论:①若{a n }与{b n }均为等差数列,则M中最多有1个元素;②若{a n }与{b n }均为等比数列,则M中最多有2个元素;③若{a n }为等差数列,{b n }为等比数列,则M中最多有3个元素;④若{a n }为递增数列,{b n }为递减数列,则M中最多有1个元素.其中正确结论的序号是 ①③④.答案:见试题解答内容解析:根据散点图的特征可判断①④的正误,举出反例可判断②的正误,由通项公式的特征以及反证法,即可判断③的正误.解答:解:对于①,{a n },{b n }均为等差数列,M={k|a k =b k },{a n },{b n }不为常数列且各项均不相同,故它们的散点图分布在直线上,而两条直线至多有一个公共点,所以M中至多一个元素,故①正确;对于②,令=,=-(-2,满足{a n },{b n }均为等比数列,但当n为偶数时,===-(-2,此时M中有无穷多个元素,故②错误;对于③,设=A (Aq ≠0,q ≠±1),a n =kn+b(k≠0),若M中至少四个元素,则关于n的方程Aq n =kn+b至少有4个不同的正数解,若q<0,q≠±1,考虑关于n的方程Aq n =kn+b奇数解的个数和偶数解的个数,当Aq n =kn+b有偶数解,此方程即为A|q|n =kn+b,方程至多有两个偶数解,且有两个偶数解时Akln|q|>0,否则Akln|q|<0,因为y=A|q|n ,y=kn+b单调性相反,方程A|q|n =kn+b至多一个偶数解,当Aq n =kn+b有奇数解,此方程即为-A|q|n =kn+b,方程至多有两个奇数解,且有两个奇数解时-Akln|q|>0,即Akln|q|<0,否则Akln|q|>0,因为y=-A|q|n ,y=kn+b单调性相反,方程A|q|n =kn+b至多一个奇数解,因为Akln|q|>0,Akln|q|<0不可能同时成立,若q>0,q≠1,则由y=Aq n 和y=kn+b的散点图可得关于n的方程Aq n =kn+b至多有两个不同的解,矛盾;故Aq n =kn+b不可能有4个不同的正数解,故③正确.对于④,因为{a n }为单调递增,{b n }为递减数列,M={k|a k =b k },{a n },{b n }不为常数列且各项均不相同,前者散点图呈上升趋势,后者的散点图呈下降趋势,两者至多一个交点,故④正确.故答案为:①③④.a n 2n -1b n )n -1a n 2n -1b n )n -1b n q n (2024•北京)在△ABC中,内角A,B,C的对边分别为a,b,c,∠A为钝角,a=7,sin 2B.(1)求∠A;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使得△ABC存在,求△ABC的面积.条件①:b=7;条件②:cosB=;条件③:csinA=.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.7131452√3答案:(1);(2)条件①不符合要求;选②,;选③,.2π315√3415√34解析:(1)由已知等式结合二倍角公式和正弦定理求得sinA,即可得到A;(2)分析选条件①不符合要求;选条件②,由已知结合正弦定理求得b,由sinC=sin(A+B)可求得sinC,再由三角形面积公式求解即可;选条件③,由(1)及已知可求得c,结合余弦定理求得b,再由三角形面积公式求解即可;.解答:解:(1)因为sin 2B=2sinBcosB,因为A为钝角,所以B为锐角,cosB≠0,在△ABC中,由正弦定理得=,因为A为钝角,所以A=.(2)若选条件①,因为b=7,a=7,所以B=A=,与A+B+C=π矛盾,此时△ABC不存在,故条件①不符合要求,不选①;若选条件②,因为cosB=,所以sinB==在△ABC中,由正弦定理得=,所以b=•sinB=×+(-)×所以△ABC的面积为S=absinC=×7×3×若选条件③,由(1)知A=,因为csinA=,所以c=5,由余弦定理得a 2=b 2+c 2-2bccosA,714a sinAb sinB22π32π31314√1-B cos 214a b a sinA7sin 2π3141312141412121442π352√3即72=b 2+52-2b×5×cos ,解得b=3,所以△ABC的面积为S=bcsinA=×3×5×sin =.2π312122π315√34(2024•北京)如图,在四棱锥P-ABCD,BC∥AD,AB=BC=1,AD=3,点E在AD上,且PE⊥AD,DE=PE=2.(1)若F为线段PE的中点,求证:BF∥平面PCD.(2)若AB⊥平面PAD,求平面PAB与平面PCD夹角的余弦值.答案:见试题解答内容解析:(1)设M为PD的中点,连接FM,CM,证明四边形BCMF为平行四边形,即可得BF∥CM,由线面平行的判定定理即可证明;(2)易得CE⊥平面PAD,以E为坐标原点,建立空间直角坐标系,利用向量法即可求解.解答:(1)证明:如图,设M为PD的中点,连接FM,CM,因为F是PE中点,所以FM∥ED,且FM=ED,因为AD∥BC,AB=BC=1,AD=3,DE=PE=2,所以四边形ABCE为平行四边形,BC∥ED,且BC=ED,所以FM∥BC,且FM=BC,即四边形BCMF为平行四边形,所以BF∥CM,因为BF ⊄平面PCD,CM ⊂平面PCD,所以BF∥平面PCD.(2)解:因为AB⊥平面PAD,所以CE⊥平面PAD,EP,ED,EC相互垂直,以E为坐标原点,建立如图所示的空间直角坐标系,1212则P(0,0,2),A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,2,0),所以AB =(1,0,0),AP =(0,1,2),PC =(1,0,-2),CD =(-1,2,0),设平面PAB的一个法向量为m =(x 1,y 1,z 1),则,取z 1=-1,则m =(0,2,-1),设平面PCD的一个法向量为n =(x 2,y 2,z 2),则,取z 2=1,则n =(2,1,1),设平面PAB与平面PCD夹角为θ,则cosθ===→→→→→⎧⎨⎩m •AB ==0m •AP =+2=0→→x 1→→y 1z1→→⎧⎨⎩n •PC =-2=0n •CD =-+2=0→→x 2z 2→→x 2y 2→m •n →→|m |•|n |→→2-1×√5√630(2024•北京)某保险公司为了解该公司某种保险产品的索赔情况,从合同保险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:索赔次数1234保单份数800100603010假设:一份保单的保费为0.4万元;前三次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i)记X为一份保单的毛利润,估计X的数学期望EX;(ii)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i)中EX估计值的大小,(结论不要求证明)答案:见试题解答内容解析:(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(i)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,用频率估计概率后可求得分布列及数学期望,从而可求E(X);(ii)先算出下一期保费的变化情况,结合(i)的结果可求E(Y).解答:解:(1)设A为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得P (A )==;(2)(i)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,由题可得P (ξ=0)==,P (ξ=0.8)==,P (ξ=1.6)==,P (ξ=2.4)==,P (ξ=3)==,所以E (ξ)=0×+0.8×+1.6×+2.4×+3×=0.278,因为毛利润是保费与赔偿金额之差,故E(X)=0.4-0.278=0.122(万元);(ii)由(i)知未赔偿的概率为P (ξ=0)==,至少赔偿一次的概率为1-=,故保费的变化为0.4××(1-4%)+0.4××(1+20%)=0.4032,设Y为保单下一保险期的毛利润,故E(Y)=0.122+0.4032-0.4=0.1252(万元).所以E(X)<E(Y).60+30+10800+100+60+30+10110800100045100100011060100035030100031001010001100451103503100110080010004545154515(2024•北京)已知椭圆方程E:+=1(a >b >0),以椭圆E的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点(0,t)(t>)且斜率存在的直线与椭圆E交于不同的两点A,B,过点A和C(0,1)的直线AC与椭圆E的另一个交点为D.(1)求椭圆E的方程及离心率;(2)若直线BD的斜率为0,求t的值.x 2a 2y 2b 2√2答案:见试题解答内容解析:(1)根据已知条件,结合勾股定理,求出b,c,再结合椭圆的性质,即可求解;(2)先设出直线AB的方程,并与椭圆的方程联立,再结合韦达定理,以及判别式,即可求解.解答:解:(1)椭圆方程C:+=1(a >b >0),焦点和短轴端点构成边长为2的正方形,则b =c,故a 2=b 2+c 2=2,解得a =;a ==2,所以椭圆方程为+=1,离心率为e(2)显然直线AB斜率存在,否则B,D重合,直线BD斜率不存在与题意矛盾,同样直线AB斜率不为0,否则直线AB与椭圆无交点,矛盾,设AB:y=kx+t,(t >),A(x 1,y 1),B(x 2,y 2),联立,化简并整理得(1+2k 2)x 2+4ktx+2t 2-4=0,由题意可知,Δ=16k 2t 2-8(2k 2+1)(t 2-2)=8(4k 2+2-t 2)>0,即k,t应满足4k 2+2-t 2>0,由韦达定理可知,+=,=,若直线BD斜率为0,由椭圆的对称性可设D(-x 2,y 2),故AD :y =(x -)+,令x=0,则====+t ==1,解得t=2,此时k满足,解得k>或k<-,综上所述,t=2满足题意,此时k的取值范围为{k|k <kx 2a 2y 2b 2√2√2√+b 2c 2x 24y 222√2{y =kx +t +=1x 24y 22x 1x 2-4kt 1+2k 2x 1x 22-4t 22+1k 2-y 1y 2+x 1x 2x 1y 1y C+x 1y 2x 2y 1+x 1x 2(k +t )+(k +t )x 1x 2x 2x 1+x 1x 22k +t (+)x 1x 2x 1x 2+x 1x 24k (-2)t 2-4kt2t {k ≠04+2-=4-2>0k 2t 2k 2√22√2222(2024•北京)设函数f(x)=x+kln(1+x)(k≠0),直线l是曲线y=f(x)在点(t,f(t))(t >0)处的切线.(1)当k=-1,求f(x)单调区间;(2)证明:l不经过(0,0);(3)当k=1时,设点A(t,f(t))(t>0),C(0,f(t)),O(0,0),B为l与y轴的交点,S △ACO 与S △ABO 分别表示△ACO和△ABO的面积.是否存在点A使得2S △ACO =15S △ABO 成立?若存在,这样的点A有几个?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)答案:见试题解答内容解析:(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y -f (t )=(1+)(x -t )(t >0),将(0,0)代入再设新函数F (t )=ln (1+t )-,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S △ABO 得到13ln (1+t )-2t -15=0,再设新函数h (t )=13ln (1+t )-2t -(t >0)研究其零点即可.k 1+tt 1+tt 1+t15t 1+t 解答:解:(1)f(x)=x-ln(1+x),f ′(x )=1-=(x >-1),当x∈(-1,0)时,f′(x)<0,f(x)在(-1,0)上单调递减,当x∈(0,+∞),f′(x)>0,f(x)在(0,+∞)上单调递增,则f(x)的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f ′(x )=1+,l的斜率为1+,故切线方程为y -f (t )=(1+)(x -t )(t >0),代入(0,0),-f (t )=-t (1+),f (t )=t (1+),t +kln (1+t )=t +t ,则ln (1+t )=,ln (1+t )-=0,令F (t )=ln (1+t )-,若l过(0,0),则F(t)在t∈(0,+∞)存在零点.F ′(t )=-=>0,故F(t)在(0,+∞)上单调递增,F(t)>F(0)=0,不满足假设,故l不过(0,0).(3)k=1,f(x)=x+ln(1+x),f ′(x )=1+=>0,=tf (t ),设l与y轴交点B为(0,q),t>0时,若q<0,则此时l与f(x)必有交点,与切线定义矛盾.由(2)知q≠0,∴q>0,则切线l的方程为y -t -ln (t +1)=(1+)(x -t ),令x=0,则y =q =ln (1+t )-,11+x x 1+xk 1+x k 1+tk 1+tk 1+t k 1+tk 1+t t 1+t t 1+tt 1+t11+t 1+t -t (1+t )2t (1+t )211+xx +21+x S △ACO 1211+tt t +1A.{x|-1≤x<1}B.{x|x>-3}C.{x|-3<x<4}D.{x|x<4}A.-1-iB.-1+iC.1-iD.1+i∵2S △ACO =15S △ABO ,则2tf (t )=15t [ln (1+t )-],∴13ln (1+t )-2t -15×=0,记h (t )=13ln (1+t )-2t -(t >0),∴满足条件的A有几个即h(t)有几个零点. h′(t)=-2-===,t ∈(0,)时,h′(t)<0,h(t)单调递减;t ∈(,4)时,h′(t)>0,h(t)单调递增;t∈(4,+∞)时,h′(t)<0,h(t)单调递减;∵h(0)=0,h()<0,h(4)=13ln5-20>13×1.6-20=0.8>0,h (24)=13ln 25-48-=26ln 5-48-<26×1.61-48-=-20.54<0,∴由零点存在性定理及h(t)的单调性,h(t)在(,4)上必有一个零点,在(4,24)上必有一个零点.