八年级(下)期末数学综合复习测试题

合集下载

2022-2023学年人教版八年级下册数学期末综合检测卷(无答案)

2022-2023学年人教版八年级下册数学期末综合检测卷(无答案)

2022-2023学年人教版数学八年级下册期末综合检测卷(全卷三个大题,共24个小题;满分100分,考试用时120分钟)姓名 班级 学号 成绩一、选择题(本大题共12小题.每小题只有一个正确选项,每小题3分,共36分)1.下列条件不能判定四边形是平行四边形的是( ) A .,B .,C .,D .,2.下列各数组是勾股数的是( )A .1、2、3B .6、8、10C .5、11、13D .2、1.5、2.53.如图所示,在中,对角线交于点O ,下列式子中一定成立的是( )A .B .C .D .4.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如图所示,下列结论正确的是:()A .爷爷比小强先出发20分钟B .小强爬山的速度是爷爷的2倍C .表示的是爷爷爬山的情况,表示的是小强爬山的情况D .山的高度是480米5.如图,中,,于点D ,,,则的长为()A .5B.C .D .26.为调查某班学生每天使用零花钱的情况,小丽随机调查了20名同学,结果如表:ABCD AB CD =AD BC =A C ∠=∠B D ∠=∠AB CD P AD BC=AB CD P B D∠=∠ABCD Y AC BD 、AC BD ⊥OA OC =AC BD =AO OD =1l 2l ABC V 90ACB ∠=︒CD AB ⊥3AC =4BC =CD 52125每天使用零花钱(单位:元) 10 15 20 25 30 人数13655则这20名同学每天使用的零花钱的众数是( ) A .10B .15C .20D .307.若直线y=+n 与y =mx ﹣1相交于点(1,﹣2),则()A .m =,n =﹣B .m =,n =﹣1C .m =﹣1,n =﹣D .m =﹣3,n =﹣8.如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=70°,则∠EDC 的大小为( )A .10°B .15°C .20°D .30°9.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连结EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB=BEB .CE ⊥DEC .∠ADB=90°D .BE ⊥AB10.如图,正方形的边长为1,点E 是边AD 上一点,且,点F 是边上一个动点,连接EF ,以为边作菱形,且,连接,点P 为的中点,在点F 从点A 运动到点B 的过程中,点运动所走的路径长为( )A .B .1CD .11.如图,在中,,,平分,对角线相交于点O ,连接,下列结论中正确的有()①;②;③;④;⑤2x1252125232ABCD 14AE AD =AB EF EFGH 60EFG ∠=︒DG DG P 1214ABCD Y 120ABC ∠=︒2BC AB =DE ADC ∠AC BD 、OE 30ADB ∠=︒2AB OE =DE AB =OD CD =ABCD S AB BD=⋅YA .2个B .3个C .4个D .5个12.如图,在菱形中,,,点P 是菱形内部一点,且满足,则的最小值是( )A .B .C .6D .二、填空题(本大题共4小题,每小题2分,共8分)13.把中根号外的移入根号内得 . 14.如图,在菱形中,点P 在对角线上,,垂足为E ,,则点P 到的距离是 .15.如图,在△ABC 中,,分别以点A 、点B为圆心,大于的长为半径画弧交于两点,过这两点的直线交BC 于点D ,连接AD .若cm ,cm ,则△ACD 的周长为 cm .16.如图,在中,,P 为边上一动点,于点E ,于F ,则的最小值为 .ABCD 6AB =120A ∠=︒16PCD ABCDS S =V 菱形PC PD +(a -(1)a -ABCD AC PE AB ⊥5PE =AD 90C ∠=︒12AB 5AB =3AC =ABC V 51213AB AC BC ===,,BC PE AB ⊥PF AC ⊥EF三、解答题(本答题共8小题,共56分)17.计算: (1(2)18.文明其精神,野蛮其体魄.体育课上张老师对全班学生进行了体能测试,从跑步、立定跳远、跳绳三个方面进行了量化考核.小字和小彬的各项成绩如下表(百分制):姓名跑步立定跳远跳绳小宇859590小彬958688若跑步、立定跳远、跳绳的成绩按 确定体能综合成绩,则小宇和小彬谁的体能综合成绩高?请通过计算说明理由.19.要把宣传牌,装订在教室的黑板上面(如图所示).一架梯子(米)靠在宣传牌,底端落在地板E 处,然后移动的梯子使顶端落在宣传牌的B 处,而底端E 向外移到了1米到C 处(米).测量得米.求宣传牌的高度(结果用根号表示).20.如图,在四边形中,,求四边形的面积.()()11-+433::()AB 5AE =()AB A ()AB 1CE =4BM =()AB ABCD 3590AB AD BC CD B ====∠=o ,,ABCD21.如图,在平行四边形中,对角线,交于点,过点交于点,交于点.求证:.22.如图,在矩形ABCD 中, , ,菱形 的三个顶点 分别在矩形 的边 上, , ,求证:四边形为正方形.23.如图,在平面直角坐标系中,函数的图像分别交x 轴,y 轴于A ,B 两点,过点A 的直线交y 轴正半轴于点M ,且BM=2MO .在平面直角坐标系内存在点C ,使得以A ,B ,M ,C 为顶点的四边形是平行四边形,请你画出图形,确定点C的坐标.ABCD AC BD O EF O AD E BC F OE OF =6AD =8DC =EFGH ,,E G H ABCD ,,AB CD DA 2AH =2DG =EFGH xOy 26y x =-+24.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.。

综合复习与测试(5)(期末模拟测试卷)八年级数学下册基础知识专项讲练(沪科版)

综合复习与测试(5)(期末模拟测试卷)八年级数学下册基础知识专项讲练(沪科版)

综合复习与测试(5)(期末模拟测试卷)一、单选题(本大题共10小题,每小题3分,共30分)1. 3a =-,则a 的取值范围是( )A. 3a B. 3a C. 0a D. 3a <2. 是同类二次根式的是( )A. B. C. D. 3. 将方程23920x x -+=配方成()2x m n +=的形式为( )A. 2319212x ⎛⎫-= ⎪⎝⎭ B. ()2934x -= C. ()227312x -= D. 232523x ⎛⎫-= ⎪⎝⎭4. 下列命题是真命题的是( )A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线相等的平行四边形是矩形C. 一个角为90︒且一组邻边相等的四边形是正方形D. 对角线互相垂直的四边形是菱形5. 下列几组数中,不能作为直角三角形三边长的是( )A. 1,1B. 1,34,52C. 0.5,1.2,1.3D. 9,40,416. 某中学为了解在校学生的视力情况,在全校的4700名学生中随机抽取了150名学生进行视力检查,其中视力达标的有45人,下列说法不正确的是( )A. 此次调查属于抽样调查B. 4700名学生的视力是总体C. 45名学生的视力是样本D. 该校视力达标的学生约有1410人7. 凌源市“百合节”观赏人数逐年增加,据有关部门统计,2015年约为5万人次,2017年约为6.8万人次,设观赏人数年均增长率为x ,则下列方程正确的是( )A. ()512 6.8x += B. 6.82(1)5x +=C. 25(1) 6.8x += D. ()25515(1) 6.8x x ++++=8. 已知m ,n 是一元二次方程2320x x +-=的两根,则2236n m n m n ---的值是( )A. 1B. 1-C. 32 D. 32-9. 如图,矩形ABCD 中,4,3AB AD ==,点E 在AB 上,且1BE =,点,M F 分别为边,DC BC 上的动点,将BEF △沿直线EF 翻折得到NEF ,连接,AM MN ,则AM MN +的最小值为( )A. 5B.C. 2-D. 1-10. 《周髀算经》中有一种几何方法可以用来解形如x (x +5)=24的方程的正数解,方法为:如图,将四个长为x +5,宽为x 的长方形纸片(面积均为24)拼成一个大正方形,于是大正方形的面积为:24×4+25=121,边长为11,故得x (x +5)=24的正数解为x = 1152-=3.小明按此方法解关于x 的方程x 2+mx -n =0时,构造出同样的图形.已知大正方形的面积为12,小正方形的面积为4,则方程的正数解为( )A.-1 B. C. 32 D. 1二、填空题(本大题共8小题,每小题4分,共32分)11. 一个n 边形的所有内角和等于540︒,则n 的值等于__.12. 已知m ,n 是方程2420x x -+=的两根,则25m m n --的值为__________.13. 如图,在笔直的公路AB 旁有一个城市书房C ,C 到公路AB 的距离CD 为80米,AC 为100米,BC 为300米.一辆公交车以3米/秒的速度从A 处向B 处缓慢行驶,若公交车鸣笛声会使以公交车为中心170米范围内受到噪音影响,那么公交车至少______秒不鸣笛才能使在城市书房C 看书的读者不受鸣笛声影响.14. 如图,ABC 的顶点B 的坐标是()1,0,C 的坐标是()0,2,且90ABC ∠=︒,45A ∠=︒,则BC =________;A 的坐标是________.15. 为深入落实“立德树人”的根本任务,坚持德、智、体、美、劳全面发展,某学校积极推进学生综合素质评价改革,某同学在上学期德、智、体、美、劳的评价得分如图所示,则该同学五项评价得分的众数是________,中位数是________.16. 如图,正方形ABCD 的对角线AC 、BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON OM ⊥,交CD 于点N .若四边形MOND 的面积是5,则AB 的长为______.17. 如图,ABCD 的周长为16,连接AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交边AD 于点E ,连接CE ,则CDE 的周长为______.18. 如图,四边形ABCD 为正方形纸片,E 是边CB 的中点,连接DE ,P 是边CD 上一点,将纸片沿着AP 折叠,使点D 落在DE 上的F 点处,则DF EF为______.三、解答题(本大题共6小题,共58分)19. 计算:(1;(2))()2221+-++.20. 要建一个面积为2150m 的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用铁丝网围成,如果铁丝网的长为35m .(1)若墙足够长,则养鸡场的长与宽各为多少?(2)若给定墙长为m a ,则墙长a 对题目的解是否有影响?21. 如图,点B ,F ,C ,E 在同一直线上,AB DE B E BF CE =∠=∠=,,.(1)求证:ABC DEF ≌△△.(2)连接AF CD ,,试判断四边形AFDC 的形状,并说明理由.22. 山火烧不尽,春风吹又生,今年三月,校团委组织师生开展“汇聚青年力量·重建绿色山林”缙云山植树活动,购入了第一批树苗,经了解,购买甲、乙两种树苗共250棵,两种树苗的单价分别为20元和30元,共用去资金6000元.(1)求第一批购入甲、乙两种树苗的数量;(2)恰逢植树节在周末,有更多的师生参加到植树活动中来,校团委购入第二批树苗时发现甲树苗供不应求单价有所上涨,校团委决定,购入甲树苗时,若甲树苗单价每上涨2元,购入数量就比第一批甲树苗的数量减少10棵(最后数量不超过第一批甲树苗的80%),购入乙树苗单价与第一批相同,数量是第一批乙树苗的80%,最终花费的总资金比第一批减少了8%,求第二批购买树苗的总数量.23. “双减”政策颁布后,某区为了解学生每天完成书面作业所需时长的情况,从甲,乙两所学校各随机抽取50名学生进行调查,获取他们每天完成书面作业所需时长(单位:分钟)的数据,并对数据进行了整理、描述和分析,下面给出了部分信息.a .甲,乙两所学校学生每天完成书面作业所需时长的数据的频数分布直方图及扇形统计图如下(数据分成5组:1530x ≤<,3045x ≤<,4560x ≤<,6075x ≤<,7590x ≤≤):b .甲校学生每天完成书面作业所需时长的数据在4560x ≤<这一组的是:45 46 50 51 51 52 52 53 55 56 59 59c .甲,乙两所学校学生每天完成书面作业所需时长的数据的平均数、中位数如下:平均数中位数甲校49m 乙校5054根据以上信息,回答下列问题:(1)m =______;(2)乙校学生每天完成书面作业所需时长的数据的扇形统计图中表示4560x ≤<这组数据的扇形圆心角的度数是________°;(3)小明每天完成书面作业所需时长为53分钟,在与他同校被调查的学生中,有一半以上的学生每天完成书面作业所需时长都超过了小明,那么小明是_______校学生(填“甲”或“乙”),理由是______________________;(4)如果甲,乙两所学校各有1000人,估计这两所学校每天完成书面作业所需时长低于60分钟的学生共有________人.24. 如图,在四边形ABCD 中,且90BAD ∠=︒,对角线AC 和BD 相交于点O ,且BO DO =,过点B 作BE AD ∥,交AC 于点E ,连结DE .(1)求证:AOD EOB ≌△△;(2)试探究四边形ABED 的形状,并说明理由;(3)若BC DC =,5BC =,1CE =,求四边形ABED 的面积.综合复习与测试(5)(期末模拟测试卷)一、单选题(本大题共10小题,每小题3分,共30分)【1题答案】【答案】B【解析】【分析】结合完全平方公式对被开方式子进行变形,然后利用二次根式的性质进行化简,从而结合绝对值的意义作出分析判断.3a=-3a=-33a a-=-∵30a -≥,∴30a -≥,∴3a ,故选:B【点睛】本题考查完全平方公式,二次根式的性质,理解相关公式是解题关键.【2题答案】【答案】D【解析】【分析】根据同类二次根式的定义可进行求解.【详解】解:A =不是同类二次根式,不符合题意,B 不是同类二次根式,不符合题意,C 2=不是同类二次根式,不符合题意,D =是同类二次根式,符合题意,故选:D .【点睛】本题主要考查同类二次根式,熟练掌握同类二次根式的定义是解题的关键.【3题答案】【解析】【分析】先化系数为1,将常数项移到方程的右边,然后方程两个同时加上一次项系数的一半,即可求解.【详解】解:23920x x -+=,∴22303x x -+=,∴2233x x -=-,∴29293434x x -+=-+,∴2319212x ⎛⎫-= ⎪⎝⎭,故选:A .【点睛】本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.【4题答案】【答案】B【解析】【分析】分别根据平行四边形、矩形、正方形和菱形的判定定理结合真命题的判定逐项判断即可.【详解】解:A 、一组对边平行且相等的四边形是平行四边形,故此选项是假命题,不符合题意;B 、对角线相等的平行四边形是矩形,故此选项是真命题,符合题意;C 、一个角为90︒且一组邻边相等的平行四边形是正方形,故此选项是假命题,不符合题意;D 、对角线互相垂直的平行四边形是菱形,故选:B .【点睛】本题考查命题的真假判断、平行四边形的判定、特殊平行四边形的判定,熟练掌握平行四边形、矩形、正方形和菱形的判定定理是解答的关键.【5题答案】【答案】B【分析】先求出两小边的平方和,在求出最长边的平方,看看是否相等.【详解】A.∵2 221+1=∴以1,1为边能够组成直角三角形,故本选项不符合题意;B.∵22 235 1+42⎛⎫⎛⎫≠⎪ ⎪⎝⎭⎝⎭∴以1,34,52为边不能够组成直角三角形,故本选项符合题意;C. ∵2220.5+1.2=1.3∴以0.5,1.2,1.3为边能够组成直角三角形,故本选项不符合题意;D. ∵2229+40=41∴以9,40,41为边能够组成直角三角形,故本选项不符合题意.故选:B.【点睛】本题考查了勾股定理的逆定理,判断一个三角形是不是直角三角形,必须满足较小的两边平方和等于最大边的平方,熟记勾股定理的逆定理是解此题的关键.【6题答案】【答案】C【解析】【分析】根据调查方式,总体,样本以及样本估计总体的方法分别判断即可.【详解】解:A、此次调查属于抽样调查,故正确,不合题意;B、4700名学生的视力是总体,故正确,不合题意;C、150名学生的视力是样本,故错误,符合题意;D、该校视力达标的学生约有4547001410150⨯=人,故正确,不合题意;故选:C.【点睛】此题主要考查了总体、个体、样本,以及样本估计总体和调查方式.正确理解总体、个体、样本的概念是解决本题的关键.【7题答案】【答案】C【分析】根据2015年及2017年的观赏人数,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意,得25(1) 6.8x +=,故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.【8题答案】【答案】B【解析】【分析】根据一元二次方程根与系数的关系式得出3m n +=-,进而根据分式的减法进行化简即可求解.【详解】解:∵m ,n 是一元二次方程2320x x +-=的两根,∴3m n +=-∴2236n m n m n ---()()()36m n n m n m n +-=+-()()336m n nm n m n +-=+-()()()3m n m n m n -=+-3m n=+33=-1=-,故选:B .【点睛】本题考查了一元二次方程根与系数的关系,分式的化简求值,熟练掌握以上知识是解题的关键.【9题答案】【解析】【分析】作A关于CD的对称点H,连接EH,根据条件求出EH的长度,当H、+最小,即可求出答案.M、N、E四点共线时,HM MN【详解】解:作A关于CD的对称点H,连接EH,,AD=3∴==,AH AD26,沿直线EF翻折得到NEFBEF,BEF NEF∴≅∴==,1BE NEBE=,AB=4,1AE AB AE∴=-=-=,413四边形ABCD为矩形,∴∠=︒,DAB90中,在Rt HAEHE===,+最小,当H、M、N、E四点共线时,HM MN最小为1HE NE-=-,∴+的最小值为1-.AM MN故选:D.【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,解答的关键是作出辅助线.【10题答案】【答案】A【解析】【分析】把方程变形得到x(x+m)=n,设图中长方形长为x+m,宽为x,则图中小正方形的边长为x+m-x=m=2,大正方形的边长为x+m+x=2x+m算即可.【详解】解:∵x2+mx-n=0,∴x(x+m)=n,∴长方形的长为x+m,宽为x,∴小正方形的边长为x+m-x=m=2,大正方形的边长为x+m+x=2x+m∴x1,1,故选A.【点睛】本题考查了一元二次方程的解,解决此题的关键是能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题(本大题共8小题,每小题4分,共32分)【11题答案】【答案】5【解析】【分析】已知n边形的内角和为540︒,根据多边形内角和的公式易求解.【详解】解:依题意有()2180540n-⋅︒=︒,n=.解得5故答案为:5.【点睛】主要考查的是多边形的内角和公式,本题的难度简单.掌握多边形的内角n-⋅︒是解题的关键.和为()2180【12题答案】【答案】6-【解析】【分析】先根据一元二次方程解的定义得到2420m m -+=,即242m m -=-,代入25m m n --得到()2m n --+,再根据根与系数的关系得到4m n +=,然后利用整体代入的方法计算即可.【详解】解:∵m 是方程2420x x -+=的根∴2420m m -+=∴242m m -=-∴()22542m m n m m m n m n --=---=--+∵m ,n 是方程2420x x -+=的两根∴4m n +=∴25246m m n --=--=-故答案为:6-.【点睛】本题考查了一元二次方程解的定义,一元二次工程根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根时,12b x x a -+=,12c x x a=.【13题答案】【答案】70【解析】【分析】如图,设170CE =米,由勾股定理求出AD 和DE 的长,则可求出答案.【详解】解:如图,设170CE =米,∵90CDE ∠=︒,80CD =米,∴150DE ===(米),∵80CD =米,100AC =米,∴60AD ===(米),∴60150210EA AD DE =+=+=(米),∴公交车鸣笛声会受到噪音影响的时间为210703=(秒),故答案为:70.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.【14题答案】【答案】①. ②. ()3,1【解析】【分析】如图,过点A 作AD x ⊥轴于D ,根据点C 、点B 坐标可得OC 、OB 的长,根据同角的余角相等可得OCB DBA ∠=∠,利用AAS 可证明OCB DBA ≌,根据全等三角形的性质可得AD OB =,BD OC =,即可求出OD 的长,进而可得答案.【详解】如图,过点A 作AD x ⊥轴于D ,(0,2C ),(1,0B ),2OC ∴=,1OB =,BC ==90CBA ∠=︒ ,90OBC DBA ∴∠+∠=︒,90OCB OBC ∠+∠=︒ ,OCB DBA ∴∠=∠,在OCB 和DBA 中,COB BDA OCB DBA CB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,OCB DBA ∴ ≌,1AD OB ∴==,2BD OC ==,3OD OB BD ∴=+=,∴A 的坐标是(3,1).(3,1).【点睛】本题考查坐标与图形及全等三角形的判定与性质,勾股定理,熟练掌握全等三角形的判定定理是解题关键.【15题答案】【答案】①. 8 ②. 8【解析】【分析】众数是出现次数最多的数,中位数是排好序后最中间的数.【详解】德:9分;智:8分;体10分;美8分;劳7分.其中8出现次数2次最多,故众数为:8.分数排序为:7, 8,8,9,10.最中间的数为:8.故中位数为:8.故答案为:8,8.【点睛】本题考查中位数、众数的定义,理解他们的含义是本题关键.【16题答案】【答案】【解析】【分析】如图,过O 作OE AD ⊥于E ,OF CD ⊥于F ,则四边形OEDF 是正方形,证明()ASA EOM FON ≌,则EOM FON S S = ,5OEDF MOND S S == 四边形,即25OE =,解得OE =,根据2AB OE =,计算求解即可.【详解】解:如图,过O 作OE AD ⊥于E ,OF CD ⊥于F ,则四边形OEDF 是正方形,∴OE OF =,90EOF EOM MOF ∠=︒=∠+∠,∵90MON FON MOF ∠=︒=∠+∠,∴EOM FON ∠=∠,∵EOM FON ∠=∠,OE OF =,90OEM OFM ∠=∠=︒,∴()ASA EOM FON ≌,∴EOM FON S S = ,∴5OEDF MOND S S == 四边形,即25OE =,解得OE =,OE =,∴2AB OE ==,故答案为:【点睛】本题考查了正方形的判定与性质,全等三角形的判定与性质等知识.解题的关键在于对知识的熟练掌握与灵活运用.【17题答案】【答案】8【解析】【分析】根据题意求出8AD DC +=,再利用线段的垂直平分线的性质解决问题.【详解】解:ABCD 的周长为16,8AD DC ∴+=,由作图可知MN 垂直平分线段AC ,EA EC ∴=,CDE ∴ 的周长CE ED CD EA ED CD =++=++AD DC =+8=,故答案为:8.【点睛】本题考查作图——基本作图,线段的垂直平分线的性质,平行四边形的性质等知识,解题关键是理解题意,灵活运用所学知识解决问题.【18题答案】【答案】4【解析】【分析】根据正方形的性质,推出90DEC CDQ ∠+∠=︒,根据折叠得到AP 垂直平分DF ,证明()AAS ADP DCE △≌△,得到DP CE =,设2AD CD BC ===,利用勾股定理求出DF ,DE ,得到EF ,再代入计算即可.【详解】解:如图,在正方形ABCD 中,90ADC BCD ∠=∠=︒,AD CD =,∴90DEC CDQ ∠+∠=︒,由折叠可知:AP 垂直平分DF ,即AP DF ⊥,∴90DQP ∠=︒,即90CDQ DPQ ∠+∠=︒,∴DEC DPQ ∠=∠,在ADP △和DCE △中,DPQ DEC ADP DCE AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ADP DCE △≌△,∴DP CE =,设2AD CD BC ===,∵E 是边CB 的中点,∴1DP CP CE BE ====,∴AP DE ===,∴AD DP DQ AP ⨯==,∴DF =,∴EF DE DF =-=,∴4DF EF ==,故答案为:4.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定和性质,折叠问题,解题的关键是利用折叠的性质以及全等的性质得到线段之间的数量关系.三、解答题(本大题共6小题,共58分)【19题答案】【答案】(1)5-(2)14+【解析】【分析】(1)先计算二次根式的除法和乘法,再合并同类二次根式即可;(2)先利用平方差和完全平方公式展开,再计算加减即可;【小问1详解】=32=+5=-;【小问2详解】)()2221+-++252121=-++14=+.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.【20题答案】【答案】(1)养鸡场的长为20m 或15m ,宽为75m .或10m ; (2)当15a <时,题目无解;当1520a ≤<时,题目只有一个解;当20a ≥时,题目有两个解.【解析】【分析】(1)设垂直于墙的边长为m x ,则平行于墙的边长为()352m x -,根据长方形的面积公式结合养鸡场的面积为2150m ,即可得出关于x 的一元二次方程,解之即可得出结论;(2)根据(1)的结论可分15a <、1520a ≤<及20a ≥三种情况,找出题目解的个数.【小问1详解】解:设垂直于墙的边长为m x ,则平行于墙的边长为()352m x -,依题意,得:()352150x x -=,整理,得:x x 22351500-+=,解得:127510x x ==.,,∴35220x -=或35215x -=.答:养鸡场的长为20m 或15m ,宽为75m .或10m ;【小问2详解】解:当15a <时,题目无解;当1520a ≤<时,题目只有一个解;当20a ≥时,题目有两个解.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【21题答案】【答案】(1)见解析(2)四边形AFDC 是平行四边形,理由见解析【解析】【分析】(1)由BF CE =得到BC EF =,又由AB ED B E =∠=∠,即可证明()SAS ABC DEF ≌△△;(2)由ABC DEF ≌△△得到AC DF ACB DFE =∠=∠,,则AC DF ∥,即可判断四边形AFDC 是平行四边形.【小问1详解】∵BF CE =,∴BF FC CE FC +=+,即BC EF =,∵AB ED B E =∠=∠,,∴()SAS ABC DEF ≌△△;【小问2详解】如图,连接,AF DC ,四边形AFDC 是平行四边形,理由如下:∵ABC DEF ≌△△,∴AC DF ACB DFE =∠=∠,,∴AC DF ∥,∴四边形AFDC 是平行四边形.【点睛】此题考查了平行四边形的判定、全等三角形的判定和性质等知识,熟练掌握相关判定和性质是解题的关键.【22题答案】【答案】(1)甲种树苗的数量为150棵,乙种树苗的数量为100棵(2)第二批购买树苗的总数量为200棵【解析】【分析】(1)设甲种树苗的数量为x 棵,乙种树苗的数量为y 棵,根据题意列出二元一次方程组,解方程即可求解;(2)设甲树苗单价上涨a 元,则甲树苗单价为()25a +元,根据题意列出一元二次方程,解方程,进而分别求得甲、乙的数量即可求解.【小问1详解】解:设甲种树苗的数量为x 棵,乙种树苗的数量为y 棵,根据题意得,25020306000x y x y +=⎧⎨+=⎩解得:150100x y =⎧⎨=⎩答:甲种树苗的数量为150棵,乙种树苗的数量为100棵【小问2详解】解:设甲树苗单价上涨a 元,则甲树苗单价为()25a +元,依题意()()20+150103010080%600018%2a a ⎛⎫-⨯+⨯⨯=⨯- ⎪⎝⎭解得:4a =或6a =∵最后数量不超过第一批甲树苗的80%即150515080%a -≤⨯解得:6a ≥,∴6a =,∴求第二批购买树苗的总数量为1505610080%12080200-⨯+⨯=+=(棵)【点睛】本题考查了二元一次方程组的应用,一元二次方程的应用,根据题意列出方程(组)是解题的关键.【23题答案】【答案】(1)51 (2)108(3)乙,53分钟低于乙校学生每天完成书面作业所需时长中位数54分钟 (4)1360【解析】【分析】(1)根据中位数的定义求解即可;(2)利用360︒乘以对应的百分比,即可求解;(3)比较中位数即可求解;(4)利用样本估计总体即可求解.【小问1详解】解:甲校50名学生每天完成书面作业的中位数是第25、26个数,都是51,∴5151512m +==,故答案为:51;【小问2详解】解:乙校学生每天完成书面作业所需时长的数据的扇形统计图中表示4560x ≤<这组数据的扇形圆心角的度数是()360114%26%26%4%108︒⨯----=︒,故答案为:108;【小问3详解】解:甲校中位数是51,乙校中位数是54,而小明每天完成书面作业所需时长为53分钟,在与他同校被调查的学生中,有一半以上的学生每天完成书面作业所需时长都超过了小明,∴小明是乙校学生,因为53分钟低于乙校学生每天完成书面作业所需时长中位数54分钟;故答案为:乙,53分钟低于乙校学生每天完成书面作业所需时长中位数54分钟;【小问4详解】解:样本中,甲校每天完成书面作业所需时长低于60分钟的学生有9121233++=人,乙校每天完成书面作业所需时长低于60分钟的学生有()50126%4%35⨯--=人,∴甲校1000名学生每天完成书面作业所需时长低于60分钟的学生有33100066050⨯=人,乙校1000名学生每天完成书面作业所需时长低于60分钟的学生有35100070050⨯=人,∴估计这两所学校每天完成书面作业所需时长低于60分钟的学生共有6607001360+=人.故答案为:1360.【点睛】本题主要考查中位数、平均数及扇形统计图和条形统计图的应用,解题的关键是掌握平均数、中位数的概念及样本估计总体思想的运用.【24题答案】【答案】(1)见解析(2)矩形,理由见解析 (3)18【解析】【分析】(1)由BE AD ∥可知,BEO DAO ∠=∠,进而可证()AAS AOD EOB ≌△△;(2)由AOD EOB ≌△△,可得BE AD =,证明四边形ABED 是平行四边形,由90BAD ∠=︒,可证四边形ABED 是矩形;(3)由BC CD =且BO DO =,可得CO BD ⊥,即90BOC ∠=︒,可证四边形ABED 是正方形,则=BO EO ,设BO EO x ==,则1OC x =+,在Rt BOC 中,由勾股定理得222BO CO BC +=,即()22215x x ++=,求出满足要求的x 值,根据2BD AE BO ==,求BD 的值,根据12ABED S BD AE =⋅正方形,计算求解即可.【小问1详解】证明:∵BE AD ∥,∴BEO DAO ∠=∠,在AOD △和EOB 中,∵BEO DAO EOB AOD BO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AOD EOB ≌△△;【小问2详解】解:四边形ABED 是矩形,理由如下:∵AOD EOB ≌△△,∴BE AD =,∵BE AD ∥,∴四边形ABED 是平行四边形,∵90BAD ∠=︒,∴四边形ABED 是矩形;【小问3详解】解:∵BC CD =且BO DO =,∴CO BD ⊥,即90BOC ∠=︒,∴四边形ABED 是正方形,∴=BO EO ,设BO EO x ==,则1OC x =+,在Rt BOC 中,由勾股定理得222BO CO BC +=,即()22215x x ++=,解得:13x =,24x =-(舍去),∴3BO EO ==,∴26BD AE BO ===,∴11661822ABED S BD AE =⋅=⨯⨯=正方形,∴四边形ABED 的面积为18.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,矩形的判定与性质,等腰三角形的判定与性质,正方形的判定与性质,勾股定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.。

人教版八年级下册数学期末试卷综合测试卷(word含答案)

人教版八年级下册数学期末试卷综合测试卷(word含答案)