综上所述,h(t)有两个零点,即满足2S ACO =15S ABO 的A有两个.t t +1t 1+t15t 1+t 131+t 15(t +1)213t +13-2(+2t +1)-15t 2(t +1)2-2+9t -4t 2(t +1)2(-2t +1)(t -4)(t +1)212121215×242572572512(2024•北京)已知集合M={x|-3<x<1},N={x|-1≤x<4},则M∪N=( )答案:C解析:结合并集的定义,即可求解.解答:解:集合M={x|-3<x<1},N={x|-1≤x<4},则M∪N={x|-3<x<4}.故选:C.(2024•北京)若复数z满足=-1-i ,则z=( )z i答案:CA.B.2C.3D.3A.6B.-6C.12D.-12A.充分不必要条件B.必要不充分条件解析:结合复数的四则运算,即可求解.解答:解:=-1-i ,则z=i(-1-i)=1-i.故选:C.zi(2024•北京)圆x 2+y 2-2x+6y=0的圆心到x-y+2=0的距离为( )√2√2答案:D解析:求解圆的圆心坐标,利用点到直线的距离公式求解即可.解答:解:圆x 2+y 2-2x+6y=0的圆心(1,-3),圆x 2+y 2.故选:D.√2(2024•北京)在的展开式中,x 3的系数为( )(x -)√x 4答案:A解析:利用二项式定理,求解即可.解答:解:的通项公式为:(-1)r •,4-r +=3,可得r=2,二项展开式中x 3的系数:•(-1)2=6.故选:A.(x -)√x4C 4r •x 4-r x r2r 2C 42(2024•北京)设a ,b 是向量,则“(a +b )•(a -b )=0”是“a =-b 或a =b ”的( )→→→→→→→→→→C.充要条件D.既不充分也不必要条件A.1B.2C.3D.4A.3N 2=2N 1B.2N 2=3N 1C.=D.=答案:B解析:根据已知条件,依次判断充分性,必要性的判断,即可求解.解答:解:(a +b )•(a -b )=0,则-=0,即|a |=|b |,|a |=|b |不能推出a =b 或a =-b ,充分性不成立,a =b 或a =-b 能推出|a |=|b |,必要性成立,故“(a +b )•(a -b )=0”是“a =b 或a =-b ”的必要不充分条件.故选:B.→→→→a →2b →2→→→→→→→→→→→→→→→→→→→→→→(2024•北京)设函数f(x)=sinωx(ω>0).已知f(x 1)=-1,f(x 2)=1,且|x 1-x 2|的最小值为,则ω=( )π2答案:B解析:由已知结合正弦函数的性质即可直接求解.解答:解:因为f(x)=sinωx,则f(x 1)=-1为函数的最小值,f(x 2)=1为函数的最大值,又|-==,所以T=π,ω=2.故选:B.x 1x 2|minπ2T 2(2024•北京)生物丰富度指数d =是河流水质的一个评价指标,其中S,N分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数S没有变化,生物个体总数由N 1变为N 2,生物丰富度指数由2.1提高到3.15,则( )S -1lnNN 22N 13N 23N 12A.1B.2C.D.答案:D解析:根据已知条件可得=2.1,=3.15,化简即可求解.S -1lnN 1S -1lnN 2解答:解:根据个体总数由N 1变为N 2可列式,=2.1,=3.15,所以2.1lnN 1=3.15lnN 2,约分可得2lnN 1=3lnN 2,故=,所以=.故选:D.S -1lnN 1S -1lnN 2lnN 12lnN 23N 12N 23(2024•北京)如图,在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,PA=PB=4,PC=PD=2,该棱锥的高为( )√2√2√3答案:D解析:根据题意分析可知平面PEF⊥平面ABCD,可知PG⊥平面ABCD,再结合等体积法,即可求解.解答:解:由题意知△PAB为正三角形,因为PC 2+PD 2=CD 2,所以PC⊥PD,分别取AB,CD的中点E,F,连接PE,EF,PF,则PE=2,PF=2,EF=4,则PE 2+PF 2=EF 2,所以PE⊥PF,√3A.lo <C.lo <+D.lo >+A.d=3,S<1B.d=3,S>1C.d =,S <1D.d =,S >1过点P作PG⊥EF,垂足为G.易知CD⊥PF,CD⊥EF,EF,PF ⊂平面PEF,且EF∩PF=F,所以CD⊥平面PEF.又PG ⊂平面PEF,所以CD⊥PG.又PG⊥EF,CD,EF ⊂平面ABCD,CD∩EF=F,所以PG⊥平面ABCD,所以PG为四棱锥P-ABCD的高,因为PE •PF =EF •PC ,所以PG ==.故选:D.1212PE •PF EF 4√3(2024•北京)已知(x 1,y 1),(x 2,y 2)是函数y=2x 的图象上两个不同的点,则( )g 2+y 1y 22+x 1x 22g 2+y 1y 22x 1x 2g 2+y 1y 22x 1x 2答案:B解析:根据已知条件,结合基本不等式的公式,以及对数的运算性质,即可求解.解答:解:(x 1,y 1),(x 2,y 2)是y=2x 上的点,则=,=,+≥2=2,当且仅当x 1=x 2时,等号成立,故>,两边同时取对数可得,lo >.故选:B.y 12x1y 22x22x12x2√•2x12x2√2+x 1x2+y 1y 222+x 1x22g 2+y 1y 22+x 1x 22(2024•北京)已知M={(x,y)|y=x+t(x 2-x),1≤x≤2,0≤t≤1}是平面直角坐标系中的点集.设d是M中两点间的距离的最大值,S是M表示的图形的面积,则( )√10√10答案:C解析:根据已知条件,作出图象,结合图象即可得出答案.解答:解:集合{y|y=x+t(x 2-x),0≤t≤1,1≤x≤2}表示的图形如下图阴影部分所示,由图象可知,d =|AB |==,S <=×(4-2)×(2-1)=1.故选:C.√(2-1+(4-1)2)2√10S△ABC 12(2024•北京)抛物线y 2=16x的焦点坐标为 (4,0).答案:见试题解答内容解析:根据抛物线的标准方程计算可得.解答:解:抛物线y 2=16x的焦点坐标是(4,0).故答案为:(4,0).(2024•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于原点对称.若α∈[,],则cosβ的最大值为 .π6π3答案:见试题解答内容解析:先求出β的范围,再结合余弦函数的单调性,即可求解.解答:解:α与β的终边关于原点对称可得,α+π+2kπ=β,k∈Z,cosβ=cos(α+π+2kπ)=-cosα,α∈[,],cosα∈[,,-],π6π3122212故当α=,β=2k π+,k∈Z时,cosβ的最大值为-.故答案为:-.π34π31212(2024•北京)若直线y=k(x-3)与双曲线-=1只有一个公共点,则k的一个取值为x 24y 2答案:见试题解答内容解析:根据已知条件,设出直线方程,再与双曲线方程联立,再分类讨论,并结合判别式,即可求解.解答:解:联立,化简可得(1-4k 2)x 2+24k 2x-36k 2-4=0,因为直线y=k(x-3)与双曲线-=1只有一个公共点,故1-4k 2=0,或Δ=(24k 2)2+4(1-4k 2)(36k 2+4)=0,解得k=±或k无解,当k=±时,符合题意.故答案为:(或-).{-=1y =k (x -3)x 24y 2x 24y 212121212(2024•北京)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325 mm,且斛量器的高为230mm,则斗量器的高为 23mm,升量器的高为 57.5mm.(不计量器的厚度)答案:见试题解答内容解析:根据题意求出斛量器的体积和斗量器、升量器的体积,再求对应圆柱的高.解答:解:斛量器的体积为V 3=π••230,则斗量器的体积为V 2=V 3=π••23,所以斗量器的高为23mm;设升量器的高为h,由升量器的体积为V 1=V 2=π••2.3=π••h,()32522110()32522110()32522()6522解得h=57.5,所以升量器的高为57.5mm;所以升量器、斗量器的高度分别57.5mm,23mm.故答案为:23,57.5.(2024•北京)设{a n }与{b n }是两个不同的无穷数列,且都不是常数列.记集合M={k|a k =b k ,k∈N*},给出下列四个结论:①若{a n }与{b n }均为等差数列,则M中最多有1个元素;②若{a n }与{b n }均为等比数列,则M中最多有2个元素;③若{a n }为等差数列,{b n }为等比数列,则M中最多有3个元素;④若{a n }为递增数列,{b n }为递减数列,则M中最多有1个元素.其中正确结论的序号是 ①③④.答案:见试题解答内容解析:根据散点图的特征可判断①④的正误,举出反例可判断②的正误,由通项公式的特征以及反证法,即可判断③的正误.解答:解:对于①,{a n },{b n }均为等差数列,M={k|a k =b k },{a n },{b n }不为常数列且各项均不相同,故它们的散点图分布在直线上,而两条直线至多有一个公共点,所以M中至多一个元素,故①正确;对于②,令=,=-(-2,满足{a n },{b n }均为等比数列,但当n为偶数时,===-(-2,此时M中有无穷多个元素,故②错误;对于③,设=A (Aq ≠0,q ≠±1),a n =kn+b(k≠0),若M中至少四个元素,则关于n的方程Aq n =kn+b至少有4个不同的正数解,若q<0,q≠±1,考虑关于n的方程Aq n =kn+b奇数解的个数和偶数解的个数,当Aq n =kn+b有偶数解,此方程即为A|q|n =kn+b,方程至多有两个偶数解,且有两个偶数解时Akln|q|>0,否则Akln|q|<0,因为y=A|q|n ,y=kn+b单调性相反,方程A|q|n =kn+b至多一个偶数解,当Aq n =kn+b有奇数解,此方程即为-A|q|n =kn+b,方程至多有两个奇数解,且有两个奇数解时-Akln|q|>0,即Akln|q|<0,否则Akln|q|>0,因为y=-A|q|n ,y=kn+b单调性相反,方程A|q|n =kn+b至多一个奇数解,因为Akln|q|>0,Akln|q|<0不可能同时成立,若q>0,q≠1,则由y=Aq n 和y=kn+b的散点图可得关于n的方程Aq n =kn+b至多有两个不同的解,矛盾;故Aq n =kn+b不可能有4个不同的正数解,故③正确.对于④,因为{a n }为单调递增,{b n }为递减数列,M={k|a k =b k },{a n },{b n }不为常数列且各项均不相同,a n 2n -1b n )n -1a n 2n -1b n )n -1b n q n前者散点图呈上升趋势,后者的散点图呈下降趋势,两者至多一个交点,故④正确.故答案为:①③④.(2024•北京)在△ABC中,内角A,B,C的对边分别为a,b,c,∠A为钝角,a=7,sin 2B =bcosB .(1)求∠A;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使得△ABC存在,求△ABC的面积.条件①:b=7;条件②:cosB=;条件③:csinA=.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.√37131452√3答案:(1);(2)条件①不符合要求;选②,;选③,.2π315√3415√34解析:(1)由已知等式结合二倍角公式和正弦定理求得sinA,即可得到A;(2)分析选条件①不符合要求;选条件②,由已知结合正弦定理求得b,由sinC=sin(A+B)可求得sinC,再由三角形面积公式求解即可;选条件③,由(1)及已知可求得c,结合余弦定理求得b,再由三角形面积公式求解即可;.解答:解:(1)因为sin 2B=2sinBcosB,因为A为钝角,所以B为锐角,cosB≠0,在△ABC中,由正弦定理得=,因为A为钝角,所以A=.(2)若选条件①,因为b=7,a=7,所以B=A=,与A+B+C=π矛盾,714a sinAb sinB22π32π3此时△ABC不存在,故条件①不符合要求,不选①;若选条件②,因为cosB=,所以sinB==在△ABC中,由正弦定理得=,所以b=•sinB=×+(-)×所以△ABC的面积为S=absinC=×7×3×若选条件③,由(1)知A=,因为csinA=,所以c=5,由余弦定理得a 2=b 2+c 2-2bccosA,即72=b 2+52-2b×5×cos ,解得b=3,所以△ABC的面积为S=bcsinA=×3×5×sin =.1314√1-B cos 214a b a sinA7sin 2π3141312141412121442π352√32π312122π315√34(2024•北京)如图,在四棱锥P-ABCD,BC∥AD,AB=BC=1,AD=3,点E在AD上,且PE⊥AD,DE=PE=2.(1)若F为线段PE的中点,求证:BF∥平面PCD.(2)若AB⊥平面PAD,求平面PAB与平面PCD夹角的余弦值.答案:见试题解答内容解析:(1)设M为PD的中点,连接FM,CM,证明四边形BCMF为平行四边形,即可得BF∥CM,由线面平行的判定定理即可证明;(2)易得CE⊥平面PAD,以E为坐标原点,建立空间直角坐标系,利用向量法即可求解.解答:(1)证明:如图,设M为PD的中点,连接FM,CM,因为F是PE中点,所以FM∥ED,且FM=ED,因为AD∥BC,AB=BC=1,AD=3,DE=PE=2,所以四边形ABCE为平行四边形,BC∥ED,且BC=ED,所以FM∥BC,且FM=BC,即四边形BCMF为平行四边形,1212所以BF∥CM,因为BF ⊄平面PCD,CM ⊂平面PCD,所以BF∥平面PCD.(2)解:因为AB⊥平面PAD,所以CE⊥平面PAD,EP,ED,EC相互垂直,以E为坐标原点,建立如图所示的空间直角坐标系,则P(0,0,2),A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,2,0),所以AB =(1,0,0),AP =(0,1,2),PC =(1,0,-2),CD =(-1,2,0),设平面PAB的一个法向量为m =(x 1,y 1,z 1),则,取z 1=-1,则m =(0,2,-1),设平面PCD的一个法向量为n =(x 2,y 2,z 2),则,取z 2=1,则n =(2,1,1),设平面PAB与平面PCD夹角为θ,则cosθ===→→→→→⎧⎨⎩m •AB ==0m •AP =+2=0→→x 1→→y 1z1→→⎧⎨⎩n •PC =-2=0n •CD =-+2=0→→x 2z 2→→x 2y 2→m •n →→|m |•|n |→→2-1×√5√630(2024•北京)某保险公司为了解该公司某种保险产品的索赔情况,从合同保险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:索赔次数1234保单份数800100603010假设:一份保单的保费为0.4万元;前三次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i)记X为一份保单的毛利润,估计X的数学期望EX;(ii)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i)中EX估计值的大小,(结论不要求证明)答案:见试题解答内容解析:(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(i)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,用频率估计概率后可求得分布列及数学期望,从而可求E(X);(ii)先算出下一期保费的变化情况,结合(i)的结果可求E(Y).解答:解:(1)设A为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得P (A )==;(2)(i)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,由题可得P (ξ=0)==,P (ξ=0.8)==,P (ξ=1.6)==,P (ξ=2.4)==,P (ξ=3)==,所以E (ξ)=0×+0.8×+1.6×+2.4×+3×=0.278,因为毛利润是保费与赔偿金额之差,故E(X)=0.4-0.278=0.122(万元);(ii)由(i)知未赔偿的概率为P (ξ=0)==,至少赔偿一次的概率为1-=,故保费的变化为0.4××(1-4%)+0.4××(1+20%)=0.4032,设Y为保单下一保险期的毛利润,故E(Y)=0.122+0.4032-0.4=0.1252(万元).所以E(X)<E(Y).60+30+10800+100+60+30+10110800100045100100011060100035030100031001010001100451103503100110080010004545154515(2024•北京)已知椭圆方程E:+=1(a >b >0),以椭圆E的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点(0,t)(t>)且斜率存在的直线与椭圆E交于不同的两点A,B,过点A和C(0,1)的直线AC与椭圆E的另一个交点为D.(1)求椭圆E的方程及离心率;(2)若直线BD的斜率为0,求t的值.x 2a 2y 2b 2√2答案:见试题解答内容解析:(1)根据已知条件,结合勾股定理,求出b,c,再结合椭圆的性质,即可求解;(2)先设出直线AB的方程,并与椭圆的方程联立,再结合韦达定理,以及判别式,即可求解.解答:解:(1)椭圆方程C:+=1(a >b >0),焦点和短轴端点构成边长为2的正方形,则b =c,故a 2=b 2+c 2=2,解得a =;a ==2,所以椭圆方程为+=1,离心率为e(2)显然直线AB斜率存在,否则B,D重合,直线BD斜率不存在与题意矛盾,同样直线AB斜率不为0,否则直线AB与椭圆无交点,矛盾,设AB:y=kx+t,(t >),A(x 1,y 1),B(x 2,y 2),联立,化简并整理得(1+2k 2)x 2+4ktx+2t 2-4=0,由题意可知,Δ=16k 2t 2-8(2k 2+1)(t 2-2)=8(4k 2+2-t 2)>0,即k,t应满足4k 2+2-t 2>0,由韦达定理可知,+=,=,若直线BD斜率为0,由椭圆的对称性可设D(-x 2,y 2),故AD :y =(x -)+,令x=0,则====+t ==1,解得t=2,此时k满足综上所述,t=2满足题意,此时k的取值范围为{k|k <-或k >}.x 2a 2y 2b 2√2√2√+b 2c 2x 24y 222√2{y =kx +t+=1x 24y 22x 1x 2-4kt 1+2k 2x 1x 22-4t 22+1k 2-y 1y 2+x 1x 2x 1y 1y C+x 1y 2x 2y 1+x 1x 2(k +t )+(k +t )x 1x 2x 2x 1+x 1x 22k +t (+)x 1x 2x 1x 2+x 1x 24k (-2)t 2-4kt2t {k ≠04+2-=4-2>0k 2t 2k 222√22√22(2024•北京)设函数f(x)=x+kln(1+x)(k≠0),直线l是曲线y=f(x)在点(t,f(t))(t >0)处的切线.(1)当k=-1,求f(x)单调区间;(2)证明:l不经过(0,0);(3)当k=1时,设点A(t,f(t))(t>0),C(0,f(t)),O(0,0),B为l与y轴的交点,S △ACO 与S △ABO 分别表示△ACO和△ABO的面积.是否存在点A使得2S △ACO =15S △ABO 成立?若存在,这样的点A有几个?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)答案:见试题解答内容解析:(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y -f (t )=(1+)(x -t )(t >0),将(0,0)代入再设新函数F (t )=ln (1+t )-,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S △ABO 得到13ln (1+t )-2t -15=0,再设新函数h (t )=13ln (1+t )-2t -(t >0)研究其零点即可.k 1+tt 1+tt 1+t15t 1+t 解答:解:(1)f(x)=x-ln(1+x),f ′(x )=1-=(x >-1),当x∈(-1,0)时,f′(x)<0,f(x)在(-1,0)上单调递减,当x∈(0,+∞),f′(x)>0,f(x)在(0,+∞)上单调递增,则f(x)的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f ′(x )=1+,l的斜率为1+,故切线方程为y -f (t )=(1+)(x -t )(t >0),代入(0,0),-f (t )=-t (1+),f (t )=t (1+),t +kln (1+t )=t +t ,则ln (1+t )=,ln (1+t )-=0,令F (t )=ln (1+t )-,若l过(0,0),则F(t)在t∈(0,+∞)存在零点.F ′(t )=-=>0,故F(t)在(0,+∞)上单调递增,F(t)>F(0)=0,不满足假设,故l不过(0,0).(3)k=1,f(x)=x+ln(1+x),f ′(x )=1+=>0,11+x x 1+xk 1+x k 1+tk 1+tk 1+t k 1+tk 1+t t 1+t t 1+tt 1+t11+t 1+t -t (1+t )2t (1+t )211+xx +21+x=tf (t ),设l与y轴交点B为(0,q),t>0时,若q<0,则此时l与f(x)必有交点,与切线定义矛盾.由(2)知q≠0,∴q>0,则切线l的方程为y -t -ln (t +1)=(1+)(x -t ),令x=0,则y =q =ln (1+t )-,∵2S △ACO =15S △ABO ,则2tf (t )=15t [ln (1+t )-],∴13ln (1+t )-2t -15×=0,记h (t )=13ln (1+t )-2t -(t >0),∴满足条件的A有几个即h(t)有几个零点. h′(t)=-2-===,t ∈(0,)时,h′(t)<0,h(t)单调递减;t ∈(,4)时,h′(t)>0,h(t)单调递增;t∈(4,+∞)时,h′(t)<0,h(t)单调递减;∵h(0)=0,h()<0,h(4)=13ln5-20>13×1.6-20=0.8>0,h (24)=13ln 25-48-=26ln 5-48-<26×1.61-48-=-20.54<0,∴由零点存在性定理及h(t)的单调性,h(t)在(,4)上必有一个零点,在(4,24)上必有一个零点.综上所述,h(t)有两个零点,即满足2S ACO =15S ABO 的A有两个.S △ACO 1211+tt t +1t t +1t 1+t15t 1+t131+t 15(t +1)213t +13-2(+2t +1)-15t 2(t +1)2-2+9t -4t 2(t +1)2(-2t +1)(t -4)(t +1)212121215×242572572512(2024•北京)已知集合M={(i,j,k,w)|i∈{1,2},j∈{3,4},k∈{5,6},w∈{7,8},且i+j+k+w为偶数}.给定数列A:a 1,a 2,…,a 8和序列Ω:T 1,T 2,…,T s ,其中T t =(i t ,j t ,k t ,w t )∈M(t=1,2,…,s),对数列A进行如下变换:将A的第i 1,j 1,k 1,w 1项均加1,其余项不变,得到的数列记作T 1(A);将T 1(A)的第i 2,j 2,k 2,w 2项均加1,其余项不变,得到的数列记作T 2T 1(A);……;以此类推,得到数列T s ⋯T 2T 1(A),简记为Ω(A).(1)给定数列A:1,3,2,4,6,3,1,9和序列Ω:(1,3,5,7),(2,4,6,8),(1,3,5,7),写出Ω(A);(2)是否存在序列Ω,使得Ω(A)为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4?若存在,写出一个Ω,若不存在,请说明理由;。
2020年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

2020年普通高等学校招生全国统一考试(北京卷)文科数学一、选择题共8小题,每小题5分,共40分.1、(2020•北京)已知集合A={x|-1<x<2},B={x|x>1},则AUB=( ) A. (-1,1) B. (1,2) C. (-1,+∞) D. (1,+∞) 【答案】C【解析】【解答】因为{}{}12,1,A x x B x x =-<<=> 所以{}1,A B x x =>-U 故答案为:C.【分析】本题考查了集合的并运算,根据集合A 和B 直接求出交集即可. 2、(2020•北京)已知复数z=2+i ,则·z z =( )【答案】D【解析】【解答】根据2z i =+,得2z i =-, 所以(2)(2)415z z i i ⋅=+⋅-=+=, 故答案为:D.【分析】根据z 得到其共轭,结合复数的乘法运算即可求解.3、(2020•北京)下列函数中,在区间(0,+∞)上单调递增的是( )A. 12y x = B. y=2-xC.12log y x = D. 1y x= 【答案】A【解析】【解答】A :12y x =为幂函数,102α=>,所以该函数在()0,+∞上单调递增; B:指数函数x x1y 22-⎛⎫== ⎪⎝⎭,其底数大于0小于1,故在()0,+∞上单调递减; C :对数函数12log y x =,其底数大于0小于1,故在()0,+∞上单调递减; D :反比例函数1y x=,其k=1>0,故在()0,+∞上单调递减; 故答案为:A.【分析】根据幂函数、指数函数、对数函数及反比例函数的单调性逐一判断即可. 4、(2020•北京)执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4 【答案】B【解析】【解答】k=1,s=1, s=2212312⨯=⨯-,k<3,故执行循环体k=1+1=2,2222322s ⨯==⨯-; 此时k=2<3,故继续执行循环体k=3,2222322s ⨯==⨯-,此时k=3,结束循环,输出s=2. 故答案为:B.【分析】根据程序框图,依次执行循环体,直到k=3时结束循环,输出s=2即可.5、(2020•北京)已知双曲线2221x y a-=(a>05a=( )6 B. 4 C. 2 D. 12【答案】D【解析】【解答】双曲线的离心率215c a e a a+===, 故2251,a a =+解得211,42a a ==, 故答案为:D.【分析】根据双曲线的标准方程,表示离心率,解方程,即可求出a 的值.6、(2020•北京)设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的( ) A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C【解析】【解答】若b=0,则()cos f x x =为偶函数, 若()cos sin f x x b x =+为偶函数,则()()()cos sin cos sin ()cos sin f x x b x x b x f x x b x -=-+-=-==+, 所以2sin 0,b x =B=0,综上,b=0是f (x )为偶函数的充要条件. 故答案为:C.【分析】根据偶函数的定义,结合正弦函数和余弦函数的单调性,即可确定充分、必要性. 7、(2020•北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=125lg 2E E ,其中星等为m k 的星的亮度为E k (k=1,2).己知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 10-10.1【答案】A【解析】【解答】解:设太阳的亮度为1E ,天狼星的亮度为2E , 根据题意1251.45(26.7)lg 2E E ---=, 故122g25.2510.15E l E =⨯=, 所以10.11210E E =; 故答案为:A.