人教版八年级下册数学期末试卷综合测试卷(word 含答案)一、选择题1.要使式子﹣3x -有意义,则x 的值可以为( )A .﹣6B .0C .2D .π2.下列语句不能判定ABC 是直角三角形的是( )A .2220a b c +-=B .::3:4:5A BC ∠∠∠= C .::3:4:5a b c =D .A B C ∠+∠=∠3.如图,四边形ABCD 的对角线AC 、BD 相交于O ,下列判断正确的是( )A .若AC ⊥BD ,则四边形ABCD 是菱形B .若AC =BD ,则四边形ABCD 是矩形C .若AB =DC ,AD ∥BC ,则四边形ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则四边形ABCD 是平行四边形4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .2B .3C .24D .366.如图,在平面直角坐标系上,直线y =34x ﹣3分别与x 轴、y 轴相交于A 、B 两点,将△AOB 沿x 轴翻折得到△AOC ,使点B 刚好落在y 轴正半轴的点C 处,过点C 作CD ⊥AB 交AB 于D ,则CD 的长为( )A.185B.245C.4 D.57.如图,在平行四边形ABCD上,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B、F为圆心,以大于12BF的长为半径画弧交于点P,作射线AP交BC于点E,连接EF.若12BF=,10AB=,则线段AE的长为()A.18 B.17 C.16 D.148.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(3,4),点P 是y轴正半轴上的动点,连接AP交线段OB于点Q,若△OPQ是等腰三角形,则点P的坐标是()A.(0,53)B.(0,43)C.(0,43)或(0,163)D.(0,53)或(0,163)二、填空题9.2x-x的取值范围为__________.10.如图,在菱形ABCD中,AC=6,BD=8,则菱形的面积等于 ___.11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.在平行四边形ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为____.13.已知一次函数y=kx +b 图像过点(0,5)与(2,3),则该一次函数的表达式为_____. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?A B C均在格点上.19.如图,网格中的每个小正方形的边长为1,点、、(1)直接写出AC的长为___________,ABC的面积为_____;(2)请在所给的网格中,仅用无刻度的直尺作出AC边上的高BD,并保留作图痕迹.20.已知:如图,在Rt△ABC中,D是AB边上任意一点,E是BC边中点,过点C作CF∥AB,交DE的延长线于点F,连接BF、CD.(1)求证:四边形CDBF是平行四边形.(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由.21.先化简,再求值:a+2-+,其中a=1007.12a a如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2269-+,其中a=﹣2018.a a22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.(1)求丙水果每千克的售价是多少元?(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费元.23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线AC的中点,点P从点A出发,以每秒1个单位的速度沿AB方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动.(1)求点A的坐标.(2)连结PQ,AQ,CP,当PQ经过点D时,求四边形的面积.(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案)24.(1)[探究]对于函数y=|x|,当x≥0时,y=x;当x<0时,y=﹣x.在平面直角坐标系中画出函数图象,由图象可知,函数y=|x|的最小值是.(2)[应用]对于函数y =|x ﹣1|+12|x +2|.①当x ≥1时,y = ;当x ≤﹣2时,y = ;当﹣2<x <1时,y = . ②在平面直角坐标系中画出函数图象,由图象可知,函数y =|x ﹣1|+12|x +2|的最小值是 .(3)[迁移]当x = 时,函数y =|x ﹣1|+|2x ﹣1|+|3x ﹣1|+…+|8x ﹣1|取到最小值.(4)[反思]上述问题解决过程中,涉及了一些重要的数学思想或方法,请写出其中一种. 25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由. 26.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =; (1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒). ①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明【参考答案】一、选择题 1.D 解析:D 【分析】根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】解:由题意得:x ﹣3≥0, 解得:x ≥3,各个选项中,π符合题意, 故选:D . 【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质.2.B解析:B 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可. 【详解】解:A 、由2220a b c +-=,可得222+=a b c ,故是直角三角形,不符合题意; B 、∵::3:4:5A B C ∠∠∠=,∴∠C =180°×575345=︒++,故不是直角三角形,符合题意;C 、32+42=52,能构成直角三角形,不符合题意;D 、∵∠A +∠B =∠C ,∴∠C =90°,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D【分析】根据平行四边形及特殊平行四边形的判定方法,对选项逐个判断即可. 【详解】解:A :对角线相互垂直平行四边形才是菱形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;B :对角线相等的平行四边形才是矩形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;C :一组对边相等,另外一组对边平行,不一定是平行四边形,还有可能是等腰梯形,故选项错误,不符合题意;D :对角线互相平分的四边形是平行四边形,故选项正确,符合题意; 故选D . 【点睛】此题考查了平行四边形的判定方法,熟练掌握平行四边形及特殊平行四边形的判定方法是解题的关键.4.B解析:B 【解析】 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长,由折叠的性质可得出OC =OB ,进而可得出BC 的长,再利用面积法,即可求出CD 的长. 【详解】解:当x =0时,y =34×0﹣3=﹣3,∴点B 的坐标为(0,﹣3);当y =0时,34x ﹣3=0,解得:x =4,∴点A 的坐标为(4,0).在Rt △AOB 中,∠AOB =90°,OA =4,OB =3, ∴5AB = 由折叠可知:OC =OB =3, ∴BC =OB +OC =6.∵S △ABC =12BC •OA =12AB •CD , ∴245BC OA CD AB == 故选B . 【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】证明四边形ABEF 是菱形,得到OA=OE ,OB=OF =6,AE ⊥BF ,再在Rt △AOB 中由勾股定理求出OA 即可解决问题. 【详解】解:∵以点A 为圆心,AB 的长为半径画弧交AD 于点F , ∴AF=AB ,∵分别以点B 、F 为圆心,以大于12BF 的长为半径画弧交于点P ,作射线AP 交BC 于点E ,∴直线AE 是线段BF 的垂直平分线, 且AP 为∠F AB 的角平分线, ∴EF=EB ,∠F AE=∠BAE , ∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠F AE =∠AEB , ∴∠AEB =∠BAE , ∴BA =BE , ∴BA =BE=AF=FE , ∴四边形ABEF 是菱形; ∴AE ⊥BF ,OB =OF =6,OA =OE , ∴∠AOB =90°,在Rt △AOB 中:8AO =, ∴216AE AO ==, 故选:C . 【点睛】本题考查的是菱形的判定、垂直平分线、角平分线的尺规作图、勾股定理等相关知识点,掌握特殊四边形的判定方法及重要图形的尺规作图是解决本题的关键.8.C解析:C 【分析】利用待定系数法分别求出OB 、PA 的函数关系式,设(0,)P m ,4(,)3Q n n ,并由P 、Q 点坐标,可表示出OP 、OQ 和PQ ,根据△OPQ 是等腰三角形,可得OP OQ =或OP PQ =或OQ PQ =,则可得到关于m 的方程,求得m 的值,即可求得P 点坐标.【详解】解:设OB 的关系式为y kx =,将B (3,4)代入得:43k =, ∴43OB y x =, 设(0,)P m ,4(,)3Q n n , ∴OP m =,53OQ n =,PQ = 设PA 的关系式为y kx b =+,将(0,)P m ,(4,0)A 代入得:40b m k b =⎧⎨+=⎩, 解得4b m m k =⎧⎪⎨=-⎪⎩, ∴4PA m y x m =-+, 将4PA m y x m =-+,43OB y x =联立方程组得: 443PA OB m y x m y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得12163Q m x n m==+, 若△OPQ 是等腰三角形,则有OP OQ =或OP PQ =或OQ PQ =,当OP OQ =时,53m n =,12163m n m =+, 即5123163m m m=⨯+, 解得43m =,则P 点坐标为(0,43), 当OP PQ =时,m =,12163m n m =+, 解得176m =-,不合题意,舍去, 当OQ PQ =时,根据等腰三角形性质可得:点Q 在OP 的垂直平分线上,12Q y OP =, ∴4132n m =,且12163m n m =+, 即412131632m m m ⨯=+, 解得163m =,则P 点坐标为(0,163)综上可知存在满足条件的点P,其坐标为(0,43)或(0,163).故选:C.【点睛】本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强.二、填空题9.x≥2且x≠3【解析】【分析】0,且分子二次根式的被开方数非负,则可求得x的取值范围.【详解】由题意得:3020xx-≠⎧⎨-≥⎩,解不等式组得:x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题是求使式子有意义的自变量的取值范围的问题,涉及二次根式的意义,分母不为零,不等式组的解法等知识;一般地,当式子为分式时,分母不为零;当式子中含有二次根式时,要求被开方数非负.10.24【解析】【分析】根据菱形的面积=对角线积的一半,可求菱形的面积.【详解】四边形ABCD是菱形,∴116824 22S AC BD=⋅=⨯⨯=.故答案为:24.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质.11.36cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键.12.A 解析:213【分析】根据AC ⊥BC ,AB =5,AD =3,可以得到AC 的长,再根据平行四边形的性质,可以得到DE 和BE 的长,然后根据勾股定理即可求得BD 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC ,∵AC ⊥BC ,AB =5,AD =3,∴∠ACB =90°,BC =3,∴AC =4,作DE ⊥BC 交BC 的延长线于点E ,∵AC ⊥BC ,∴AC ∥DE , 又∵AD ∥CE ,∴四边形ACED 是矩形,∴AC =DE ,AD =CE ,∴DE =4,BE =6,∵∠DEB =90°,∴BD 222264213BE DE ++=故答案为:213【点睛】本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理. 13.y =-x +5【分析】由直线y =kx +b 经过(0,5)、(2,3)两点,代入可求出函数关系式.【详解】解:把点(0,5)和点(2,3)代入y =kx +b 得532b k b =⎧⎨=+⎩,解得:15k b =-⎧⎨=⎩,所以一次函数的表达式为y =-x +5,故答案为:y =-x +5.【点睛】此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =52, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =5522, 若点O ,E ,B 在一条直线上,则OB =OE +BE =5522, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为552+, 故答案为:552+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.或【详解】分析:过点D′作MN ⊥AB 于点N ,MN 交CD 于点M ,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴53,∵ED′2=EM2+MD′2,即a2=53−a)2+(52)2,解得:53.综上知:DE=5253.故答案为52.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否解析:(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC =30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否受到这次沙尘暴的影响;(2)如图,设点E 、F 是以A 为圆心,150km 为半径的圆与BM 的交点,根据勾股定理可以求出CE 的长度,也就求出了EF 的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.【详解】解:(1)过点A 作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠CBA =30°,∴AC =12AB =12×240=120,∵AC =120<150,∴A 城将受这次沙尘暴的影响.(2)设点E ,F 是以A 为圆心,150km 为半径的圆与MB 的交点,连接AE ,AF , 由题意得,222221*********CE AE AC =-=-=,CE =90∴EF =2CE =2×90=180180÷12=15(小时)∴A 城受沙尘暴影响的时间为15小时.【点睛】本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键.19.(1),;(2)见解析【解析】 【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1),:(2)如图所示,解析:(1)29AC =9ABC S=;(2)见解析【解析】【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1)222529,AC +, 111452425149222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=:(2)如图所示,BD 即为所求.【点睛】本题考查了作图-应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1)10;(2)46【分析】(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即解析:(1)10;(2)46【分析】(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元,利用数量=总价÷单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买7千克水果的费用为w 元,利用总价=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元, 依题意得:80200232x x⨯=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,3538x ∴+=+=,22510x =⨯=.答:每千克丙水果的售价是10元.(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克, 依题意得:7226m m m m --+,解得:1m .设购买7千克水果的费用为w 元,则5(72)82101135w m m m m m =--+⨯+=+.110>,w ∴随m 的增大而增大,∴当1m =时,w 取得最小值,最小值1113546=⨯+=(元).故答案为:46.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH 和OH 即可;(2)证明≌,表示出AP ,CQ ,根据OC=14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、解析:(1);(2)21;(3)或或或【分析】(1)过点A 作轴于H ,求出AH 和OH 即可; (2)证明≌,表示出AP ,CQ ,根据OC =14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、F 为顶点的四边形是菱形得到以C ,D ,Q 为顶点的三角形是等腰三角形,求出CD ,得到点Q 坐标,再分情况讨论.【详解】解:(1)过点A 作轴于H , ∵,,, ∴, ∴A 点坐标为.(2)∵,∴C点坐标为,∵点D是对角线AC的中点,∴点D的坐标为,∵四边形ABCD是平行四边形,∴,∴,当PQ经过点D时,,在和中,,∴≌,∴,∵,∴,∴,∴,∴四边形APCQ的面积为,即当PQ经过点D时,四边形APCQ的面积为21.(3)∵F是平面内一点,以Q,D,C,F为顶点的四边形是菱形,则以C,D,Q为顶点的三角形是等腰三角形,∵,,∴,∴当时,Q点坐标为或,当Q点坐标为时,F点坐标为,当Q点坐标为时,F点坐标为,当时,点F与点D关于x轴对称,∴点F的坐标为,当时,设Q点坐标为,∴,解得,∴Q点坐标为,∴F点坐标为,∴综上所述,以Q,D,F,C为顶点的四边形是菱形,点F的坐标为或或或.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论.24.(1)见解析;0;(2)①x,﹣x,﹣x+2,②见解析;;(3);(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可解析:(1)见解析;0;(2)①32x,﹣32x,﹣12x+2,②见解析;32;(3)16;(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可得出结论;(3)分段去绝对值,合并同类项,得出函数关系式,即可得出结论;(4)直接得出结论.【详解】解:(1)[探究]图象如图1所示,函数y=|x|的最小值是0,故答案为0;(2)[应用]①当x≥1时,y=x﹣1+12(x+2)=32x;当x≤﹣2时,y=﹣x+1﹣12(x+2)=﹣32x;当﹣2<x<1时,y=﹣x+1+12(x+2)=﹣12x+2;②函数图象如图2所示,由图象可知,函数y=|x﹣1|+12|x+2|的最小值是32,故填:①32x,﹣32x,﹣12x+2,②32;(3)[迁移]当x≤18时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1﹣8x+1=﹣36x+8,∴y≥72,当18<x≤17时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1+8x﹣1=﹣20x+6,∴227≤y<72,当17<x≤16时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1+7x﹣1+8x﹣1=﹣6x+4,∴3≤y<227,当16<x≤15时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1+6x﹣1+7x﹣1+8x﹣1=6x+2,∴3<y≤165,当15<x≤14时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=16x,∴165<y≤4,当14<x≤13时,y=﹣x+1﹣2x+1﹣3x+1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=24x﹣2,∴4<y≤6,当13<x≤12时,y=﹣x+1﹣2x+1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=30x﹣4,∴6<y≤11,当12<x≤1时,y=﹣x+1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=34x﹣6,∴11<y≤28,当x>1时,y=x﹣1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=36x﹣8,∴y>28,∴当x=16时,函数y=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|8x﹣1|取到最小值;(4)[反思]用到的数学思想有:数形结合的数学思想,分段去绝对值,故答案为:分段去绝对值.【点睛】此题主要考查了一次函数的应用,去绝对值,函数图象的画法,用分类讨论的思想解决问题是解本题的关键.25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2解析:(1)123y x=-+;(2)t=23s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B(3,1),设直线BC的解析式为y=kx+b,则有231 bk b=⎧⎨+=⎩,解得:132k b ⎧=-⎪⎨⎪=⎩, ∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴BC=10,∴2103CM BC BM =-=, ∴21021033t =÷=, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3, 连接OQ 交BC 于E ,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26.(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,,或时,为等腰三角形. 【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2解析:(1)证明见解析;。