【分析】根据已知,结合指数式与对数式的转化即可求出相应的比值.8、(2020•北京)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为( )A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β 【答案】B【解析】【解答】设圆心为O ,根据,APB β∠=可知AB 所对圆心角2,AOB β∠=故扇形AOB 的面积为22242πββπ⋅⋅=,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,故阴影部分面积最大值4,AOB PAB S S S β=-+V V 而2sin 22cos 4sin cos 2AOB S ββββ⨯⨯==V ,()2sin 222cos 4sin 4sin cos 2PABS βββββ⨯⨯+==+V ,故阴影部分面积最大值444sin ,AOB PAB S S S βββ=-+=+V V 故答案为:B.【分析】根据圆周角得到圆心角,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,结合三角函数的定义,表示相应三角形的面积,即可求出阴影部分面积的最大值. 二、填空题共6小题,每小题5分,共30分,9、(2020•北京)已知向量a r =(-4.3),b r =(6,m ),且a b ⊥r r,则m= . 【答案】8【解析】【解答】根据两向量垂直,则数量积为0,得()4630,m -⨯+= 解得m=8. 故答案为8.【分析】根据两向量垂直,数量积为0,结合平面向量的数量积运算即可求解.10、(2020•北京)若x ,y 满足214310x y x y ≤⎧⎪≥-⎨⎪-+≥⎩.则y-x 的最小值为 ,最大值为 . 【答案】-3|1【解析】【解答】作出可行域及目标函数相应的直线,平移该直线,可知在经过(2,-1)时取最小值-3,过(2,3)时取最大值1. 故答案为-3;1.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值和最小值. 11、(2020•北京)设抛物线y 2=4x 的焦点为F ,准线为l.则以F 为圆心,且与l 相切的圆的方程为 .【答案】()2214x y -+=【解析】【解答】由题意,抛物线的焦点坐标F (1,0),准线方程:x=-1, 焦点F 到准线l 的距离为2, 故圆心为(1,0),半径为2, 所以圆的方程为()2214x y -+=;故答案为()2214x y -+=.【分析】根据抛物线方程求出焦点坐标和准线方程,即可得到圆心和半径,写出圆的标准方程即可. 12、(2020•北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .【答案】40【解析】【解答】根据三视图,可知正方体体积31464V ==,去掉的四棱柱体积()22424242V +⨯=⨯=,故该几何体的体积V=64-24=40. 故答案为40.【分析】根据三视图确定几何体的结构特征,求出相应的体积即可.13、(2020•北京)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 【答案】若②③,则①【解析】【解答】若l α⊥,则l 垂直于α内任意一条直线, 若m αP ,则l m ⊥; 故答案为若②③,则①.14、(2020•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【答案】130|15【解析】【解答】①草莓和西瓜各一盒,总价60+80=140元, 140>120,故顾客可少付10元,此时需要支付140-10=130元;②要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可, 根据题意,买草莓两盒,消费最低,此时消费120元, 故实际付款(120-x )元,此时李明得到()12080%x -⨯, 故()12080%1200.7x -⨯≥⨯,解得15x ≤; 故最大值为15. 故答案为①130;②15.【分析】①根据已知,直接计算即可;②根据题意,要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可,因此选最低消费求解,即可求出相应的最大值. 三、解答题共6小题,共80分.15、(2020•北京)在△ABC 中,a=3,b-c=2,cosB=-12. (I )求b ,c 的值:(II )求sin (B+C )的值.【答案】解:(I )根据余弦定理2222cos b a c ac B =+-, 故()22129232c c c ⎛⎫+=+-⨯⨯-⎪⎝⎭,解得c=5,B=7;(II )根据1cos 2B =-,得sin 2B =,根据正弦定理,sin sin b cB C=,5sin 2C=,解得sin 14C =,所以11cos 14C =,所以()111sin sin cos cos sin 21421414B c BC B C ⎛⎫+=+=+-⨯=⎪⎝⎭【解析】【分析】(I )根据余弦定理,解方程即可求出c 和b ;(II )根据同角三角函数的平方关系,求出sinB ,结合正弦定理,求出sinC 和cosC ,即可依据两角和的正弦公式,求出sin (B+C ).16、(2020•北京)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(I )求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【答案】解:(I )根据三者成等比数列, 可知()()()23248106a a a +=++,故()()()2102810101036d d d -++=-++-++, 解得d=2,故()1021212n a n n =-+-=-; (Ⅱ)由(I )知()210212112n n n S n n -+-⋅==-,该二次函数开口向上,对称轴为n=5.5, 故n=5或6时,n S 取最小值-30.【解析】【分析】(I )根据等比中项,结合等差数列的通项公式,求出d ,即可求出n a ;(Ⅱ)由(1),求出n S ,结合二次函数的性质,即可求出相应的最小值.17、(2020•北京)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用(I )估计该校学生中上个月A ,B 两种支付方式都使用的人数;(II )从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (III )已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(II )的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】解:(I )据估计,100人中上个月A 、B 两种支付方式都使用的人数为100-5-27-3-24-1=40人,故该校学生中上个月A 、B 两种支付方式都使用的人数为400人;(II )该校学生上个月仅使用B 支付的共25人,其中支付金额大于2000的有一人,故概率为125; (III )不能确定人数有变化,因为在抽取样本时,每个个体被抽到法机会是均等的,也许抽取的样本恰为上个月支付抄过2000的个体,因此不能从抽取的一个个体来确定本月的情况有变化. 【解析】【分析】(I )根据题意,结合支付方式的分类直接计算,再根据样本估计总体即可; (II )根据古典概型,求出基本事件总数和符合题意的基本事件数,即可求出相应的概率; (III )从统计的角度,对事件发生的不确定性进行分析即可.18、(2020•北京)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC=60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由. 【答案】(Ⅰ)证明:因为ABCD 为菱形,所以BD AC ⊥, 又因为PA ABCD ⊥平面,所以BD PA ⊥,而PA AC A =I , 故BD PAC ⊥平面;(Ⅱ)因为60ABC ∠=︒,所以60ADC ∠=︒,故ADC V 为等边三角形, 而E 为CD 的中点,故AE CD ⊥,所以AE AB ⊥, 又因为PA ABCD ⊥平面,所以AB PA ⊥, 因为PA AE A =I ,所以AB PAE ⊥平面,又因为AB PAB ⊂平面,所以PAB PAE ⊥平面平面; (Ⅲ)存在这样的F ,当F 为PB 的中点时,CF PAE P 平面;取AB 的中点G ,连接CF 、CG 和FG ,因为G 为AB 中点,所以AE 与GC 平行且相等,故四边形AGCE 为平行四边形,所以AE GC P ,故GC PAE P 平面 在三角形BAP 中,F 、G 分别为BP 、BA 的中点,所以FG PA P , 故FG PAE P 平面,因为GC 和FG 均在平面CFG 内,且GC FG G =I , 所以CGF PAE P 平面平面,故CF PAE P 平面.【解析】【分析】(Ⅰ)根据线面垂直的判定定理,证明直线与平面内两条相交直线垂直即可; (Ⅱ)根据面面垂直的判定定理,证明直线与平面垂直,即可得到面面垂直;(Ⅲ)根据面面平行的判定定理,证明面面平行,即可说明两平面没有公共点,因此,一个平面内任意一条直线与另一平面均无公共点,即可说明线面平行.19、(2020•北京)已知椭圆C :22221x y a b+=的右焦点为(1.0),且经过点A (0,1).(I )求椭圆C 的方程;(II )设O 为原点,直线l :y=kx+t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,|OM|·|ON|=2,求证:直线l 经过定点. 【答案】解:(I )根据焦点为(1,0),可知c=1, 根据椭圆经过(0,1)可知b=1,故2222a b c =+=,所以椭圆的方程为2212x y +=; (II )设()()1122,,,P x y Q x y , 则直线111:1y AP y x x -=+,直线221:1y AQ y x x -=+, 解得1212,0,,011x x M N y y ⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭,故()1212121212111x x x x OM ON y y y y y y ⋅=⋅=---++, 将直线y=kx+t 与椭圆方程联立, 得()222124220kxktx t +++-=,故2121222422,1212kt t x x x x k k --+==++,所以22221212228282,1212k t t k t k t y y y y k k+-++==++, 故()2121t OM ON t +⋅==-,解得t=0,故直线方程为y=kx ,一定经过原点(0,0).【解析】【分析】(I )根据焦点坐标和A 点坐标,求出a 和b ,即可得到椭圆的标准方程; (II )设出P 和Q 的坐标,表示出M 和N 的坐标,将直线方程与椭圆方程联立,结合韦达定理,表示OM 与ON ,根据2OM ON ⋅=,解得t=0,即可确定直线恒过定点(0,0). 20、(2020•北京)已知函数f (x )=14x 3-x 2+x. (I )求曲线y=f (x )的斜率为1的切线方程; (II )当x ∈[-2,4]时,求证:x-6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )-(x+a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 【答案】解(I )()23'214f x x x =-+,令()'1f x =, 则1280,3x x ==, 因为()8800,327f f ⎛⎫==⎪⎝⎭, 故斜率为1的直线为y=x 或88273y x -=-, 整理得,斜率为1的直线方程为x-y=0或64027x y --=; (II )构造函数g (x )=f (x )-x+6, 则()23'24g x x x =-,令()'0g x =,则1280,3x x ==, 故g (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故g (x )的最小值为g (-2)或83g ⎛⎫ ⎪⎝⎭,而g (-2)=0,8980327g ⎛⎫=> ⎪⎝⎭,故()min (2)0g x g =-=⎡⎤⎣⎦, 所以()0g x ≥,故在[-2,4]上,()6x f x -≤; 构造函数h (x )=f (x )-x , 则()23'24h x x x =-,令()'0h x =,则1280,3x x ==, 故h (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故h (x )的最大值为h (0)或h (4),因为h (0)=0,h (4)=0,所以()0h x ≤,故在[-2,4]上,()f x x ≤, 综上在[-2,4]上,()6x f x x -≤≤;(Ⅲ)令()()()3214x f x x a x x a ϕ=-+=--, 则()23'24x x x ϕ=-,令()'0x ϕ=,则1280,3x x ==, 故ϕ(x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增, 所以ϕ(x )的最小值为ϕ(-2)=-6-a 或864327a ϕ⎛⎫=-- ⎪⎝⎭, 最大值为ϕ(0)=-a 或ϕ(4)=12-a ,故()()F x x ϕ=其最大值()12,36,3a a M a a a -≤⎧=⎨+>⎩, 故当a=3时,M (a )有最小值9.【解析】【分析】(I )求导数,根据导数的几何意义,结合斜率为1,求出切点坐标,利用点斜式,即可求出相应的切线方程;(II )构造函数,要证()6x f x x -≤≤,只需要证在[-2,4]上6()0f x x g x -≥+=()和()()0h x f x x =-≤即可,求导数,利用导数确定函数单调性,求出函数极值即可证明;(Ⅲ)求导数,利用导数确定函数单调性,求出函数的最值,确定M (a )的表达式,即可求出M (a )取最小值时相应的a 值.。
北京市高考数学文科试卷及答案解析

C.8
B .4
D. 16
C.
6
B.必要而不充分条件 D.既不充分也不必要条件
5.如图. ∠ACB=90º,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则( )
A. CE·CB=AD·DB
C. ADAAB CD2
B. CE·CB=AD·AB
D. CEAEB CD2
6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为(
15.(本小题共13分)已知函数 f (x) (sin x cos x) sin 2x 。(1)求f(x)的定义域及最小正周期; sin x
(2)求f(x)的单调递增区间。
16. (本小题共14分)
如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上
的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使 A1C⊥CD,如图2.
x 3cos
y
3
sin
a1
1 2
(
,
为参数)的交点个数为
S2
12.在直角坐标系xOy中,直线 l 过抛物线 y2 4x 的焦点F,且与该抛物线相交于A、B两点,其中点A在x轴 上方,若直线 l 的倾斜角为60º.则 AOAF 的面积为
13.己知正方形ABCD的边长为1,点E是AB边上的动点.则 DEACB 的值为
4
D.
4
开始 k=0,S=1
k=k+1
S=S· 2k
是 k<3
否 输出 S
结束 (第 4 题图)
)
二.填空题共6小题。每小题5分。共30分.
2023北京高考文科数学试卷

高考数学试卷一、单选题1.下列计算正确的是 A.()22x y x y +=+ B.()2222x y x xy y -=-- C.()()2111x x x +-=-D.()2211x x -=- 2.函数21x y x +=-的定义域为( )A .{|21}x x x >-≠且 B .{|21}x x x ≥-≠且 C .)[(21,1,)-⋃+∞ D .)((21,1,)-⋃+∞3.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( ) A.[)(]0,11,2 B.[)(]0,11,4 C.[0,1) D.(1,4]4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2a cos A ,则cos A =( )A .13B .24C .33D .63 5.已知函数()2,01ln ,0x x f x x x-⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞6.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x --> C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤ 7.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件8.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( ) A.∅ B.{}3,1,0,4-- C.{}2,3 D.{}0,2,39.设集合{}{}234345M N ==,,,,,, 那么M N ⋃=( ) A.{} 2345,,, B.{}234,, C.{}345,, D.{}34,10.已知函数()11f x x x=--,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭B .12 ,1⎛⎫ ⎪⎝⎭C .(1,2)D .(2,3)11.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 12.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件13.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .56二、填空题14.正方体的棱长扩大到原来的倍,其表面积扩大到原来的( )倍。
2020年北京市高考文科数学试卷(含解析版)

绝密★本科目考试启用前2020 年普通高等学校招生全国统一考试(北京卷)数学本试卷共5 页,150 分,考试时长120 分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40 分)一、选择题10 小题,每小题4 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A = {-1, 0,1, 2} ,B = {x | 0 <x< 3} ,则A B =().A.{-1, 0,1}B.{0,1}C. {-1,1, 2}D. {1, 2} 【答案】D【解析】【分析】根据交集定义直接得结果.【详解】A I B = {-1, 0,1, 2}I(0, 3) = {1, 2},故选:D.【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题.2.在复平面内,复数z 对应的点的坐标是(1, 2) ,则i ⋅z =().D. -2 -iA.1+ 2iB.-2 +iC.1- 2i【答案】B【解析】【分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【详解】由题意得z =1+ 2i ,∴iz =i - 2 .故选:B.【点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.33 35-rrrr +15 53.在( x - 2)5 的展开式中, x 2 的系数为( ).A. -5 【答案】CB. 5C. -10D. 10【解析】 【分析】首先写出展开式的通项公式,然后结合通项公式确定 x 2 的系数即可. 【详解】( - 2) 展开式的通项公式为: T= C r( x ) (-2) = (-2)C rx2,令5 - r = 2 可得: r = 1 ,则 x 2 的系数为: (-2)1C 1 = (-2)⨯ 5 = -10 .25故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中 n 和 r 的隐含条件,即 n ,r 均为非负整数,且 n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4. 某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A. 6 +B. 6 + 2C. 12 +D.12 + 2【答案】D5-r x 35【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2 的等边三角形,侧面为三个边长为2 的正方形,则其表面积为:S = 3⨯(2⨯ 2)+ 2⨯⎛1⨯ 2⨯ 2⨯sin 60︒⎫=12 + 2 3 .2 ⎪⎝⎭故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5.已知半径为1 的圆经过点(3, 4) ,则其圆心到原点的距离的最小值为().A. 4B. 5C. 6D. 7【答案】A【解析】【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1 可得答案.【详解】设圆心C (x, y ),则化简得(x - 3)2 +(y - 4)2 =1,=1,所以圆心C 的轨迹是以M (3, 4) 为圆心,1 为半径的圆,(x -3)2 +(y - 4)2所以| OC | +1 ≥| OM | == 5 ,所以| OC |≥ 5 -1 = 4 ,32+ 42当且仅当C 在线段OM 上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.6.已知函数f (x) = 2x-x -1 ,则不等式f (x) > 0 的解集是().(1, +∞) A.(-1,1) B. (-∞, -1)C. (0,1)D. (-∞, 0) ⋃(1, +∞)【答案】D【解析】【分析】作出函数y = 2x和y =x +1 的图象,观察图象可得结果.【详解】因为f (x)= 2x -x -1,所以f (x)> 0 等价于2x>x +1 ,在同一直角坐标系中作出y = 2x和y =x + 1 的图象如图:两函数图象的交点坐标为(0,1),(1, 2) ,不等式2x>x +1 的解为x < 0 或x > 1 .所以不等式f (x)> 0 的解集为:(-∞, 0)⋃(1, +∞).故选:D.【点睛】本题考查了图象法解不等式,属于基础题.7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线().A. 经过点OC. 平行于直线OP B. 经过点PD. 垂直于直线OP【答案】B【解析】【分析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到F ,Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ = PF ,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.8.在等差数列{a n}中,a1=-9 ,a3=-1 .记T n=a1a2…a n(n =1, 2,…) ,则数列{T n}().A.有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【解析】【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【详解】由题意可知,等差数列的公差d =a5-a1 =-1+ 9= 2 ,5 -1 5 -1则其通项公式为:a n=a1+(n -1)d=-9 +(n -1)⨯2 = 2n -11 ,注意到a1 <a2 <a3 <a4 <a5 < 0 <a6 = 1 <a7 <,且由T5< 0 可知T i< 0(i ≥ 6, i ∈N ),Ti 由Ti-1 =ai>1(i ≥ 7, i ∈N )可知数列{T n}不存在最小项,由于a1 =-9, a2 =-7, a3 =-5, a4 =-3, a5 =-1, a6 =1,故数列{T n}中的正项只有有限项:T2 = 63 ,T4 = 63⨯15 = 945 .故数列{T n}中存在最大项,且最大项为T4.故选:B.【点睛】本题主要考查等差数列通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.9.已知α, β∈R ,则“存在k ∈Z 使得α=kπ+ (-1)kβ”是“sin α= sin β”的().A.充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k ∈Z 使得α=kπ+ (-1)kβ时,若k 为偶数,则sin α= sin (kπ+β)= sin β;若k 为奇数,则sinα= sin (kπ-β)= sin ⎡⎣(k -1)π+π-β⎤⎦= sin (π-β)= sin β;(2)当sin α= sin β时,α=β+ 2mπ或α+β=π+ 2mπ,m ∈Z ,即α=kπ+(-1)k β(k = 2m)或α=kπ+(-1)k β(k = 2m +1),亦即存在k ∈Z 使得α=kπ+ (-1)kβ.所以,“存在k ∈Z 使得α=kπ+ (-1)kβ”是“ sin α= sin β”的充要条件.故选:C.【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.10.2020 年3 月14 日是全球首个国际圆周率日(πD ay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().⎛30︒ 30︒⎫ ⎛30︒ 30︒⎫A.3n sinn +tan ⎪n B. 6n sin n+tan ⎪n⎝⎭⎝⎭⎛60︒ 60︒⎫ ⎛60︒ 60︒⎫C.3n sinn +tan ⎪n D. 6n sin n+tan⎪n⎝⎭⎝⎭【答案】A【解析】【分析】计算出单位圆内接正6n 边形和外切正6n 边形的周长,利用它们的算术平均数作为2π的近似⎩y 值可得出结果.【详解】单位圆内接正 6n 边形的每条边所对应的圆周角为360︒ = 60︒, 每条边长为 n ⨯ 6 n2 s in 30︒ ,n所以,单位圆的内接正6n 边形的周长为12n sin 30︒ ,n单位圆的外切正6n 边形的每条边长为2 tan30︒ ,其周长为12n tan30︒ ,nn12n sin 30︒ +12n tan 30︒∴2π = n n = 6n ⎛sin 30︒ + tan 30︒ ⎫ , 2 n n ⎪⎝ ⎭则π = 3n ⎛sin30︒+ tan 30︒ ⎫ . n n ⎪ ⎝ ⎭故选:A.【点睛】本题考查圆周率π 的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.第二部分(非选择题 共 110 分)二、填空题共 5 小题,每小题 5 分,共 25 分.11. 函数 f (x ) =1x +1+ ln x 的定义域是 .【答案】(0, +∞)【解析】【分析】根据分母不为零、真数大于零列不等式组,解得结果.⎧ 【详解】由题意得 x > 0 ,∴ x > 0⎨x +1 ≠ 0 故答案为: (0, +∞)【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12. 已知双曲线C :x 2- = 1,则 C 的右焦点的坐标为 ;C 的焦点到其渐近线的距6 3离是 .26 3 3 3 PD |= 【答案】(1). (3, 0)(2).【解析】【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a = ,b = ,则c = 为(3, 0) , = 3 ,则双曲线C 的右焦点坐标双曲线C 的渐近线方程为 y =±2 x ,即 x ± 2所以,双曲线C 的焦点到其渐近线的距离为2 y = 0 ,= .故答案为: (3, 0) ; .