浙江省金华义乌市2024届数学八年级第二学期期末综合测试试题含解析

浙江省金华义乌市2024届数学八年级第二学期期末综合测试试题含解析

浙江省金华义乌市2024届数学八年级第二学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,从几何图形的角度看,下列这些图案既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.a 、b 、c 为ABC ∆三边,下列条件不能判断它是直角三角形的是( ) A .222a c b =-B .3a =,4b =,5c =C .::3:4:5A B C ∠∠∠=D .5a k =,12b k =,13c k =(k 为正整数)3.如果式子1x -有意义,那么x 的范围在数轴上表示为( ) A . B . C .D .4.有一个直角三角形的两边长分别为3和4,则第三边的长为( ) A .5B .7C .5D .5或75.如图,菱形的边长为2,∠ABC=45°,则点D 的坐标为( )A .(2,2)B .(22)C .(22)D 22)6.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中小明离家的距离y (km )与时间x (min )之间的对应关系.根据图象,下列说法中正确的是( )A .小明吃早餐用了17minB .食堂到图书馆的距离为0.8kmC .小明读报用了28minD .小明从图书馆回家的速度为0.8km /min7.如图,在Rt △ABC 中,∠A =30°,DE 是斜边AC 的中垂线,分别交AB ,AC 于D 、E 两点,若BD =2,则AC 的长是( )A .23B .33C .43D .838.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .43C .32D .29.如图,在▱ABCD 中,AB=3,AD=5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为( )A .3B .2.5C .2D .1.510.若式子2x -有意义,则x 的取值范围为( ) A .2x ≥ B .2x ≠C .2x >D .0x ≥11.已知,,是反比例函数的图象上的三点,且,则、、的大小关系是( ) A .B .C .D .12.已知()()()1231,,2,,1,A y B y C y --是一次函数13y x =-的图像上三点,则123,,y y y 的大小关系为( ) A .312y y y <<B .321y y y <<C .123y y y <<D .213y y y <<二、填空题(每题4分,共24分)13.对于实数x ,我们[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[410x +]=5,则x 的取值范围是______.14.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是 ________.15.在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.16.计算:12+3=_______.17.如图,平行四边形ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD =10,则DOE 的周长为_____.18.化简:321025xyx y =_________. 三、解答题(共78分) 19.(8分)有这样一个问题:探究函数|3|12x x y --+=的图象与性质.小东根据学习函数的经验,对函数|3|12x x y --+=的图象与性质进行了探究.下面是小东的探究过程,请补充完成: (1)填表x… 1-0 1 2 3 4 5 6 . . . y…321- 1-. . .(2)根据(1)中的结果,请在所给坐标系中画出函数2y =的图象;(3)结合函数图象,请写出该函数的一条性质.20.(8分)如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证:AB∥ED.21.(8分)如图,直线l1的函数表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.22.(10分)已知一次函数y=kx+b的图象经过点A(−1,−1)和点B(1,−3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.23.(10分)在△ABC 中,D 是BC 边的中点,E、F 分别在AD 及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF ≌△CDE;(2)若DE =12BC,试判断四边形BFCE 是怎样的四边形,并证明你的结论.24.(10分)计算:(-4)-(3-2)25.(12分)如图,Rt△ABC中,分别以AB、AC为斜边,向△ABC的内侧作等腰Rt△ABE、Rt△ACD,点M是BC的中点,连接MD、ME.(1)若AB=8,AC=4,求DE的长;(2)求证:AB-AC=2DM.26.如图1,□ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的□A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.参考答案一、选择题(每题4分,共48分) 1、B 【解题分析】根据轴对称图形和中心对称图形的定义对各个选项一一判断即可得出答案. 【题目详解】A.是轴对称图形,不是中心对称图形;B.既是轴对称图形,又是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形. 故选B. 【题目点拨】本题考查了中心对称图形和轴对称图形的识别.熟练应用中心对称图形和轴对称图形的概念进行判断是解题的关键. 2、C 【解题分析】根据三角形内角和定理可得C 是否是直角三角形;根据勾股定理逆定理可判断出A 、B 、D 是否是直角三角形. 【题目详解】解:A. 222a c b =-即222a b c +=,根据勾股定理逆定理可判断△ABC 为直角三角形;B. 3a =,4b =,5c =,因为222345+=,即222a b c +=,,根据勾股定理逆定理可判断△ABC 为直角三角形;C. ::3:4:5A B C ∠∠∠= 根据三角形内角和定理可得最大的角518075345C ∠=︒⨯=︒++,可判断△ABC 为锐角三角形;D. 5a k =,12b k =,13c k =(k 为正整数),因为2222(5)(12)(13)169k k k k +==,即222a b c +=,根据勾股定理逆定理可判断△ABC 为直角三角形; 故选:C 【题目点拨】本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断. 3、D 【解题分析】根据二次根式有意义的条件可得x ﹣1≥0,求出不等式的解集,再在数轴上表示. 【题目详解】 由题意得:x ﹣1≥0, 解得:x ≥1, 在数轴上表示为:故选D . 【题目点拨】本题主要考查了二次根式有意义的条件,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”. 4、D 【解题分析】分4是直角边、4是斜边,根据勾股定理计算即可. 【题目详解】当4是直角边时,斜边2234+,当4是斜边时,另一条直角边22473-=, 故选:D . 【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 1+b 1=c 1. 5、B【解题分析】根据坐标意义,点D坐标与垂线段有关,过点D向X轴垂线段DE,则OE、DE长即为点D坐标.【题目详解】过点D作DE⊥x轴,垂足为E,则∠CED=90°,∵四边形ABCD是菱形,∴AB//CD,∴∠DCE=∠ABC=45°,∴∠CDE=90°-∠DCE=45°=∠DCE,∴CE=DE,在Rt△CDE中,CD=2,CD2+DE2=CD2,∴CE=DE=2,∴OE=OC+CE=2+2,∴点D坐标为(2+2,2),故选B.【题目点拨】本题考查了坐标与图形性质、菱形的性质、等腰直角三角形的判定与性质,勾股定理等,正确添加辅助线是解题的关键.6、A【解题分析】根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.【题目详解】解;由图象可得:小明吃早餐用了25﹣8=17min,故选项A正确;食堂到图书馆的距离为0.8﹣0.6=0.2km,故选项B错误;小明读报用了58﹣28=30min,故选项C错误;小明从图书馆回家的速度为0.8÷(68﹣58)=0.08km/min,故选项D错误.故选A . 【题目点拨】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 7、C 【解题分析】直接利用线段垂直平分线的性质得出AD=CD ,进而结合已知角得出DC ,BC 的长,进而利用勾股定理得出答案. 【题目详解】 连接DC ,在Rt △BCA 中,∵DE 为AC 的垂直平分线, ∴AD =CD ,∴∠A =∠DCA =30°, ∴∠BDC =60°, 在Rt △CBD 中,BD=2,BD 1cos DC 2BDC ∠==, 解得:DC =4,BC =3,在Rt △CBA 中,BC =3,AC =2BC =3故选C . 【题目点拨】此题主要考查了含30度角的直角三角形和线段垂直平分线的性质,正确得出DC 的长是解题关键. 8、C 【解题分析】试题解析:设AG x = ,因为ADG A DG ∠=∠' ,90A DA G '∠=∠=︒ ,所以A G AG x '== ,在BA G ' 与BAD 中,90A BG ABDBA G A ''∠=∠⎧⎨∠=∠=︒⎩所以 BA G '∽BAD ,那么x BG AD BD = ,22345BD =+= ,则435xx,解得32x = ,故本题应选C.9、C【解题分析】由平行四边形ABCD中,CE平分∠BCD,可证得△BCE是等腰三角形,继而利用AE=BE-AB,求得答案.【题目详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE-AB=5-3=2.故选C.【题目点拨】此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△BCE是等腰三角形是解此题的关键.10、A【解题分析】根据二次根式有意义的条件可得x−2≥0,再解不等式可得答案.【题目详解】解:由题意得:x−2≥0,解得:x≥2,故选:A.【题目点拨】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.11、C【解题分析】先根据反比例函数y=的系数2>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x2<0<x3,判断出y1、y2、y3的大小.【题目详解】解:函数大致图象如图,∵k>0,则图象在第一、三象限,在每个象限内,y 随x 的增大而减小,又∵x 1<x 2<0<x 3,∴y 2<y 1<y 3.故选C.【题目点拨】本题考查了反比例函数图象上点的坐标特征.12、A【解题分析】根据k 的值先确定函数的变化情况,再由x 的大小关系判断y 的大小关系.【题目详解】解:30k =-<∴y 随x 的增大而减小又211-<-<213y y y ∴>>,即312y y y <<故答案为:A【题目点拨】本题考查了一次函数的性质,0k >时,y 随x 的增大而增大,k 0<时,y 随x 的增大而减小,灵活运用这一性质是解题的关键.二、填空题(每题4分,共24分)13、46≤x <1【解题分析】分析:根据题意得出5≤410x +<6,进而求出x 的取值范围,进而得出答案. 详解:∵[x ]表示不大于x 的最大整数,[410x +]=5,∴5≤410x +<6 解得:46≤x <1.故答案为46≤x <1.点睛:本题主要考查了不等式组的解法,得出x的取值范围是解题的关键.14、m<1【解题分析】解:∵y随x增大而减小,∴k<0,∴2m-6<0,∴m<1.15、(5,1)【解题分析】【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.【题目详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,∴所得的点的坐标为:(5,1),故答案为(5,1).【题目点拨】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.16、【解题分析】化成.【题目详解】原式故答案为【题目点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.17、1【解题分析】由平行四边形的性质得出AB=CD,AD=BC,OB=OD=12BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=12CD,由三角形中位线定理得出OE=12BC,△DOE的周长=OD+OE+DE=OD+12(BC+CD),即可得出结果.【题目详解】解:∵四边形ABCD是平行四边形,∴AB =CD ,AD =BC ,OB =OD =12BD =5, ∵平行四边形ABCD 的周长为36,∴BC +CD =18,∵点E 是CD 的中点,∴OE 是△BCD 的中位线,DE =12CD , ∴OE =12BC , ∴△DOE 的周长=OD +OE +DE =OD +12(BC +CD )=5+9=1; 故答案为:1.【题目点拨】本题考查平行四边形的性质、三角形中位线的性质,熟练运用平行四边形和三角形中位线的性质定理是解题的关键. 18、225x y【解题分析】分子分母同时约去公因式5xy 即可.【题目详解】 解:321025xy x y =225x y. 故答案为225x y. 【题目点拨】此题主要考查了分式的约分,关键是找出分子分母的公因式.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)见解析【解题分析】(1)将x 的值代入函数|3|12x x y --+=中,再求得y 的值即可; (2)根据(1)中x 、y 的值描点,连线即可;(3)根据(2)中函数的图象写出一条性质即可,如:不等式|3|10x x --+>成立的x 的取值范围是2x <.【题目详解】(1)填表如下:x . . .1- 0 1 2 3 4 5 6 . . . y . . . 3 2 1 0 1- 1- 1- 1- . . . (2)根据(1)中的结果作图如下:(3)根据(2)中的图象,不等式|3|10x x --+>成立的x 的取值范围是2x <.【题目点拨】考查了画函数的图象、性质,解题关键是由列表得到图象,由图象得到性质.20、详见解析【解题分析】由AC=CD ,∠ACB=∠DCE=90°,根据HL 证出Rt △ACB ≌Rt △DCE ,推出∠A=∠D 即可.【题目详解】∵点C 为AD 的中点,∴AC=CD ,∵BE ⊥AD ,∴∠ACB=∠DCE=90°,在Rt △ACB 和Rt △DCE 中,AB DE AC DC =⎧⎨=⎩, ∴Rt △ACB ≌Rt △DCE (HL ),∴∠A=∠D ,∴AB ∥ED .考点:全等三角形的判定与性质21、 (1) D (1,0)(2) y=32x-6(3) 可求得点C(2,-3) ,则S △ADC =92【解题分析】 解:(1)因为D 是1L :33y x =-+与x 轴的交点,所以当0y =时,1x =,所以点(1,0)D ;(2)因为3(4,0),(3,)2A B -在直线2L 上,设2L 的解析式为 403{{23362k b k y kx b k b b +===+∴∴+=-=-,所以直线2L 的函数表达式362y x =-; (3)由326{{2333x y x y y x ==-∴=-=-+,所以点C 的坐标为(2,3)-,所以ADC ∆的底413,AD =-=高为C 的纵坐标的绝对值为3,所以193322ADC S ∆=⨯⨯=; 【题目点拨】此题考查一次函数解析式的求法,一次函数与坐标轴交点的求.和二元一次方程组的解法,两条直线交点的求法,即把两个一次函数对应的解析式构成二元一次方程组,求出方程组的解就是两条直线的交点坐标,也考查了三角形面积的求法; 22、(1)y=-x-2;(2)2;(3)P (-1,02) 【解题分析】【分析】(1)把A 、B 两点代入可求得k 、b 的值,可得到一次函数的表达式;(2)分别令y=0、x=0可求得直线与两坐标轴的两交点坐标,可求得所围成的三角形的面积;(3)根据轴对称的性质,找到点A 关于x 的对称点A′,连接BA′,则BA′与x 轴的交点即为点P 的位置,求出直线BA′的解析式,可得出点P 的坐标.【题目详解】(1)把A (-1,-1)B(1,-3)分别代入y=kx+b ,得: 13k b k b -+=-⎧⎨+=-⎩,解得:12k b =-⎧⎨=-⎩, ∴一次函数表达式为:y=-x-2;(2)设直线与x 轴交于C ,与y 轴交于D ,y=0代入y=-x-2得x=-2,∴OC=2,x=0代入y=-x-2 得:y=-2,∴OD=2,∴S △COD =12×OC×OD=12×2×2=2; (3)点A 关于x 的对称点A′,连接BA′交x 轴于P ,则P 即为所求,由对称知:A′(-1,1),设直线A′B解析式为y=ax+c,则有13a ca c-+=⎧⎨+=-⎩,解得:21ac=-⎧⎨=-⎩,∴y=-2x-1,令y=0得, -2x-1=0,得x=-12,∴P(-1,02).【题目点拨】本题考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,轴对称-最短路线问题,熟练掌握待定系数法的应用是解题的关键.23、见解析【解题分析】分析:(1)由已知条件易得∠CED=∠BFD,BD=CD,结合∠BDF=∠CDE即可证得:△BDF≌△CDE;(2)由△BDF≌△CDE易得DE=DF,结合BD=CD可得四边形BFCE是平行四边形,结合DE=12BC可得EF=BC,由此即可证得平行四边形BFCE是矩形. 详解:(1)∵CE∥BF,∴∠CED=∠BFD.∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,BFD CEDBDF CDEBD DC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(AAS).(2)四边形BFCE是矩形.理由如下:∵△BDF≌△CDE,∴DE=DF,又∵BD=DC,∴四边形BFCE是平行四边形.∵DE=12BC,DE=12EF,∴BC=EF,∴平行四边形BFCE是矩形.点睛:熟悉“平行四边形和矩形的判定方法”是解答本题的关键.24、3.【解题分析】先将每个二次根式化成最简二次根式之后,再去掉括号,将同类二次根式进行合并. 【题目详解】解:(-4)-(3-2)=(4-)-(-)=4--+=3.故答案为3.【题目点拨】本题考查了二次根式的加减混合运算,最终结果必须是最简二次根式.25、(1)2(2)证明见解析.【解题分析】试题分析:(1)根据三角函数求得AE和AD的长,二者的差就是所求.(2)延长CD交AB于点F,证明MD是△BCF的中位线,AF=AC,据此即可证得.(1)直角△ABE中,2AB=42在直角△ACD中,AD=22AC=22则DE=AE-AD=2-2222如图,延长CD交AB于点F.在△ADF和△ADC中,∠FAD=∠CAD,AD=AD,∠ADF=∠ADC,∴△ADF≌△ADC(ASA).∴AC=AF,CD=DF.又∵M是BC的中点,∴DM是△CBF的中位线.∴DM=12BF=12(AB-AF)=12(AB-AC).∴AB-AC=2DM.考点:1.三角形中位线定理;2.等腰直角三角形3.全等三角形的判定和性质.26、(1)▱A′B′CD如图所示见解析,A′(2,2t);(2)t=3;(3)m=1.【解题分析】(1)根据题意逐步画出图形.(2)根据三角形的面积计算方式进行作答.(3)根据平移的相关性质进行作答. 【题目详解】(1)▱A ′B ′CD 如图所示,A ′(2,2t ).(2)∵C ′(4,t ),A (2,0),∵S △OA ′C =10t ﹣12×2×2t ﹣12×6×t ﹣12×4×t =2. ∴t =3.(3)∵D (0,t ),B (6,0),∴直线BD 的解析式为y =﹣6t x +t , ∴线BD 沿x 轴的方向平移m 个单位长度的解析式为y =﹣6t x +6t (6+m ), 把点A (2,2t )代入得到,2t =﹣3t +t +6tm , 解得m =1.【题目点拨】 本题主要考查了三角形的面积计算方式及平移的相关性质,熟练掌握三角形的面积计算方式及平移的相关性质是本题解题关键.。