【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.13. 已知正方形 ABCD 的边长为2,点 P 满足 AP = 1( AB + AC ) ,则| ;2PB ⋅ PD =.【答案】(1).(2). -1【解析】【分析】以点 A 为坐标原点, AB 、 AD 所在直线分别为 x 、 y 轴建立平面直角坐标系,求得点 P 的坐标,利用平面向量数量积的坐标运算可求得 以及 PB ⋅ PD 的值.【详解】以点 A 为坐标原点, AB 、 AD 所在直线分别为 x 、 y 轴建立如下图所示的平面直角坐标系,3a 2 +b 2 3 12+ 25PD5cos 2 ϕ + (sin ϕ +1)2( )则点 A (0, 0) 、 B (2, 0) 、C (2, 2) 、 D (0, 2) ,AP = 1 AB + AC = 1 (2, 0) + 1(2, 2) = (2,1) ,2 2 2则点 P (2,1) ,∴ PD = (-2,1) , PB = (0, -1) ,因此,故答案为:; -1.= ,PB ⋅ PD = 0 ⨯(-2) +1⨯ (-1) = -1.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点 P 的坐标是解答的关键,考查计算能力,属于基础题.14. 若函数 f (x ) = sin(x + ϕ) + cos x 的最大值为 2,则常数ϕ 的一个取值为.【答案】 π (2k π + π, k ∈ Z 均可) 22【解析】【分析】根据两角和的正弦公式以及辅助角公式即可求得 f ( x ) =( x +θ ) ,可得 = 2 ,即可解出.【详解】因为 f ( x ) = cos ϕ sin x + (sin ϕ +1)cos x =sin ( x +θ ) ,所以 = 2 ,解得sin ϕ = 1 ,故可取ϕ = π . 2故答案为: π ( 2k π + π, k ∈ Z 均可). 2 2【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.15. 为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业PD =(-2)2 +125 cos 2 ϕ + (sin ϕ +1)2cos 2 ϕ + (sin ϕ +1)2cos 2ϕ + (sin ϕ +1)2要限期整改、设企业的污水摔放量W 与时间t 的关系为W =f (t) ,用-f (b) -f (a)的大小评b -a价在[a, b] 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1 ,t2 ]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0, t1],[t1, t2],[t2, t3]这三段时间中,在[0, t1]的污水治理能力最强.其中所有正确结论的序号是.【答案】①②③【解析】【分析】根据定义逐一判断,即可得到结果【详解】-f (b) -f (a)表示区间端点连线斜率的负数,b -a在[t1 ,t2 ]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0, t1 ],[t1, t2 ],[t2 , t3 ]这三段时间中,甲企业在[t1 ,t2 ]这段时间内,甲的斜率最小,其相反数最大,即在[t1 ,t2 ]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【点睛】本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.三、解答题共6 小题,共85 分,解答应写出文字说明,演算步骤或证明过程.16.如图,在正方体ABCD -A1B1C1D1中,E 为BB1的中点.(I)求证:BC1 // 平面AD1E ;(II)求直线AA1与平面AD1E 所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)2 .3【解析】【分析】(I)证明出四边形ABC1D1为平行四边形,可得出BC1 //AD1,然后利用线面平行的判定定理可证得结论;(I I)以点A 为坐标原点,AD 、AB 、AA1 所在直线分别为x 、y 、z 轴建立空间直角坐标系A -xyz ,利用空间向量法可计算出直线AA1与平面AD1E 所成角的正弦值.【详解】(Ⅰ)如下图所示:⎩⎩在正方体 ABCD - A 1B 1C 1D 1 中, AB //A 1B 1 且 AB = A 1B 1 , A 1B 1 //C 1D 1 且 A 1B 1 = C 1D 1 ,∴ AB //C 1D 1 且 AB = C 1D 1 ,所以,四边形 ABC 1D 1 为平行四边形,则 BC 1 //AD 1 ,BC 1 ⊄ 平面 AD 1E , AD 1 ⊂ 平面 AD 1E ,∴ BC 1 // 平面 AD 1E ;(Ⅱ)以点 A 为坐标原点, AD 、 AB 、 AA 1 所在直线分别为 x 、 y 、 z 轴建立如下图所示的空间直角坐标系 A - xyz ,设正方体 ABCD - A 1B 1C 1D 1 的棱长为2 ,则 AD 1 = (2, 0, 2) , AE = (0, 2,1) ,A (0, 0, 0) 、A 1 (0, 0, 2) 、D 1 (2, 0, 2) 、E (0, 2,1),设平面 AD E 的法向量为n = (x , y , z ) ,由⎧n ⋅ AD 1 = 0 ,得⎧2x + 2z = 0 ,1⎨n ⋅ AE = 0 ⎨2 y + z = 0令 z = -2 ,则 x = 2 , y = 1,则n = (2,1, -2).cos < =-2 . 3因此,直线AA 与平面AD E 所成角的正弦值为2 .113【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成角的正弦值,考查计算能力,属于基础题.17.在ABC 中,a +b = 11,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:c = 7, cos A =-1 ;7条件②:cos A =1, cos B =9.816注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =3, S = 6 3 ;2选择条件②(Ⅰ)6(Ⅱ)sin C =7, S =157.4 4【解析】【分析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得sin A ,再根据正弦定理求sin C ,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得sin A, sin B ,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求sin C ,再根据三角形面积公式求结果.【详解】选择条件①(Ⅰ) c = 7, cos A =-17a +b =11∴a= 8 +c2- 2bc cos A∴a2= (11-a)2+ 72- 2(11-a) ⋅7 ⋅(-1)7(Ⅱ)cos A =-1,A∈(0,π)∴sin A = =4 3 7 7n, AA >=1n ⋅AA1n ⋅AA1=-43⨯ 2a2=b21- cos2A1- cos 2 B a 由正弦定理得: sin A = c ∴8 sin C 4 3 7= 7 sin C ∴sin C = 3 2S = 1 ba sin C = 1 (11- 8) ⨯8⨯ 3 = 6 2 2 2 选择条件②(Ⅰ) cos A = 1 , cos B = 9,A , B ∈(0,π )∴sin A 8 16 = 3 7, s in B == 5 7 8 16a =b ∴a = 11- a ∴ a = 6 由正弦定理得: sin A sin B 3 7 5 78 16(II ) sin C = sin( A + B ) = sin A cos B + sin B cos A =3 7 ⨯ 9 + 5 7 ⨯ 1 =7S = 1 ba sin C = 1(11- 6) ⨯ 6⨯7 = 15 78 16 16 8 42 2 4 4【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.18. 某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I ) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II ) 从该校全体男生中随机抽取 2 人,全体女生中随机抽取 1 人,估计这 3 人中恰有 2 人支持方案一的概率;31- cos 2 A 男生女生支持不支持支持不支持 方案一 200 人 400 人 300 人 100 人 方案二 350 人250 人150 人250 人(III)将该校学生支持方案的概率估计值记为p0,假设该校年级有500 名男生和300 名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)1【答案】(Ⅰ)该校男生支持方案一的概率为33 ,该校女生支持方案一的概率为;4(Ⅱ)13,(Ⅲ)p <p 3610【解析】【分析】(I)根据频率估计概率,即得结果;(II)先分类,再根据独立事件概率乘法公式以及分类计数加法公式求结果;(III)先求p0,再根据频率估计概率p1,即得大小.2001【详解】(Ⅰ)该校男生支持方案一的概率为=,200+40033003该校女生支持方案一的概率为=;300+1004(Ⅱ)3 人中恰有2 人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3 人中恰有2 人支持方案一概率为:(1)2 (1-3) +C1(1)(1-1)3=13;(III)p1 <p34233436【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.19.已知函数f (x) = 12 -x2.(I)求曲线y =f (x) 的斜率等于-2 的切线方程;(II)设曲线y =f (x) 在点(t, f (t)) 处的切线与坐标轴围成的三角形的面积为S (t) ,求S (t)的最小值.【答案】(Ⅰ)2x +y -13 = 0 ,(Ⅱ)32 .【解析】【分析】12)⋅ ,( ) (I ) 根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(II ) 根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值.【详解】(Ⅰ)因为 f (x ) = 12 - x 2 ,所以 f '( x ) = -2x , 设切点为( x 0 ,12 - x 0 ) ,则-2x 0 = -2 ,即 x 0 = 1 ,所以切点为(1,11) ,由点斜式可得切线方程 : y -11 = -2 ( x -1) ,即2x + y - 13 = 0 . (Ⅱ)显然t ≠ 0 ,因为 y = f (x ) 在点(t ,12 - t 2 ) 处的切线方程为: y - (12 - t 2 )= -2t ( x - t ) ,令 x = 0 ,得 y = t 2 +12 ,令 y = 0 t 2 +12 ,得x = ,2t所以S (t ) = 1⨯(t 2 + t 2 +12 22 | t |不妨设t > 0 (t < 0 时,结果一样) ,t 4 + 24t 2 + 1441 则 S t == (t 3+ 24t + 144) , 4t4 t所以 S '(t ) = 1(3t 2 + 24 - 144 3(t 4 + 8t 2 - 48)) = 4t 2 4t 23(t 2 - 4)(t 2 + 12)3(t - 2)(t + 2)(t 2 + 12)==,4t 24t 2由 S '(t ) > 0 ,得t > 2 ,由 S '(t ) < 0 ,得0 < t < 2 ,所以 S (t ) 在(0, 2) 上递减,在(2, +∞) 上递增, 所以t = 2 时, S (t ) 取得极小值, 也是最小值为 S (2) =16 ⨯16 = 32 .8【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.20. 已知椭圆C :x 2+y 2= 过点 A (-2, -1) ,且a = 2b .a 2b21y + ⎨ 2 y y2 (I ) 求椭圆 C 的方程:(II ) 过点 B (-4, 0) 的直线 l 交椭圆 C 于点 M , N ,直线 MA , NA 分别交直线 x = -4 于点P , Q .求| PB |的值.| BQ |【答案】(Ⅰ) x 2+ = 1;(Ⅱ)1.82【解析】【分析】(Ⅰ)由题意得到关于 a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线 MA ,NA 的方程确定点 P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得 y P + y Q = 0 ,从而可得两线段长度的比值.【详解】(1)设椭圆方程为: x 2 y = 1(a > b > 0),由题意可得:⎧ 4 + 1 = 1a b⎧a 2 = 8 ⎪ a2⎪⎩b 2 a = 2b ,解得: ⎨ , ⎩b = 2故椭圆方程为: x 2+ = 1.82(2)设 M (x 1, y 1 ) , N ( x 2 , y 2 ) ,直线 MN 的方程为: y = k ( x + 4) ,与椭圆方程 x 2 + = 1联立可得: x 2 + 4k 2 ( x + 4)2 = 8 ,8 2即:(4k 2 +1) x 2 + 32k 2 x + (64k 2 - 8) = 0 ,-32k 2 则: x 1 + x 2 =4k 2+1, x 1x 2 =64k 2 - 8 .4k 2+1直线 MA 的方程为: y +1 =y 1 +1( x + 2) ,x 1 + 2令 x = -4 可得: y = -2⨯ y 1 +1 -1 = -2⨯ k ( x 1 + 4) +1 - x 1 + 2 = -(2k +1)( x 1 + 4) , P x + 2 x + 2 x + 2 x + 21 1 1 12 2 22 2= ⨯= ,a n n a同理可得: y = -(2k +1)( x 2 + 4) . x 2 + 2很明显 y P y Q < 0 ,且:=,注意到:y + y = -(2k +1)⎛ x 1 + 4 + x 2 + 4 ⎫ = -(2k +1)⨯ ( x 1 + 4)( x 2 + 2) + ( x 2 + 4)( x 1 + 2) , P Qx + 2 x + 2 ⎪ ( x + 2)( x + 2) ⎝ 1 2 ⎭ 1 2而: ( x 1 + 4)( x 2 + 2) + ( x 2 + 4)( x 1 + 2) = 2 ⎡⎣x 1x 2 + 3( x 1 + x 2 ) + 8⎤⎦= ⎡ 64k 2 - 8 ⎛ -32k 2 ⎫ ⎤ 2 ⎢ 4k 2 +1+ 3⨯ 4k 2 +1 ⎪ + 8⎥⎣⎝ ⎭ ⎦ (64k 2 - 8) + 3⨯(-32k 2 ) + 8(4k 2 +1)2 0 4k 2+1故 y P + y Q = 0, y P = - y Q .从而= = 1 .【点睛】解决直线与椭圆的综合问题时,要注意:(1) 注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2) 强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知{a n } 是无穷数列.给出两个性质:2①对于{a }中任意两项a i , a j (i > j ) ,在{a } 中都存在一项a ,使 i= a ;n n mm ja 2②对于{a n }中任意项a n (n …3) ,在{a n } 中都存在两项a k , a l (k > l ) .使得a n(I) 若a n = n (n = 1, 2,) ,判断数列{a n } 是否满足性质①,说明理由;= k .a l(II) 若a = 2n -1(n = 1, 2, ) ,判断数列{a }是否同时满足性质①和性质②,说明理由; (III) 若{a n }是递增数列,且同时满足性质①和性质②,证明:{a n } 为等比数列.【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.【解析】PBPQy Py Q PB PQ y Py QQa 2 a a ma 【分析】(I) 根据定义验证,即可判断;(II) 根据定义逐一验证,即可判断;a 2 (III) 解法一:首先,证明数列中的项数同号,然后证明a 3 = 2,最后,用数学归纳法证明数a 1列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得a 1, a 2 , a 3 成等比数列,之后证得a 1, a 2 , a 3, a 4 成等比数列,同理即可证得数列为等比数列,从而命题得证.a 29 【详解】(Ⅰ)Q a = 2, a = 3, 3 = ∉ Z ∴{a } 不具有性质①; 2 3 n2a 2 a 2(Ⅱ) Q ∀i , j ∈ N *, i > j , i = 2(2i - j )-1, 2i - j ∈ N * ∴ i = a∴{a }具有性质①; a j a ja 22i - j nQ ∀n ∈ N *, n ≥ 3, ∃k = n -1,l = n - 2, k = 2(2k -l )-1 = 2n -1 = a ,∴{a } 具有性质②;n nl(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然a n ≠ 0 (n ∉ N *),假设数列中存在负项,设N 0 = max {n | a n < 0} ,第一种情况:若 N 0 = 1,即a 0 < 0 < a 1 < a 2 < a 3 <,由①可知:存在m 1 ,满足a a 2 = 2 < 0 ,存在m 2 ,满足aa 2 = 3 < 0 , m 1 m 21 1a 2 a 2由 N 0 = 1可知 2= 3 ,从而a 2 = a 3 ,与数列的单调性矛盾,假设不成立. a 1 a 1a 2第二种情况:若 N ≥ 2 ,由①知存在实数m ,满足a = N 0< 0 ,由 N 的定义可知:m ≤ N ,0 012 2另一方面, a m = N 0> N 0 = aa a N 0 ,由数列 单调性可知: m > N 0 ,1N 0这与 N 0 的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.aaa 1a 1 1 1a 综上可得,数列中的项数同号.a 2 其次,证明a 3 = 2:a 1利用性质②:取n = 3 ,此时a 32= k (k > l ) , a l由数列的单调性可知a k > a l > 0 ,而 a 3 = a k ⋅ a ka l> a k ,故 k < 3 ,2 此时必有k = 2, l = 1 ,即a3 = 2,a 1最后,用数学归纳法证明数列为等比数列:假设数列{a n }的前k (k ≥ 3) 项成等比数列,不妨设a s= a q s -1(1 ≤ s ≤ k ) ,其中a 1 > 0, q > 1,( a 1 < 0, 0 < q < 1 情况类似)由①可得:存在整数m ,满足 a a2= k = a q k > a,且a = a q k ≥ a(*)a k -1a 2 am 1 k +1由②得:存在 s > t ,满足: a = s = a ⋅ s > a ,由数列的单调性可知: t < s ≤ k +1, k +1 a s a ss -1t t22s -t - - 由 a = a q (1 ≤ s ≤ k ) 可得: a = s= a q 1 > a = a q k 1 (**)s 1 k +1 1 k 1t 由(**)和(*)式可得: a q k ≥ a q 2s -t -1 > a q k -1,结合数列的单调性有: k ≥ 2s - t -1 > k -1, 注意到 s , t , k 均为整数,故k = 2s - t -1, 代入(**)式,从而a= a q k .k +11总上可得,数列{a }的通项公式为: a = a q n -1 .nn1即数列{a n }为等比数列.【解法二】假设数列中的项数均为正数:m1 kaa 1 4 1 4 1 4 1 4 1 首先利用性质②:取n = 3 ,此时 a 3由数列的单调性可知a k > a l > 0 ,2= k (k > l ) , a l而 a 3 = a k ⋅ a ka l> a k ,故 k < 3 ,2 此时必有k = 2, l = 1 ,即a3 = 2,a 1即 a , a , a 成等比数列,不妨设a = a q , a = a q 2(q > 1) ,1232 13 1a 2 a 2q 4然后利用性质①:取i = 3, j = 2 ,则a = 3 = 1 = a q 3 , a 2 a 1q即数列中必然存在一项的值为a q 3 ,下面我们来证明a = a q 3,否则,由数列的单调性可知 a < a q 3 ,在性质②中,取n = 4 ,则a a 2 = k = a a k > a,从而k < 4 ,4 a k a kl l与前面类似的可知则存在{k , l } ⊆ {1, 2, 3}(k > l ) ,满足a 4a 2a 2= k ,a l若 k = 3, l = 2 ,则: a = k = a q 3,与假设矛盾;1la 2 若 k = 3, l = 1,则: a = k = a q 4 > a q 3 ,与假设矛盾; 1 1la 2若 k = 2, l = 1 ,则: a = k = a q 2= a ,与数列的单调性矛盾;1 3l即不存在满足题意的正整数 k , l ,可见a < a q 3 不成立,从而a = a q 3,同理可得:a = a q 4 , a = a q 5 , ,从而数列{a } 为等比数列,5161n同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列{a n } 为等比数列.m 14a 4 a 4a【点睛】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.。
2024年北京高考数学真题(详解版)

2024年北京⾼考数学真题学校:___________姓名:___________班级:___________考号:___________⼀、单选题1.已知集合,,则()A.B.C.D.【答案】A【分析】直接根据并集含义即可得到答案.【详解】由题意得,故选:A.2.已知,则().A.B.C.D.1【答案】C【分析】直接根据复数乘法即可得到答案.【详解】由题意得,故选:C.3.求圆的圆⼼到的距离()A.B.2C.D.【答案】C【分析】求出圆⼼坐标,再利⽤点到直线距离公式即可.【详解】由题意得,即,则其圆⼼坐标为,则圆⼼到直线的距离为,故选:C.4.的⼆项展开式中的系数为()A.15B.6C.D.【答案】B【分析】写出⼆项展开式,令,解出然后回代⼊⼆项展开式系数即可得解.【详解】的⼆项展开式为,令,解得,故所求即为.故选:B.5.已知向量,,则“”是“或”的()条件.A.必要⽽不充分条件B.充分⽽不必要条件C.充分且必要条件D.既不充分也不必要条件【答案】A【分析】根据向量数量积分析可知等价于,结合充分、必要条件分析判断.【详解】因为,可得,即,可知等价于,若或,可得,即,可知必要性成⽴;若,即,⽆法得出或,例如,满⾜,但且,可知充分性不成⽴;综上所述,“”是“且”的必要不充分条件.故选:A.6.已知,,,,则()A.1B.2C.3D.4【答案】B【分析】根据三⻆函数最值分析周期性,结合三⻆函数最⼩正周期公式运算求解.【详解】由题意可知:为的最⼩值点,为的最⼤值点,则,即,且,所以.故选:B.7.记⽔的质量为,并且d越⼤,⽔质量越好.若S不变,且,,则与的关系为()A.B.C.若,则;若,则;D.若,则;若,则;【答案】C【分析】根据题意分析可得,讨论与1的⼤⼩关系,结合指数函数单调性分析判断.【详解】由题意可得,解得,若,则,可得,即;若,则,可得;若,则,可得,即;结合选项可知C正确,ABD错误;故选:C.8.已知以边⻓为4的正⽅形为底⾯的四棱锥,四条侧棱分别为4,4,,,则该四棱锥的⾼为()A.B.C.D.【答案】D【分析】取点作辅助线,根据题意分析可知平⾯平⾯,可知平⾯,利⽤等体积法求点到⾯的距离.【详解】如图,底⾯为正⽅形,当相邻的棱⻓相等时,不妨设,分别取的中点,连接,则,且,平⾯,可知平⾯,且平⾯,所以平⾯平⾯,过作的垂线,垂⾜为,即,由平⾯平⾯,平⾯,所以平⾯,由题意可得:,则,即,则,可得,所以四棱锥的⾼为.当相对的棱⻓相等时,不妨设,,因为,此时不能形成三⻆形,与题意不符,这样情况不存在.故选:D.9.已知,是函数图象上不同的两点,则下列正确的是()A.B.C.D.【答案】A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB;举例判断CD即可.【详解】由题意不妨设,因为函数是增函数,所以,即,对于选项AB:可得,即,根据函数是增函数,所以,故A正确,B错误;对于选项C:例如,则,可得,即,故C错误;对于选项D:例如,则,可得,即,故D错误,故选:A.10.若集合表示的图形中,两点间最⼤距离为d、⾯积为S,则()A.,B.,C.,D.,【答案】C【分析】先以t为变量,分析可知所求集合表示的图形即为平⾯区域,结合图形分析求解即可.【详解】对任意给定,则,且,可知,即,再结合x的任意性,所以所求集合表示的图形即为平⾯区域,如图阴影部分所示,其中,可知任意两点间距离最⼤值;阴影部分⾯积.故选:C.【点睛】⽅法点睛:数形结合的重点是“以形助数”,在解题时要注意培养这种思想意识,做到⼼中有图,⻅数想图,以开拓⾃⼰的思维.使⽤数形结合法的前提是题⽬中的条件有明确的⼏何意义,解题时要准确把握条件、结论与⼏何图形的对应关系,准确利⽤⼏何图形中的相关结论求解.⼆、填空题11.已知抛物线,则焦点坐标为.【答案】【分析】形如的抛物线的焦点坐标为,由此即可得解.【详解】由题意抛物线的标准⽅程为,所以其焦点坐标为.故答案为:.12.已知,且α与β的终边关于原点对称,则的最⼤值为.【答案】/【分析】⾸先得出,结合三⻆函数单调性即可求解最值.【详解】由题意,从⽽,因为,所以的取值范围是,的取值范围是,当且仅当,即时,取得最⼤值,且最⼤值为.故答案为:.13.已知双曲线,则过且和双曲线只有⼀个交点的直线的斜率为.【答案】【分析】⾸先说明直线斜率存在,然后设出⽅程,联⽴双曲线⽅程,根据交点个数与⽅程根的情况列式即可求解.【详解】联⽴与,解得,这表明满⾜题意的直线斜率⼀定存在,设所求直线斜率为,则过点且斜率为的直线⽅程为,联⽴,化简并整理得:,由题意得或,解得或⽆解,即,经检验,符合题意.故答案为:.14.已知三个圆柱的体积为公⽐为10的等⽐数列.第⼀个圆柱的直径为65mm,第⼆、三个圆柱的直径为325mm,第三个圆柱的⾼为230mm,求前两个圆柱的⾼度分别为.【答案】【分析】根据体积为公⽐为10的等⽐数列可得关于⾼度的⽅程组,求出其解后可得前两个圆柱的⾼度.【详解】设第⼀个圆柱的⾼为,第⼆个圆柱的⾼为,则,故,,故答案为:.15.已知,,不为常数列且各项均不相同,下列正确的是.①,均为等差数列,则M中最多⼀个元素;②,均为等⽐数列,则M中最多三个元素;③为等差数列,为等⽐数列,则M中最多三个元素;④单调递增,单调递减,则M中最多⼀个元素.【答案】①③④【分析】利⽤两类数列的散点图的特征可判断①④的正误,利⽤反例可判断②的正误,结合通项公式的特征及反证法可判断③的正误.【详解】对于①,因为均为等差数列,故它们的散点图分布在直线上,⽽两条直线⾄多有⼀个公共点,故中⾄多⼀个元素,故①正确.对于②,取则均为等⽐数列,但当为偶数时,有,此时中有⽆穷多个元素,故②错误.对于③,设,,若中⾄少四个元素,则关于的⽅程⾄少有4个不同的正数解,若,则由和的散点图可得关于的⽅程⾄多有两个不同的解,⽭盾;若,考虑关于的⽅程奇数解的个数和偶数解的个数,当有偶数解,此⽅程即为,⽅程⾄多有两个偶数解,且有两个偶数解时,否则,因单调性相反,⽅程⾄多⼀个偶数解,当有奇数解,此⽅程即为,⽅程⾄多有两个奇数解,且有两个奇数解时即否则,因单调性相反,⽅程⾄多⼀个奇数解,因为,不可能同时成⽴,故不可能有4个不同的正数解,故③正确.对于④,因为为单调递增,为递减数列,前者散点图呈上升趋势,后者的散点图呈下降趋势,两者⾄多⼀个交点,故④正确.