八年级下册数学期末综合测试4

八年级下册数学期末综合测试4

八年级下册数学期末综合测试题4一、选择题(每小题3分,共36分)1.函数中自变量的取值范围是( )A. B.C.D. 2.下列计算正确的是( )A.B.C.D.3.已知△ABC 的三边分别是a 、b 、c ,下列条件中不能判断△ABC 为直角三角形的是( )A .∠A:∠B :∠C =3:2:1B .∠A +∠B =∠C C.a =l ,b =3,c =D .a :b :c =1:2:34.若A(1, )与点B(3,)都在直线上,则与的关系是( )A.B.C.D.与有关,无法确定5.已知点A (x 1,y1)、B (x 2,y 2)在直线y=kx +b (k ≠0)上,当x 1<x 2时,y 1>y 2,且kb>0,则直线y =kx +b (k ≠0)的图象大致是( )A .B .C .D .6.如果一组数据x 1,x 2,…,x n 的平均数为,方差为s 2,则数据x 1﹣a ,x 2﹣a ,…,x n ﹣a 的平均数和方差分别是( )A .,s 2B .,s 2﹣aC .,s 2﹣a 2D .,s 27.如图,两根木条钉成一个角形框架∠AOB ,且∠AOB =120°,AO =BO =2cm ,将一根橡皮筋两端固定在点A ,B 处,拉展成线段AB ,在平面内,拉动橡皮筋上的一点C ,当四边形OACB 是菱形时,橡皮筋再次被拉长了( )A .2cmB .4cmC .(4﹣4)cm D .(4﹣2)cm8.如图,△ABC 中,∠B=45°,BC=,D 是边AB 上靠近点B 的三等分点,∠ADC=∠A ,则CD 的长为( )A.2B.9.如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,连接EF 、FG 、GH 、HE. 若EH=3EF ,则下列结论正确的是( )A. B. C. D. BB13y x =-x 2x ≤3x =2x <23x x ≥≠且326()a a -=326a a a ⋅=a ==m n yb =+m n m n >m n <m n =b 52AB =AB =3AB EF =AB =10. 如图,点O 是矩形ABCD 的对角线BD 的中点,点E 为AD 的中点,连接OE 、OC 、CE ,若BC =12,CD =5,则△COE 的周长为( )A .12B .9+C .21D .9+11.如图,正方形ABCD 的对角线相交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点而且这两个正方形的边长相等,给出如下四个结论:①∠OEF =45°;②正方形A 1B 1C 1O 绕点O 旋转时,四边形OEBF 面积随EF 的长度变化而变化;③△BEF 周长的最小值为OA ;④AE 2+CF 2=2OB 2.其中所有正确的个数有( )A .1个B.2个C.3个D.4个12.如图①,在正方形ABCD 中,点E 是AB 的中点,点P 是对角线AC 上一动点,设PC =x ,PE +PB =y ,图②是y 关于x 的函数图象,且图象上最低点Q 的坐标为(,2),则正方形ABCD 的边( )A .6B .3C .4D .4二、填空题(每小题3分,共18分)13. 要使n 和都是正整数,则n 最小为  .14.学校举行演讲比赛,共有15名同学进入决赛,比赛将评出金奖1名,银奖3名,铜奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他应当关注的有关成绩的统计量是  (填“平均数”、“中位数”或“众数”).15.平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB 'C 'D '(点B '与点B 是对应点,点C '与点C 是对应点,点D '与点D 是对应点),点B '恰好落在BC 边上,B 'C '与CD 交于点E ,则∠CEB '=  .16.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =5,b =8,则该矩形的面积为_______.17.如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE ⊥AM ,垂足为E .若DE =DC =1,AE =2EM ,则BM 的长为 .18.如图,直线y =﹣x +2与x 轴交于A ,与y 轴交于B ,点P 在经过点B 的直线y =x +b 上,当△PAB 是等腰直角三角形时,点P 的坐标是  .三、填空题(共46分)19.计算题: 20. 在“书香绵州•美丽绵阳”全民阅读的团体朗诵比赛活动中,甲、乙两队参赛者(各10人)的身高(单位:cm )如下表所示:甲168167170165169166171168167170乙165166169170165169170171169166(1)补充完成下面的统计分析表:身高代表队平均数方差中位数极差甲168 1686乙1684.6(2)在初赛成绩一样的情况下,如果要在甲、乙两队中选取身高更整齐的代表以参加决赛、请选一个恰当的统计量作为选择标准,说明选派哪支代表队更合适,21. 如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .(1)求证:GE =FE ;(2)若DF =3,求BE 的长.22. 为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A 地240吨,B 地260吨,运费如下表(单位:元/吨).目的地生产厂AB甲2025乙15241(1)(1)π--+21)+-(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元.求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求m的最小值.23.如图,已知菱形ABCD中,E是BC边上一动点,连接AE交BD于点F,连接FC.(1)如图1,求证:∠FAD=∠FCD;(2)如图2,若AB=10,BD=16,当△CEF为直角三角形时,求EC的长.24.如图,矩形OABC在直角坐标系中,顶点B的坐标为(4,n)对角线OB,AC交于D.直线y=nx﹣n分别与OA,AC,OB交于P,M,N.(1)求DP的长.(用含n的式子表示.)(2)M是否为线段PN的中点?请说明理由.(3)当CN=2MN时,求n的值.。

人教版(五四制)八年级数学下册期末综合复习培优测试题(附答案详解)

人教版(五四制)八年级数学下册期末综合复习培优测试题(附答案详解)

人教版(五四制)八年级数学下册期末综合复习培优测试题(附答案详解)1.如图,在▱ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于( )A .2cmB .4cmC .6cmD .8cm2.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,8AC =,6BD =,点,E F 分别为AO ,DO 的中点,则线段EF 的长为( )A .2.5B .3C .4D .53.如图1,动点P 从菱形ABCD 的顶点A 出发,沿A →C →D 以1cm /s 的速度运动到点D .设点P 的运动时间为(s ),△P AB 的面积为y (cm 2).表示y 与x 的函数关系的图象如图2所示,则a 的值为( )A 5B .52C .2D .545 )A .面积为55B .55C 5D 5 25.已知一个直角三角形的周长为30cm ,面积为 230cm ,那么这个直角三角形的斜边长为A .15cm B .14cm C .13cm D .12cm6.已知函数()32y m x =-+,若函数图像不经过第三象限,则m 的值不可能是( )7.已知一元二次方程2310x x -+=的两根是1x 、2x ,则12x x +的值是( )A .3B .1C .3-D .1-8.某种服装原价为200元,连续两次涨价a %后,售价为242元,则a 的值为( ) A .5 B .10 C .15 D .219.图示为2018年的5月的月历,在此月历上任意圈出22⨯个数组成一个正方形,它们组成正方形(如2,3,9,10),如果圈出的四个数中最小数与最大数的积为128,这四个数的和为( )A .40B .48C .52D .5610.下列各组数中,能作为直角三角形三边长度的是 ( ).A .5、12、23B .6、8、10C .2、3、4D .4、5、6 11.某工厂1月份的产值为50000元,3月份的产值达到72000元,这两个月的产值平均月增长的百分率是多少?12.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.13.直角三角形的斜边长是5,一条直角边长是3,则此三角形的周长是__________. 14.菱形ABCD 中,若周长是20cm ,对角线AC =6cm ,则对角线BD =_____cm . 15.如图,在平面直角坐标系中点A 、B 、O 是平行四边形的三个顶点,则第四个顶点的坐标是_______________.16.如图,是根据四边形的不稳定性制作的边长均为25cm 的可活动菱形衣架,若墙上17.商店以每件13元的价格购进某商品100件,售出部分后进行了降价促销,销售金额y (元)与销售量x (件)的函数关系如图所示,则售完这100件商品可盈利______元.18.关于x 的一元二次方程kx 2﹣4x ﹣23=0有实数根,则k 的取值范围是_____. 19.如图,四边形ABCD 和四边形ACEF 都是平行四边形,EF 经过点D ,若ABCD Y 的面积为1S ,ACEF Y 的面积为2S ,则1S 与2S 的大小关系为1S __________2S .20.已知正方形的一条对角线长为8cm ,则其面积是_______cm 2.21.已知关于x 的一元二次方程2210x x m ++-=的两实数根分别为12,x x .(1)求m 的取值范围;(2)若121250x x x x +++=,求方程的两个根.22.若2(1)(2)a y a x b =++-是正比例函数,则2020()a b -的值.23.如图,在矩形ABCD 中,点O 为对角线AC 的中点,过点O 作EF AC ⊥交BC 于点E ,交AD 于点F ,连接AE ,CF .(1)求证:四边形AECF 是菱形;(2)连接OB ,若8AB =,10AF =,求OB 的长.24.问题提出(1)如图①,已知OAB ∆中,3OB =,将OAB ∆绕点O 逆时针旋转90°得到OA B ''∆,连接BB '.则BB '=______;问题探究(2)如图②,已知ABC ∆是边长为43的等边三角形,以BC 为边向外作等边BCD ∆,P 为ABC ∆内一点,将线段CP 绕点C 逆时针旋转60°,点P 的对应点为点Q ,连接DQ ,求PA PB PC ++的最小值;问题解决(3)如图③,矩形场地ABCD 为一个货运场,其中500AB =米,800AD =米,顶点A 、D 为两个出口,现想在货运广场内建一个货物堆放平台P ,在BC 边上(含B ,C 两点)开一个货物入口M ,并修建三条专用车道PA 、PD 、PM .若修建专用车道的费用为10000元/米(车道宽度不计),当M 、P 建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)25.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.函数关系式;(2)若小明快递的物品超过1千克,则他应选择哪家快递公司更省钱?26.已知关于x 的一元二次方程()2104m x m x m -++=有两个相等的实数根,求m 的值,并求出此时方程的根.27.如图,在Rt ABC V 中,90,6060ABC AC cm A ∠=︒=∠=︒,,点D 从点C 出发沿CA 方向以4/cm s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E 、运动的时间是()015ts t <<.过点D 作DF BC ⊥于点,F 连结.DE EF ,(1)求证:AE DF =;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF V 为直角三角形?请说明理由.28.如图,在平面直角坐标系中,一次函数y =﹣12x +2的图象交x 轴、y 轴分别于点A ,B ,交直线y =kx 于P .(1)求点A 、B 的坐标;(2)若OP =P A ,求P 点坐标及k 的值.(3)在(2)的条件下,C 是直线BP 上一动点,CE ⊥x 轴于E ,交直线DP 于D ,若CD =3ED ,直接写出C 点的坐标.29.如图,在正方形ABCD 中,E 是BC 边上的一点,连接AE ,点B 关于直线AE 的对称点为F ,连接EF 并延长交CD 于点G ,连接AG .求证:GF GD =.30.如图,在平面直角坐标系中,直线210y x =-+与x 轴交于点B ,与y 轴交于点C ,与直线12y x =交于点A ,点M 是y 轴上的一个动点,设()0,M m .(1)若MA MB +的值最小,求m 的值;(2)若直线AM 将ACO △分割成两个等腰三角形,请求出m 的值,并说明理由.参考答案1.A【解析】【分析】由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE 可求解.【详解】根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠EDA,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=2.故选:A.【点睛】本题考查了平行四边形的性质的应用,及等腰三角形的判定,属于基础题.2.A【解析】【分析】先依据菱形的性质求得OA、OD的长,然后依据勾股定理可求得AD的长,最后依据三角形中位线定理求的EF的长即可.【详解】∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=12AC=4,OB=OD=12BD=3在Rt△AOD中,依据勾股定理可知:5 AD=∵点E,F分别为AO,DO的中点,∴EF 是△AOD 的中位线∴EF=12AD=2.5 故选:A【点睛】本题考查了菱形的性质:菱形的对角线互相垂直平分;三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.3.B【解析】【分析】由图2知,菱形的边长为a ,对角线则对角线BD 为=当点P 在线段AC 上运动时,y 12=AP 12⨯BD 12=x ,即可求解. 【详解】解:由图2知,菱形的边长为a ,对角线AC =则对角线BD 为= 当点P 在线段AC 上运动时,y 12=AP 12⨯BD 12=x ,由图2知,当x =时,y =a ,即a 12=, 解得:a 52=, 故选:B .【点睛】本题考查的是动点图象问题,涉及到函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.4.B【解析】【分析】根据正方形面积计算方法对A 进行判断;根据平方根的性质对B 进行判断;根据数轴上的点与实数一一对应即可判断C ;根据459<<,可得出23<<可判断出D 是否正确. 【详解】A .面积为5A 不符合题意B .5的平方根是B 错误,符合题意C C 正确,不符合题意D .∵459<<,∴23<,整数部分是2,故D 正确,不符合题意 故选:B【点睛】本题考查了正方形的性质、平方根的性质、数轴的特点、有理数的大小判断等知识. 5.C【解析】【分析】设直角三角形三边分别为a ,b ,c ,根据题意表示出周长与面积,利用勾股定理列出关系式,求出c 的值即可.【详解】解:根据题意得:a+b+c=30①,12ab=30②,且a 2+b 2=c 2③, 由①得:a+b=30-c ,由③变形得:(a+b )2-2ab=(30-c )2-120=c 2,解得:c=13,故选:C .【点睛】此题考查了勾股定理以及完全平方公式变形的运用,熟练掌握勾股定理是解本题的关键. 6.D【解析】【分析】一次函数()32y m x =-+,若函数图像不经过第三象限,则一次项系数m−3是负数,即可求得m 的范围.【详解】解:根据题意得:30m -<解得:3m <故选D .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.0k >时,直线必经过一、三象限.k 0<时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.7.A【解析】【分析】根据根与系数的关系得到x 1+x 2=3,即可得出答案.【详解】解:∵x 1、x 2是一元二次方程x 2−3x+1=0的两个根,∴x 1+x 2=3,故选A..【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2= b a -,x 1x 2= c a. 8.B【解析】【分析】本题中原价为200元,第一次涨价后价格变为200(1+a%)元,第二次在200(1+a%)元的基础之上又涨a%,变为200(1+a%)(1+a%)即200(1+a%)2元,从而可列出方程,进而求解.【详解】解:由题意得:200(1+a%)2=242,整理得(1+a%)2=1.21,解得:a%=0.1=10%或a%=﹣2.1(舍去).故a=10.故选:B.【点睛】此类题目旨在考查一元二次方程的应用—增长率问题,要注意增长的基数,另外还要注意解的合理性,从而确定取舍.9.B【解析】【分析】设圈出的四个数中最小数为x,则其它三个数分别为x+1,x+7,x+8,根据圈出的四个数中最小数与最大数的积为128,即可得出关于x的一元二次方程,解之即可得出x的值,将其正值代入(x+x+1+x+7+x+8)中即可求出结论.【详解】解:设圈出的四个数中最小数为x,则其它三个数分别为x+1,x+7,x+8,依题意,得:x(x+8)=128,解得:x1=8,x2=-16(不合题意,舍去),∴x+x+1+x+7+x+8=48.故选:B.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.B【解析】【分析】根据勾股定理的逆定理,只要验证两短边的平方和是否等于最长边的平方即可.【详解】A、因为222+≠,故不是直角三角形;故此选项错误;51223B、因为222+=,故是直角三角形;故此选项正确;6810C、因为222+≠,故不是直角三角形,故此选项错误;234D、因为222456+≠,故不是直角三角形.故此选项错误;故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.11.20%【解析】【分析】设这两个月的产值平均月增长的百分率为x,根据该工厂1月份及3月份的产值,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设这两个月的产值平均月增长的百分率为x,依题意,得:50000(1+x)2=72000,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:这两个月的产值平均月增长的百分率是20%.【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.12.13,84,85【解析】【分析】先根据给出的数据找出规律,再根据勾股定理求解即可.【详解】由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x,第三个数为x+1根据勾股定理得()222=+13+1x xx=解得84则第⑥组勾股数:13,84,85故答案为:13,84,85.【点睛】本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.13.12【解析】【分析】根据勾股定理求解即可.【详解】另一条直角边4==周长34512=++=故答案为:12.【点睛】本题考查了三角形周长问题,掌握勾股定理是解题的关键.14.8【解析】【分析】先根据周长求出菱形的边长,再根据菱形的对角线互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.【详解】解:如图,∵菱形ABCD的周长是20cm,对角线AC=6cm,∴AB=20÷4=5cm,AO=12AC=3cm,又∵AC⊥BD,∴BO4cm,∴BD=2BO=8cm.故答案为:8.【点睛】本题考查了菱形的性质,属于简单题,熟悉菱形对角线互相垂直且平分是解题关键.15.()24,或()20,或()20-,. 【解析】【分析】已知线段OB ,OA ,AB ,分别以三条线段为平行四边形的对角线,进行分类讨论,结合图形进行判断.【详解】∵O (0,0),A (2,2),B (2,2)∴AO=2,∴AB=2,如果以线段AB 为对角线,OA ,OB 为边,作平行四边形,则第四个顶点的坐标是()24,; 如果以线段OB 为对角线,AB ,AO 为边,作平行四边形,则第四个顶点的坐标是()20,; 如果以线段OA 为对角线,BO ,BA 为边,作平行四边形,则第四个顶点的坐标是()20-,.综上:第四个顶点的坐标是()24,或()20,或()20-,. 故答案为:()24,或()20,或()20-,.【点睛】本题考查了平行四边形的性质,建立平面直角坐标系,数形结合,分类讨论是解题的关键. 16.120【解析】【分析】根据题意可得,AB和菱形的两边构成的三角形是等边三角形,可得∠A=60°,所以,∠1=120°【详解】解:如图,连接AB.∵菱形的边长=25cm,AB=BC=25cm∴△AOB是等边三角形∴∠AOB=60°,∴∠AOD=120°∴∠1=120°.故答案为:120.【点睛】本题主要考查菱形的性质及等边三角形的判定的运用.17.250.【解析】【分析】设降价段图象的表达式为:y=kx+b,将(40,800)、(80,300)代入上式并解得k的值,即每件售价;从图象看,售出80件即收回成本,利润即为剩下的20件的售出金额,即可求解.【详解】设降价段图象的表达式为:y=kx+b,将(40,800)、(80,1300)代入上式得:80040130080k bk b=+⎧⎨=+⎩并解得:252300kb⎧=⎪⎨⎪=⎩,即每件售价252元;从图象看,售出80件即收回成本,利润即为剩下的20件的售出金额,即为:25220=250.故答案为:250.【点睛】此题为一次函数的应用,渗透了函数与方程的思想,关键是求降价后每件的价格.18.k≥﹣6且k≠0【解析】【分析】直接利用一元二次方程的定义结合根的判别式计算得出答案.【详解】解:∵关于x的一元二次方程kx2﹣4x﹣23=0有实数根,∴b2﹣4ac=16﹣4k×(﹣23)=16+83k≥0,且k≠0,解得:k≥﹣6且k≠0,故答案为:k≥﹣6且k≠0.【点睛】此题考查利用一元二次方程的定义及根的判别式求系数,正确理解一元二次方程根的三种情况是解题的关键.19.=【解析】【分析】根据平行四边形的性质可知:S△ABC=S△ADC,则S1=2 S△ADC,过点D作DG⊥AC于点G,如图,则易得S2= 2 S△ADC,进而可得答案.【详解】解:由平行四边形的性质可知:S△ABC=S△ADC,∴S1=2 S△ADC,过点D作DG⊥AC于点G,如图,则S2=AC·DG=2 S△ADC,∴1S=2S.故答案为:=.【点睛】本题考查了平行四边形的性质和面积,属于基本知识点,熟练掌握平行四边形的性质是解题关键.20.32【解析】【分析】根据正方形的面积=两条对角线之积÷2,即可得到答案.【详解】∵正方形的一条对角线长为8cm 且正方形的对角线互相垂直、平分且相等,∴正方形的面积=8×8÷2=32(cm 2),故答案是:32.【点睛】本题主要考查正方形的性质,掌握正方形的对角线互相垂直、平分且相等,是解题的关键. 21.(1) 2m ≤ ;(2)原方程的两根是﹣3和1.【解析】【分析】(1)根据根的判别式求出m 的取值范围;(2)将1x ,2x 代入方程,求得1220x x ++=,再根据121250x x x x +++=,求解方程的两个根.【详解】(1)∵ 一元二次方程2210x x m ++-=有两实数根1x ,2x ,∴ 2241(1)0m ∆=-⨯⨯-≥∴ 2m ≤(2) ∵2210x x m ++-=的两实数根分别为12,x x∴211222210210x x m x x m ⎧++-=⎪⎨++-=⎪⎩ ∴221212220x x x x -+-=∴()()121220x x x x -++=∵12x x ≠∴1220x x ++=∵121250x x x x +++=∴121223x x x x +=-⎧⎨=-⎩ ∴13x =-,21x =∴原方程的两根是﹣3和1.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,掌握一元二次方程根的判别式以及解法是解题的关键.22.1【解析】【分析】根据正比例函数的定义得到211020a a b ⎧=⎪+≠⎨⎪-=⎩,求出12a b =⎧⎨=⎩,再代入2020()a b -求值即可. 【详解】由2(1)(2)a y a x b =++-是正比例函数, 得211020a a b ⎧=⎪+≠⎨⎪-=⎩,解得12a b =⎧⎨=⎩. ∴20202020()(1)1a b -=-=.【点睛】此题考查正比例函数的定义,熟记定义是解题的关键.23.(1)见解析(2)45【解析】【分析】(1)由矩形的性质可得∠ACB=∠DAC,然后利用“ASA”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,即可证四边形AECF是菱形;(2)连接BD,12BO BD=,根据平行四边形的性质可得AF=CF=10,用勾股定理求得FD=6,在△BDC中,∠DCB=90°,用勾股定理求出BD的值,即可解答.【详解】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,ACB DACAO COAOF COE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)连接BD,12BO BD=Q四边形AFCE是平行四边形∴AF=CF=10Q ∠CDF=90°222CF DC DF ∴=+Q CF=10,CD=AB=8∴FD=6∴AD=AF+DF=6+10=16Q ∠DAB=90°BD ∴==∴BO=2=故答案为:【点睛】本题主要考查平行四边形,解题关键是熟练掌握平行四边形的性质.24.(1)(2)12;(3)当M 建在BC 中点(400BM =米)处,点P 在过M 且垂直于BC 的直线上,且在M 上方5003⎛- ⎝⎭米处时,修建专用车道的费用最少,最少费用为500)万元.【解析】【分析】(1)由旋转的性质得90BOB '∠=︒,3OB OB '==,再利用勾股定理即可得;(2)如图①(见解析),先根据三角形全等的判定定理与性质得出DQ BP =,再根据等边三角形的判定定理与性质得出PQ PC =,然后根据两点之间线段最短公理得出PA PB PC ++的最小值为AD ,最后在直角三角形中利用勾股定理求解即可;(3)先同题(2)的方法,求出PA PM PD ++的最小值为D M ',再根据垂线段最短可得,当D M BC '⊥时,D M '取最小值,再利用直角三角形的性质与等边三角形的性质即可得出答案.【详解】(1)由旋转的性质得90BOB '∠=︒,3OB OB '==在Rt BOB '∆中,由勾股定理得BB '==故答案为:(2)∵BDC ∆是等边三角形∴CD CB =,60DCB ∠=︒由旋转得60PCQ ∠=︒,PC QC =∴60DCQ BCQ BCP BCQ ∠+∠=∠+∠=︒ DCQ BCP ∴∠=∠在DCQ ∆和BCP ∆中,CD CB DCQ BCP CQ CP =⎧⎪∠=∠⎨⎪=⎩∴()DCQ BCP SAS ∆≅∆∴DQ BP =如图①,连接PQ∵PC CQ =,60PCQ ∠=︒∴CPQ ∆是等边三角形∴PQ PC =∴PA PB PC PA QD PQ ++=++由两点之间线段最短得AP QD PQ AD ++≥∴PA PB PC AD ++≥∴当点A 、P 、Q 、D 在同一条直线上时,PA PB PC ++取最小值,最小值为AD 的长 作DE AC ⊥,交AC 的延长线于点E∵ABC ∆是边长为∴CD CB AC ===18060DCE DCB ACB ∠=︒-∠-∠=︒则在Rt DCE ∆中,162CE CD DE ====234363AE CE AC ∴=+=+=则在Rt ADE ∆中,22226(63)12AD DE AE =+=+=即PA PB PC ++的最小值为12;图①(3)如图②,连接AM 、DM ,将ADP ∆绕点A 逆时针旋转60︒,得到AD P ''∆,连接DD '、DP '、D M ',设D M '交AD 于点E ,则60P PA '∠=︒由(2)知,当M 、P 、P '、D ¢在同一条直线上时,PA PM PD ++最小,最小值为D M ' ∵点M 在BC 上∴当D M BC '⊥时,D M '取最小值 ∵ADD ∆'是等边三角形,500,800EM AB AD === ∴1401300,22A PA EB A P P E A M D ∠=∠'====︒ 在Rt PAE ∆中,2222,AP PE PE AP AE ==-222(2)400PE PE ∴=-,解得40033PE =∴40035003PM EM PE =-=-又∵332D E AD '==∴3500D M D E EM ''=+=∴最少费用为()1000040035004003500⨯+=+(万元)∴当M 建在BC 中点(400BM =米)处,点P 在过M 且垂直于BC 的直线上,且在M 上方4003500⎛- ⎝⎭米处时,修建专用车道的费用最少,最少费用为(4003500)万元.图②【点睛】本题是一道较难的综合题,考查了旋转的性质、等边三角形的性质、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2)、(3),通过作辅助线,利用三角形全等的性质及等边三角形的性质确认取得最小值时的位置是解题关键.错因分析:(1)不能利用旋转的性质判定BOB∆'为等腰直角三角形;(2)不会利用旋转的性质将线段进行等量代换,再添加辅助线求得最小值;(3)不能联系前两问,利用旋转得到相等的线段,再找到线段和最小时点M和点P的位置.25.(1)22(01)157(1)x xyx x≤≤⎧=⎨+>⎩,(2)当14x≤<时,乙省钱,当4x=时,一样省钱,当4x>时,甲省钱【解析】【分析】(1)根据甲、乙公司的收费方式结合数量关系,找出y甲、y乙(元)与x(千克)之间的函数关系式;(2)当x>1,求出y甲=y乙时,x的取值,即可得出结论.【详解】解:(1)当0<x≤1时,y甲=22x;当x>1时,y甲=22+15(x-1)=15x+7.∴y甲=22(01) 157(1)x xx x≤⎧⎨+⎩<>,由题可得,y乙=16x+3;(2)当x>1时,令y甲=y乙,即15x+7=16x+3,当x=4,选甲、乙两家快递公司快递费一样多,故当14x ≤<时,乙省钱,当4x =时,一样省钱,当4x >时,甲省钱.【点睛】此题考查一次函数的应用,解题的关键是分0<x≤1和x >1两种情况,考虑y 甲=y 乙时x 的取值.26.12m =-,122x x ==- 【解析】【分析】 由一元二次方程()2104m x m x m -++=有两个相等的实数根,得△=0,即△=()21404m m m -+-⨯⨯=⎡⎤⎣⎦,可解得12m =-,然后把12m =-代入方程,解此方程即可.【详解】∵方程()2104m x m x m -++=有两个相等的实数根, ∴△=()21404m m m -+-⨯⨯=⎡⎤⎣⎦, ∴22210m m m ++-=,∴210m +=, ∴12m =-, ∴此时的方程为:21110822x x ---=, ∴2440x x ++=,∴()220x +=,∴122x x ==-.【点睛】本题考查了一元二次方程的根的判别式,解一元二次方程,熟练掌握相关知识是解题的关键. 27.(1)证明见解析;(2)能,10t =;(3)152t =或12t =.理由见解析. 【解析】(1)根据30°所对的直角边是斜边的一半即可求出122==DF CD t ,从而证出结论;(2)根据平行四边形的判定定理可证四边形AEFD 是平行四边形,然后根据菱形的定义可得当AD AE =时,四边形AEFD 是菱形,然后列出方程即可求出结论;(3)根据直角三角形的直角分类讨论,分别画出对应的图形,根据平行四边形的性质、30°所对的直角边是斜边的一半即可分别求出结论.【详解】 ()1证明:9060,∠=︒∠=︒Q ABC A ,30C ∴∠=︒在Rt CDF V 中,30,4C CD t ∠=︒=,122DF CD t ∴== 又2,AE t =QDF AE ∴=()2//,,=Q DF AB DF AE∴四边形AEFD 是平行四边形.当AD AE =时,四边形AEFD 是菱形,6042t t ∴-=,解得10,t =∴当10t =时,四边形AEFD 能够成为菱形.()3解:①当90EDF =o ∠时,// ,DE BC30,90ADE C AED B ∴∠=∠=︒∠=∠=o2,AD AE ∴=6044,t t ∴-=解得152t =. ②当90DEF ∠=o 时,Q 四边形AEFD 是平行四边形,// ,∴AD EF,DE AD ∴⊥ADE ∴V 是直角三角形.60A ∠=︒Q ,30,DEA ∴∠=︒1,2AD AE ∴= 604,t t ∴-=解得12t =;③当∠DFE=90°时,此时点E 和点B 重合,但015t <<,点E 与点B 不重合,故此种情况不存在.综上所述:152t =或12t =. ∴当152t =或12t =时,DEF V 为直角三角形. 【点睛】此题考查的是直角三角形的性质、平行四边形的判定及性质和菱形的判定,掌握30°所对的直角边是斜边的一半、平行四边形的判定及性质、菱形的判定和分类讨论的数学思想是解决此题的关键.28.(1)点A的坐标为(4,0),点B的坐标为(0,2);(2)点P的坐标为(2,1),k=12;(3)点C的坐标为(﹣4,4)或(45,85).【解析】【分析】(1)分别代入x=0、y=0求出y、x的值,由此可得出点B、A的坐标;(2)作PH⊥OA于H,根据等腰三角形的性质可得出点P的坐标,再由点P在直线y=kx 上求出k值;(3)设点C的坐标为(m,﹣12m+2),得到点D的坐标为(m,12m),得出CD、DE的长度,由题意得出关于m的一元一次方程,解方程得出结论.【详解】解:(1)对于一次函数y=﹣12x+2,当y=0时,x=4,当x=0时,y=2,∴点A的坐标为(4,0),点B的坐标为(0,2);(2)如图1,作PH⊥OA于H,∵OP=AP,PH⊥OA,∴OH=OA=12OA=2,∴点P的横坐标为2,∵点P在直线y=﹣12x+2上,∴点P的纵坐标y=﹣12×2+2=1,∴点P的坐标为(2,1).∵点P在直线y=kx上,∴1=2k,解得:k=12;(3)设点C的坐标为(m,﹣12m+2),则点D的坐标为(m,12m),∴CD=|﹣12m+2﹣12m|=|2﹣m|,DE=|12m|.当m<0时,2﹣m=3×(﹣12 m),解得,m=﹣4,则点C的坐标为(﹣4,4);当0<m<2时,2﹣m=3×12 m,解得,m=45,则点C的坐标为(45,85);当2<m<4时,不存在点C;当m>4时,m﹣2=3×12 m,解得,m=﹣4(不合题意),综上所述,CD=3ED时,点C的坐标为(﹣4,4)或(45,85).【点睛】本题考查了一次函数图上点的坐标特征、等腰三角形的性质以及解一元一次方程,解题关键是用一次函数图象点的标征求出点A、B坐标,利用一函数图上点的坐标特点结合等腰三角形的三线合一找出点P的坐标.29.证明见解析.【解析】【分析】连接AF,根据对称得:△ABE≌△AFE,再由HL证明Rt△AFG≌Rt△ADG,可得结论.【详解】证明:连接AF,Q四边形ABCD是正方形,AB AD∴=,90B D∠=∠=︒,Q点B关于直线AE的对称点为F,∴△ABE≌△AFE,AB AF AD∴==,90AFE B∠=∠=︒,90AFG∴∠=︒,在Rt AFGV和Rt ADGV中,AG AG=Q,AF AD=,∴Rt△AFG≌Rt△ADG(HL),GF GD∴=.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,对称的性质,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.30.(1)109;(2)5,理由见解析【解析】【分析】(1)先求出点A点B的坐标,根据轴对称最短确定出点M的位置,然后根据待定系数法求出直线AD的解析式,进而可求出m的值;(3)分三种情况讨论验证即可.【详解】解:(1)解21012y xy x=-+⎧⎪⎨=⎪⎩得42xy=⎧⎨=⎩,∴A(4,2).把y=0代入210y x=-+得0210x =-+,解得x=5,∴B(5,0),取B 关于y 轴的对称点D(-5,0),连接AD ,交y 轴于点M ,连接BM ,则此时MB+MA=AD的值最小.设直线AD 的解析式为y=kx+b ,∵A(4,2),D(-5,0),∴4250k b k b +=⎧⎨-+=⎩, 解得29109k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴21099y x =+, 当x=0时,109y =, ∴m=109;(2)当x=0时,210=10y x =-+, ∴C(0,10),∵A(4,2),∴()224210=45+-2242=25+. 如图1,当MO=MA=m 时,则CM=10-m ,由10-m=m,得m=5,∴当m=5时,直线AM将ACO△分割成两个等腰三角形;如图2,当AM=AO=25时,则M y=2A y=4,∴M(0,4),CM=6,此时CM≠AM,不合题意,舍去;如图3,当OM=AO=25时,则CM=10-25,AM=()2216225=21025+-+,∴ CM≠AM,不合题意,舍去;综上可知,m=5时,直线AM将ACO△分割成两个等腰三角形.【点睛】本题考查了待定系数法求一次函数解析式,一次函数与坐标轴的交点,等腰三角形的性质,勾股定理以及分类讨论的数学思想.根据轴对称的性质确定出点M的位置是解(1)的关键,分类讨论是解(2)的关键.。