故答案为:①③④【点睛】思路点睛:对于等差数列和等⽐数列的性质的讨论,可以利⽤两者散点图的特征来分析,注意讨论两者性质关系时,等⽐数列的公⽐可能为负,此时要注意合理转化.三、解答题16.在△ABC中,,A为钝⻆,.(1)求;(2)从条件①、条件②和条件③这三个条件中选择⼀个作为已知,求△ABC的⾯积.①;②;③.注:如果选择条件①、条件②和条件③分别解答,按第⼀个解答计分.【答案】(1);(2)选择①⽆解;选择②和③△ABC⾯积均为.【分析】(1)利⽤正弦定理即可求出答案;(2)选择①,利⽤正弦定理得,结合(1)问答案即可排除;选择②,⾸先求出,再代⼊式⼦得,再利⽤两⻆和的正弦公式即可求出,最后利⽤三⻆形⾯积公式即可;选择③,⾸先得到,再利⽤正弦定理得到,再利⽤两⻆和的正弦公式即可求出,最后利⽤三⻆形⾯积公式即可;【详解】(1)由题意得,因为为钝⻆,则,则,则,解得,因为为钝⻆,则.(2)选择①,则,因为,则为锐⻆,则,此时,不合题意,舍弃;选择②,因为为三⻆形内⻆,则,则代⼊得,解得,,则.选择③,则有,解得,则由正弦定理得,即,解得,因为为三⻆形内⻆,则,则,则17.已知四棱锥P-ABCD,,,,,E是上⼀点,.(1)若F是PE中点,证明:平⾯.(2)若平⾯,求平⾯与平⾯夹⻆的余弦值.【答案】(1)证明⻅解析(2)【分析】(1)取的中点为,接,可证四边形为平⾏四边形,由线⾯平⾏的判定定理可得平⾯.(2)建⽴如图所示的空间直⻆坐标系,求出平⾯和平⾯的法向量后可求夹⻆的余弦值.【详解】(1)取的中点为,接,则,⽽,故,故四边形为平⾏四边形,故,⽽平⾯,平⾯,所以平⾯.(2)因为,故,故,故四边形为平⾏四边形,故,所以平⾯,⽽平⾯,故,⽽,故建⽴如图所示的空间直⻆坐标系,则,则设平⾯的法向量为,则由可得,取,设平⾯的法向量为,则由可得,取,故,故平⾯与平⾯夹⻆的余弦值为18.已知某险种的保费为万元,前3次出险每次赔付万元,第4次赔付万元赔偿次数01234单数在总体中抽样100单,以频率估计概率:(1)求随机抽取⼀单,赔偿不少于2次的概率;(2)(i)⽑利润是保费与赔偿⾦额之差.设⽑利润为,估计的数学期望;(ⅱ)若未赔偿过的保单下⼀保险期的保费下降,已赔偿过的增加.估计保单下⼀保险期⽑利润的数学期望.【答案】(1)(2)(i)0.122万元(ii)万元【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(ⅰ)设为赔付⾦额,则可取,⽤频率估计概率后可求的分布列及数学期望,从⽽可求.(ⅱ)先算出下⼀期保费的变化情况,结合(1)的结果可求.【详解】(1)设为“随机抽取⼀单,赔偿不少于2次”,由题设中的统计数据可得.(2)(ⅰ)设为赔付⾦额,则可取,由题设中的统计数据可得,,,,故故(万元).(ⅱ)由题设保费的变化为,故(万元)19.已知椭圆⽅程C:,焦点和短轴端点构成边⻓为2的正⽅形,过的直线l与椭圆交于A,B,,连接AC交椭圆于D.(1)求椭圆⽅程和离⼼率;(2)若直线BD的斜率为0,求t.【答案】(1)(2)【分析】(1)由题意得,进⼀步得,由此即可得解;(2)说明直线斜率存在,设,,联⽴椭圆⽅程,由⻙达定理有,⽽,令,即可得解.【详解】(1)由题意,从⽽,所以椭圆⽅程为,离⼼率为;(2)显然直线斜率存在,否则重合,直线斜率不存在与题意不符,同样直线斜率不为0,否则直线与椭圆⽆交点,⽭盾,从⽽设,,联⽴,化简并整理得,由题意,即应满⾜,所以,若直线斜率为0,由椭圆的对称性可设,所以,在直线⽅程中令,得,所以,此时应满⾜,即应满⾜或,综上所述,满⾜题意,此时或.20.已知在处切线为l.(1)若切线l的斜率,求单调区间;(2)证明:切线l不经过;(3)已知,,,,其中,切线l与y轴交于点B时.当,符合条件的A的个数为?(参考数据:,,)【答案】(1)单调递减区间为,单调递增区间为.(2)证明⻅解析(3)2【分析】(1)直接代⼊,再利⽤导数研究其单调性即可;(2)写出切线⽅程,将代⼊再设新函数,利⽤导数研究其零点即可;(3)分别写出⾯积表达式,代⼊得到,再设新函数研究其零点即可.【详解】(1),当时,;当,;在上单调递减,在上单调递增.则的单调递减区间为,单调递增区间为.(2),切线的斜率为,则切线⽅程为,将代⼊则,即,则,,令,假设过,则在存在零点.,在上单调递增,,在⽆零点,与假设⽭盾,故直线不过.(3)时,.,设与轴交点为,时,若,则此时与必有交点,与切线定义⽭盾.由(2)知.所以,则切线的⽅程为,令,则.,则,,记,满⾜条件的有⼏个即有⼏个零点.,当时,,此时单调递减;当时,,此时单调递增;当时,,此时单调递减;因为,,所以由零点存在性定理及的单调性,在上必有⼀个零点,在上必有⼀个零点,综上所述,有两个零点,即满⾜的有两个.【点睛】关键点点睛:本题第⼆问的关键是采⽤的是反证法,转化为研究函数零点问题. 21.设集合.对于给定有穷数列,及序列,,定义变换:将数列的第项加1,得到数列;将数列的第列加,得到数列…;重复上述操作,得到数列,记为.若为偶数,证明:“存在序列,使得为常数列”的充要条件为“”.【答案】证明⻅解析【分析】分充分性和必要性两⽅⾯论证.【详解】我们设序列为,特别规定.必要性:若存在序列,使得为常数列.则,所以.根据的定义,显然有,这⾥,.所以不断使⽤该式就得到,,必要性得证.充分性:若.由已知,为偶数,⽽,所以也是偶数.我们设是通过合法的序列的变换能得到的所有可能的数列中,使得最⼩的⼀个.上⾯已经证明,这⾥,.从⽽由可得.同时,由于总是偶数,所以和的奇偶性保持不变,从⽽和都是偶数.下⾯证明不存在使得.假设存在,根据对称性,不妨设,,即.情况1:若,则由和都是偶数,知.对该数列连续作四次变换后,新的相⽐原来的减少,这与的最⼩性⽭盾;情况2:若,不妨设.情况2-1:如果,则对该数列连续作两次变换后,新的相⽐原来的⾄少减少,这与的最⼩性⽭盾;情况2-2:如果,则对该数列连续作两次变换后,新的相⽐原来的⾄少减少,这与的最⼩性⽭盾.这就说明⽆论如何都会导致⽭盾,所以对任意的都有.假设存在使得,则是奇数,所以都是奇数,设为.则此时对任意,由可知必有.⽽和都是偶数,故集合中的四个元素之和为偶数,对该数列进⾏⼀次变换,则该数列成为常数列,新的等于零,⽐原来的更⼩,这与的最⼩性⽭盾.综上,只可能,⽽,故是常数列,充分性得证.【点睛】关键点点睛:本题的关键在于对新定义的理解,以及对其本质的分析.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年北京市高考数学试卷(文科)-CAL-FENGHAI.-(YICAI)-Company One12017年北京市高考数学试卷(文科)一、选择题1.已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)2.若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.执行如图所示的程序框图,输出的S值为()A.2 B.C.D.4.若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.95.已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数 B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数 D.是奇函数,且在R上是减函数6.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.7.设,为非零向量,则“存在负数λ,使得=λ”是•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.8.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(lg3≈0.48)A.1033B.1053C.1073D.1093【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故本题选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题9.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y 轴对称,若sinα=,则sinβ=.推导出α+β=π+2kπ,k∈Z,从而sinβ=sin(π+2kπ﹣α)=sinα,由此能求出结果.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.【点评】本题考查角的正弦值的求法,考查对称角、诱导公式,正弦函数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是基础题.10.若双曲线x2﹣=1的离心率为,则实数m=2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力11.已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是[,1].解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x=,开口向上,所以函数的最小值为:f()==.最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].12.已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为6.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.13.能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3.【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(不唯一),故答案为:﹣1,﹣2,﹣314.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为6.②该小组人数的最小值为12.【解答】解:①设男学生女学生分别为x,y人,若教师人数为4,则,即4<y<x<8,即x的最大值为7,y的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x,y人,教师人数为z,则,即z<y<x<2z即z最小为3才能满足条件,此时x最小为5,y最小为4,即该小组人数的最小值为12,故答案为:6,12三、解答题15.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,{b2n﹣1}是等比数列,公比为3,首项为1.b1+b3+b5+…+b2n﹣1==.16.已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣【点评】本题考查了三角函数的化简以及周期的定义和正弦函数的图象和性质,属于基础题17.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【分析】(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.【点评】本题考查的知识点是频率分布直方图,用样本估计总体,难度不大,属于基础题.18.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【分析】(1)运用线面垂直的判定定理可得PA⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面PAC,可证BD⊥平面PAC,由(1)运用面面垂直的判定定理可得平面PAC⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理,即可得证;(3)由线面平行的性质定理可得PA∥DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面ABC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC=S△ABC=××2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC=×1×1=.【点评】本题考查空间的线线、线面和面面的位置关系的判断,主要是平行和垂直的关系,注意运用线面平行的性质定理以及线面垂直的判定定理和性质定理,面面垂直的判定定理和性质定理,同时考查三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.19.已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【分析】(Ⅰ)由题意设椭圆方程,由a=2,根据椭圆的离心率公式,即可求得c,则b2=a2﹣c2=1,即可求得椭圆的方程;(Ⅱ)由题意分别求得DE和BN的斜率及方程,联立即可求得E点坐标,根据三角形的相似关系,即可求得=,因此可得△BDE与△BDN的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x轴上,设椭圆方程:(a>b>0),则a=2,e==,则c=,b2=a2﹣c2=1,∴椭圆C的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,由M,N在椭圆上,则,则x02=4﹣4y02,则直线AM的斜率k AM==,直线DE的斜率k DE=﹣,直线DE的方程:y=﹣(x﹣x0),直线BN的斜率k BN=,直线BN的方程y=(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则丨EH丨=,则=,∴:△BDE与△BDN的面积之比为4:5.【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,直线的斜率公式,相似三角形的应用,考查数形结合思想,属于中档题.20.已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g (x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.。