2022-2023学年人教版八年级下册数学期末复习综合测试题

2022-2023学年人教版八年级下册数学期末复习综合测试题

2022-2023学年人教版八年级下学期数学期末复习综合测试题一、选择题(每小题3分,共30分)1.若二次根式√x−1有意义,则x的取值范围是()A.x≥1B.x≤1C.x>1D.x≠12.以下列长度的线段为边,能组成直角三角形的是()A.1,2,3B.32,42,52C.√3,√4,√5D.5,12,13 3.下列说法中正确的个数为()①对角线互相平分且垂直的四边形是菱形;②对角线相等且垂直的四边形是正方形;③对角线相等的菱形是正方形;④经过平行四边形对角线交点的直线平分该平行四边形的面积.A.0个B.1个C.2个D.3个4.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.150B.200m2C.250m2D.300m25.在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A .60B .50C .40D .156.下列计算正确的是( )A .√2+√3=√5B .√9=±3C .2√2−√2=√2D .√18=2√37.若一次函数y =kx +b 的图象经过第一、二、三象限,则k 、b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b <0D .k <0,b >08.两张全等的矩形纸片ABCD 、AECF 按如图方式交叉叠放在一起.若AB =AF =2,AE =BC =6,则图中重叠(阴影)部分的面积为( )A .163B .203C .4√3D .89.如图,在四边形ABCD 中,E ,F 分别是AD ,BC 的中点,G ,H 分别是BD ,AC 的中点,AB =CD ,∠ABD =20°,∠BDC =70°,则∠GEF 的大小是( )A .25°B .30°C .45°D .35°10.如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y =12x +b和x 轴上,四边形OB 1A 1C 1、B 1B 2A 2C 2、B 2B 3A 3C 3、…都是正方形.如果点A 1(1,1),那么点A 2022的纵坐标是( )A.无法确定B.22021C.22022D.22023二、填空题(每小题3分,共18分)11.化简(√3)2=;√(−5)2=;√27=.12.本学期小伟同学报名参加了学校书法社团用活动班,他的7次考评成绩分别为90,85,85,95,85,100,90,那么小伟同学考评成绩的众数为.13.已知一次函数的图象经过(1,0)且与直线y=﹣4x+3平行,则该一次函数解析式是.14.(3分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,E为AD边中点,菱形ABCD 的面积为4√5,则OE的长为.15.如图,已知直线y=mx+n交x轴于点A(4,0),直线y=ax+b交x轴于点B(﹣3,0),且两直线交于点C(﹣2,3),则不等式0<mx+n<ax+b的解集为.16.如图,在矩形ABCD中点E为AD上一点,将△CDE沿CE翻折至△CFE,EF交AB 于G点,且GA=GF,若CD=10,BC=6,则AE的值是.三、解答题(共8小题,共72分)17.(8分)(1)计算:√18+√12−2√6×√34÷5√2;(2)已知一次函数的图象经过点(2,6)和(﹣4,﹣9),求这个函数的解析式.18.(8分)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.19.(8分)如图,已知四边形ABCD的对角线AC、BD交于点O,AO=OC,OB=OD且∠1=∠2.(1)求证:四边形ABCD是菱形;(2)E为AO上一点,连接BE,若AE=4,AB=6,EB=2√3,求AO的长.20.(8分)为落实“双减”政策,加强“五项管理”,某校建立了作业时长调控制度,以及时采取措施调控作业量,保证初中生每天作业时长控制在90分钟之内.该校就“每天完成作业时长”的情况随机调查了本校部分初中学生,并根据调查结果制成了如下不完整的统计图,其中分组情况是:A组:t≤0.5h,B组:0.5h<t≤1h,C组:1h<t≤1.5h,D 组:t>1.5h.请根据以上信息解答下列问题:(1)这次共抽取了名学生进行调查统计;(2)请补全条形统计图;(3)扇形统计图中C组所在扇形的圆心角的大小是;(4)若该约有2000名初中学生,请估计每天完成作业时长在90分钟之内的初中生人数.21.(10分)如图,是由边长为1的小正方形构成6×6的网格,每个小正方形的顶点叫格点,A、B、D是格点,E是AD与网格线的交点,仅用无刻度直尺在给定的网格中画图,画图过程用虚线,画图结果用实线表示.(1)直接写出图中AE的长=;(2)在图①中画出等腰Rt△EBG,使∠EBG=90°;(3)在图②中先平移线段AB至DC(A对应D,B对应C),再在线段DC上画一点H;使得EH=AE+CH.22.(10分)如图,直线y=x+9与直线y=﹣2x﹣3交于点C,它们与y轴分别交于A、B 两点.(1)求A、B、C三点的坐标;(2)点F在x轴上,使S△BFC=10,求点F的坐标;(3)点P在x轴上,使∠PBO+∠P AO=90°,直接写出点P的坐标.23.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.24.(10分)正方形ABCD的边长为4.(1)如图1,点E在AB上,连接DE,作AF⊥DE于点F,CG⊥DE于点G.①求证:DF=CG;②如图2,对角线AC,BD交于点O,连接OF,若AE=3,求OF的长;(2)如图3,点K在CB的延长线上,BK=2,点N在BC的延长线上,CN=4,点P在BC上,连接AP,在AP的右侧作PQ⊥AP,PQ=AP,连接KQ.点P从点B沿BN方向运动,当点P运动到BC中点时,设KQ的中点为M1,当点P运动到N点时,设KQ的中点为M2,直接写出M1M2的长为.。

2024届湖北省武汉市七一(华源)中学八年级数学第二学期期末综合测试试题含解析

2024届湖北省武汉市七一(华源)中学八年级数学第二学期期末综合测试试题含解析

2024届湖北省武汉市七一(华源)中学八年级数学第二学期期末综合测试试题 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.若关于x 的一元二次方程260x x k -+=通过配方法可以化成2()(0)x m n n +=的形式,则k 的值不可能是( ) A .3 B .6 C .9 D .102.如图是一个直角三角形,它的未知边的长x 等于( )A .13B .13C .5D .53.已知一次函数y =kx +b (k ≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为 ( ) A .y = x +2 B .y = ﹣x +2 C .y = x +2或y =﹣x +2 D .y = - x +2或y = x -2 4.如图, 四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A .12OE DC =B .OA OC = C .BOE ODC ∠=∠D .BOE OBC ∠=∠5.下列各组数是勾股数的是( )A .2,3,4B .4,5,6C .3.6,4.8,6D .9,40,416.如图,ABC △中,,AB AC ABC =与FEC 关于点C 成中心对称,连接,AE BF ,当ACB =∠( )时,四边形ABFE 为矩形.A.30︒B.45︒C.60︒D.90︒7.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.103cm D.202cm8.将0.000008这个数用科学记数法表示为()A.8×10-6B.8×10-5C.0.8×10-5D.8×10-79.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是()A.8<BC<10 B.2<BC<18 C.1<BC<8 D.1<BC<910.某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~3月份利润的平均数是120万元B.1~5月份利润的众数是130万元C.1~5月份利润的中位数为120万元D.1~2月份利润的增长快于2~3月份利润的增长11.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为13,那么袋中总共球的个数为()A .15 个B .12 个C .8 个D .6 个 12.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A .8或10B .8C .10D .6或12二、填空题(每题4分,共24分)13.在平面直角坐标系xOy 中,点A 、B 的坐标分别为(3,m )、(3,m +2),若线段AB 与x 轴有交点,则m 的取值范围是_____.14.如图,在平面直角坐标系中,过点()2,3P 分别作PC x ⊥轴于点C ,PD y ⊥轴于点D ,PC 、PD 分别交反比例函数()20=>y x x的图像于点A 、B ,则四边形BOAP 的面积为__________.15.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 .16.如图,四边形ABCD 是菱形,点A ,B ,C ,D 的坐标分别是(m ,0),(0,n ),(1,0),(0,2),则mn=_____.17.如图,在□ABCD 中,AB=5,AD=6,将□ABCD 沿AE 翻折后,点B 恰好与点 C 重合,则折痕AE 的长为____.18.在▱ABCD中,对角线AC,BD相交于点O.请你添加一个条件,使得四边形ABCD成为菱形,这个条件可以是_____.(写出一种情况即可)三、解答题(共78分)19.(8分)已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(2,0),B(0,﹣2),P为y轴上B点下方一点,以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限,过M作MN⊥y轴于N.(1)求直线AB的解析式;(2)求证:△PAO≌△MPN;(3)若PB=m(m>0),用含m的代数式表示点M的坐标;(4)求直线MB的解析式.20.(8分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.21.(8分)如图,直线2y kx =+与直线13y x =相交于点A (3,1),与x 轴交于点B . (1)求k 的值;(2)不等式123kx x +<的解集是________________.22.(10分)2019年3月21日,长春市遭遇了一次大量降雪天气,市环保系统出动了多辆清雪车连夜清雪,已知一台大型清雪车比一台小型清雪车每小时多清扫路面6千米,一台大型清雪车清扫路面90千米与一台小型清雪车清扫路面60千米所用的时间相同.求一台小型清雪车每小时清扫路面的长度.23.(10分)如图为一个巨型广告牌支架的示意图,其中,,,,求广告牌支架的示意图的周长.24.(10分)某经销商从市场得知如下信息:A 品牌计算器B 品牌计算器 进价(元/台)700 100 售价(元/台) 900 160他计划一次性购进这两种品牌计算器共100台(其中A 品牌计算器不能超过50台),设该经销商购进A 品牌计算器x 台(x 为整数),这两种品牌计算器全部销售完后获得利润为y 元.(1)求y 与x 之间的函数关系式;(2)若要求A 品牌计算器不得少于48台,求该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?25.(12分)如图,在△ABC 中,点D 为边BC 的中点,点E 在△ABC 内,AE 平分∠BAC ,CE ⊥AE 点F 在AB 上,且BF=DE(1)求证:四边形BDEF 是平行四边形(2)线段AB ,BF ,AC 之间具有怎样的数量关系?证明你所得到的结论2611101514的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数: ()()11101110111011101110==--+ , ()()15141514151415141514+==--+, 15+1411+101514-1110-15-1411-108365.参考答案一、选择题(每题4分,共48分)1、D【解题分析】方程配方得到结果,即可作出判断.【题目详解】解:方程260x x k -+=,变形得:26x x k -=-,配方得:2699x x k -+=-,即2(3)9x k -=-,90k ∴-,即9k ,则k的值不可能是10,故选:D.【题目点拨】此题考查了解一元二次方程 配方法,熟练掌握完全平方公式是解本题的关键.2、B【解题分析】由勾股定理得:22+32=x2.【题目详解】由勾股定理得:22+32=x2.所以,x=故选:B【题目点拨】本题考核知识点:勾股定理. 解题关键点:熟记勾股定理.3、C【解题分析】先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【题目详解】∵一次函数y=kx+b(k≠0)图象过点(0,1),∴b=1,令y=0,则x=-2k,∵函数图象与两坐标轴围成的三角形面积为1,∴12×1×|-2k|=1,即|2k|=1,解得:k=±1,则函数的解析式是y=x+1或y=-x+1.故选C.4、D【解题分析】由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OE≠BE,得出∠BOE≠∠OBC,选项D错误;即可得出结论.【题目详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,AB=CD,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=12DC,OE∥DC,,∴∠BOE=∠ODC,∴选项A、B、C正确;∵OE≠BE,∴∠BOE≠∠OBC,∴选项D错误;故选:D.【题目点拨】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.5、D【解题分析】利用勾股数的定义进行判断.A选项,42≠22+32,故2,3,4不是勾股数;B选项,62≠42+52,故4,5,6不是勾股数;C选项,3.6,4.8不是正整数,故不是勾股数;D选项,三数均为正整数,且412=92+402,故9,40,41是勾股数.故选D.6、C【解题分析】由对称性质可先证得四边形AEFB是平行四边形,对角线相等的平行四边形是矩形,得到AF=BE,进而得到△BCA为等边三角形,得到角度为60°【题目详解】∵ABC与FEC关于点C成中心对称∴AC=CF,BC=EC∴四边形AEFB是平行四边形当AF=BE时,即BC=AC,四边形AEFB是矩形又∵AB AC∴△BCA 为等边三角形,故60ACB ∠=︒选C【题目点拨】本题主要考查平行四边形的性质与矩形的判定性质,解题关键在于能够证明出三角形BCA 是等边三角形7、D【解题分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长;设圆锥的底面圆的半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,可求出r ;接下来根据圆锥的母线长、底面圆的半径以及圆锥的高构成直角三角形,利用勾股定理可计算出圆锥的高.【题目详解】过O 作OE ⊥AB 于E ,如图所示.∵OA =OB =60cm ,∠AOB =120°,∴∠A =∠B =30°,∴OE =12OA =30cm , ∴弧CD 的长=1203180π⨯=20π, 设圆锥的底面圆的半径为r ,则2πr =20π,解得r =10, 302102202-=cm.故选D.【题目点拨】本题考查了勾股定理,扇形的弧长公式,圆锥的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8、A【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【题目详解】0.000008用科学计数法表示为8×10-6,故选A.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9、D【解题分析】【分析】易得两条对角线的一半和BC组成三角形,那么BC应大于已知两条对角线的一半之差,小于两条对角线的一半之和.【题目详解】平行四边形的对角线互相平分得:两条对角线的一半分别是5,4,再根据三角形的三边关系,得:1<BC<9,故选D.【题目点拨】本题考查了平行四边形的性质、三角形三边关系,熟练掌握平行四边形的对角线互相平分是解本题的关键.10、B【解题分析】本题中的图为折线统计图,它反映出了数据的的多少和变化情况.由图可知,1~5月份的利润分别是100,110,130,115,130,通过这些数据依次解答选项中问题.【题目详解】A. 1~3月份的利润分别是100,110,130,则平均数应为(100+110+130)÷3=11133,排除B. 1~5月份的利润分别是100,110,130,115,130,众数为130,符合.C. 1~5月份的利润从小到大排列分别是100,110,115,130,130,中位数为115,排除.D. 1~2月份利润的增长了110-100=10,2~3月份利润的增长了130-110=20,1~2月份利润的增长慢于2~3月份利润的增长,排除.故答案为B【题目点拨】本题考查了通过折线统计图分析数据的平均数,中位数,众数和每月之间的变化量的计算.平均数=各数据之和÷个数.中位数:把一组数据从小到大排列,若这组数据的个数为奇数个,取最中间的数作为中位数;若这组数据的个数为偶数个,则取中间两个数的平均数为中位数.众数:出现次数最多的数据为众数.11、A【解题分析】根据红球的概率公式列出方程求解即可.【题目详解】解:根据题意设袋中共有球m个,则513 m所以m=1.故袋中有1个球.故选:A.【题目点拨】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12、C【解题分析】试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,综上所述,它的周长是4.故选C.考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.二、填空题(每题4分,共24分)13、﹣2≤m≤1【解题分析】由点的坐标特征得出线段AB∥y轴,当直线y=1经过点A时,得出m=1;当直线y=1经过点B时,得出m=﹣2;即可得出答案.【题目详解】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=1经过点A时,则m=1,当直线y=1经过点B时,m+2=1,则m=﹣2;∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;故答案为﹣2≤m≤1.【题目点拨】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.14、1【解题分析】根据反比例函数系数k 的几何意义可得S △DBO =S △AOC =12|k |=1,再利用矩形OCPD 的面积减去△BDO 和△CAO 的面积即可.【题目详解】解:∵B 、A 两点在反比例函数()20=>y x x 的图象上, ∴S △DBO =S △AOC =12×2=1, ∵P (2,3),∴四边形DPCO 的面积为2×3=6,∴四边形BOAP 的面积为6﹣1﹣1=1,故答案为:1.【题目点拨】此题主要考查了反比例函数k 的几何意义,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变. 15、1.【解题分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC ,再根据菱形的周长公式列式计算即可得解.【题目详解】∵E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2×3=6,∴菱形ABCD 的周长=4BC=4×6=1.故答案为1.【题目点拨】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.16、1 .【解题分析】分析:根据菱形的对角线互相垂直平分得出OA=OC ,OB=OD ,得出m 和n 的值,从而得出答案.详解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,∴m=-1,n=-1,∴mn=1.点睛:本题主要考查的是菱形的性质,属于基础题型.根据菱形的性质得出OA=OC,OB=OD是解题的关键.17、1【解题分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【题目详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE4==.故答案为:1.【题目点拨】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.18、AC⊥BD(答案不唯一)【解题分析】依据菱形的判定定理进行判断即可.【题目详解】解:∵四边形ABCD为平行四边形,∴当AC⊥BD时,四边形ABCD为菱形.故答案为AC⊥BD(答案不唯一).【题目点拨】本题主要考查菱形的判定,平行四边形的性质,熟悉掌握菱形判定条件是关键.三、解答题(共78分)19、(3)y=x﹣3.(3)详见解析;(3)(3+m,﹣4﹣m);(4)y=﹣x﹣3.【解题分析】(3)直线AB的解析式为y=kx+b(k≠2),利用待定系数法求函数的解析式即可;(3)先证∠APO=∠PMN,用AAS证△PAO≌△MPN;(3)由(3)中全等三角形的性质得到OP=NM,OA=NP.根据PB=m,用m表示出NM和ON=OP+NP,根据点M在第四象限,表示出点M的坐标即可.(4)设直线MB 的解析式为y =nx ﹣3,根据点M (m +3,﹣m ﹣4).然后求得直线MB 的解析式.【题目详解】(3)解:设直线AB :y =kx +b (k ≠2)代入A (3,2 ),B (2,﹣3 ),得202k b b +=⎧⎨=-⎩, 解得k 1b 2=⎧⎨=-⎩, ∴直线AB 的解析式为:y =x ﹣3.(3)证明:作MN ⊥y 轴于点N .∵△APM 为等腰直角三角形,PM =PA ,∴∠APM =92°.∴∠OPA +∠NPM =92°.∵∠NMP +∠NPM =92°,∴∠OPA =∠NMP .在△PAO 与△MPN 中90AOP PNM OPA NMPPA MP ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△PAO ≌△MPN (AAS ).(3)由(3)知,△PAO ≌△MPN ,则OP =NM ,OA =NP .∵PB =m (m >2),∴ON =3+m +3=4+m MN =OP =3+m .∵点M 在第四象限,∴点M 的坐标为(3+m ,﹣4﹣m ).(4)设直线MB 的解析式为y =nx ﹣3(n ≠2).∵点M (3+m ,﹣4﹣m ).在直线MB 上,∴﹣4﹣m =n (3+m )﹣3.整理,得(m +3)n =﹣m ﹣3.∵m >2,∴m+3≠2.解得n=﹣3.∴直线MB的解析式为y=﹣x﹣3.【题目点拨】本题综合考查了一次函数与几何知识的应用,运用待定系数法求一次函数解析式,全等三角形的判定与性质,函数图象上点的坐标特征等知识解答,注意“数形结合”数学思想的应用.20、(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析.【解题分析】试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.21、 (1) 13k =-;(2) x >3. 【解题分析】 (1)根据直线y=kx+2与直线13y x =相交于点A (3,1),与x 轴交于点B 可以求得k 的值和点B 的坐标; (2)根据函数图象可以直接写出不等式kx+2<13x 的解集. 【题目详解】(1)321k +=,解得:13k =-(2)11233x x -+<,解得:x >3 【题目点拨】本题考查一次函数与一元一次不等式,解题的关键是明确题意,利用数形结合的思想解答问题.22、12千米【解题分析】设小型清雪车每小时清扫路面的长度为x 千米,则大型清雪车每小时清扫路面的长度为(x +6)千米,根据大型清雪车清扫路面90千米与小型清雪车清扫路面60千米所用的时间相同,即可得出关于x 的分式方程,解之经检验后即可得出结论.【题目详解】设小型清雪车每小时清扫路面的长度为x 千米,则大型清雪车每小时清扫路面的长度为(x +6)千米,根据题意得: 90606x x=+ 解得:x =12,经检验,x =12是原方程的解,且符合题意.答:小型清雪车每小时清扫路面的长度为12千米.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23、的周长为.【解题分析】直接利用勾股定理逆定理得出AD ⊥BC ,再利用勾股定理得出DC 的长,进而得出答案.【题目详解】解:在中, ∵,∴∴∴在中,∵,∴,∴∴∴的周长为.【题目点拨】此题主要考查了勾股定理以及勾股定理的逆定理,正确得出DC的长是解题关键.24、 (1)y=140x+1;(2)三种方案,见解析;(3)选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.【解题分析】(1)根据利润=售价-成本,总利润=单位利润×销售量,可以求出y与x之间的函数关系式;(2)A品牌计算器不能超过50台,A品牌计算器不得少于48台,确定自变量的取值范围,再由自变量是整数,可得由几种方案;(3)根据一次函数的增减性,和自变量的取值范围,确定何时利润最大,并求出最大利润.【题目详解】(1)y=(900-700)x+(160-100)(100-x)=140x+1,答:y与x之间的函数关系式为:y=140x+1.(2)由题意得:48≤x≤50x为整数,因此x=48或x=49或x=50,故有三种进货方案,即:①A48台、B52台;②A49台、B51台;③A50台、B50台;(3)∵y=140x+1,k=140>0,∴y随x的增大而增大,∵又48≤x≤50的整数∴当x=50时,y最大=140×50+1=13000元答:选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.【题目点拨】考查一次函数的图象和性质、一元一次不等式组的解法以及不等式组的整数解等知识,联系实际、方案实际经常用到不等式的整数解,根据整数解的个数,确定方案数.25、(1)见解析;(2)1()2BF AB AC =-,理由见解析 【解题分析】 (1)延长CE 交AB 于点G ,证明AEG ∆≅AEC ∆,得E 为中点,通过中位线证明DE //AB ,结合BF=DE ,证明BDEF 是平行四边形(2)通过BDEF 为平行四边形,证得BF=DE=12BG ,再根据AEG ∆≅AEC ∆,得AC=AG ,用AB-AG=BG ,可证1()2BF AB AC =- 【题目详解】(1)证明:延长CE 交AB 于点G∵AE ⊥CE∴90AEG AEC ︒∠=∠=在AEG ∆和AEC ∆GAE CAE AE AEAEG AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEG ∆≅AEC ∆∴GE=EC∵BD=CD∴DE 为CGB ∆的中位线∴DE //AB∵DE=BF∴四边形BDEF 是平行四边形(2)1()2BF AB AC =- 理由如下:∵四边形BDEF 是平行四边形∴BF=DE∵D ,E 分别是BC ,GC 的中点∴BF=DE=12BG ∵AEG ∆≅AEC ∆∴AG=AC BF=12(AB-AG )=12(AB-AC ). 【题目点拨】本题主要考查了平行四边形的证明,中位线的性质,全等三角形的证明等综合性内容,作好适当的辅助线,是解题的关键.26、方法见解析.【解题分析】【分析】观察可知8+3=6+5,因此可以利用两数平方进行比较进而得出答案.【题目详解】 22211=+=+, 22211=+=+∵1111+<+∴22<,0>,0> ,+【题目点拨】本题考查了实数大小比较,二次根式的运算,理解题意,并且根据式子的特点确定出合适的方法是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)期末数学综合复习测试题
一、选择题(每题2分,共20分)
1.若某数的一个平方根是
54,则这个数是______.
2.
3.两个连续整数的平方和等于61,则两个整数是________.
4.已知a ,b 是方程x 2+(m+2)x+1=0的两根,则(a 2+ma+1)(b 2+m b+1)的值为________.
5.命题“有三边对应相等的两个三角形全等”的题设是______________,•结论是______________________.
6.若P (a+b ,3)与P ′(-7,3a-b )关于原点对称,则关于x 的方程x 2-2ax-
2
b =•0•的解是________. 7. ABCD 的周长为48cm ,对角线相交于点O ;△AOB 的周长比△BOC 的周长多4cm ,•则AB ,BC 的长分别等于______cm ,________cm .
8.如图1,请写出等腰梯形ABCD (AB ∥CD )特有而一般梯形不具有的三个特征:
________,________,________.
(1) (2) (3)
9.如图2所示,四边形ABCD 的两条对角线AC ,BD 互相垂直,A 1B 1C 1D 1是四边形ABCD•的中点四边形,如果AC=8,BD=10,那么四边形A 1B 1C 1D 1的面积为_________.
10.如图3,在矩形ABCD 中,AB=2BC ,N 为DC 的中点,点M 在DC 上,且AM=AB ,则∠MBN•的度数为________.
二、选择题(每小题3分,共30分)
11.已知四边形ABCD 的四边分别有a ,b ,c ,d ,其中a ,c 是对边,且a 2+b 2+c 2+d 2=2ac+2bd ,则四边形是( )
A .平行四边形;
B .对角线相等的四边形;
C .任意四边形;
D .对角线互相垂直的四边形
12.下列命题中,正确的是( )
A .对角线相等的四边形是矩形;
B .对角线互相平分的四边形是平行四边形
C .对角线互相垂直的四边形是菱形;
D .对角线互相垂直且相等的四边形是正方形
13.不小于 ) A .8 B .9 C .10 D .11
14.下列方程中,没有实数根的是( )
A .12x x
-=1 B .y 2+1=8y C .x 2-x-6=0 D 215.如果a 是方程x 2-3x+m=0的一个根,-a 是方程x 2+3x-m=0的一个根,那么a 的值是( )
A .1或2
B .0或-3
C .-1或-2
D .0或3
16.在①正方形;②矩形;③菱形;④平行四边形中,能找到一点,使这一点到各边距离相等的图形是( )
A .①②
B .②③
C .①③
D .③④
17.如果
ABCD 的周长是L ,AB=12BC ,那么BC 的长为( ) A .13L B .14L C .15L D .16
L 18.周长为68的矩形ABCD 被分成7个全等的矩形,则如图4所示中,矩形ABCD 面积为( )
A .98
B .196
C .280
D .284
(4) (5)
19.如图5所示, ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,那么m•的取值范围是()
A.1<m<11 B.2<m<22 C.10<m<12 D.2<m<6
20.某中小企业,通过上市融资,扩大再生产,2年后,总收益增加到原来的8倍,那么该企业年平均增长率为()
A.)×100% B.75%; C.50% D.()×100%
三、解答题(共40分)
21.(12分)
();②x
(1)计算:①
2
(2)解方程:①(x-5)(x+7)=4;②x2+mx+2=mx2+3x.
22.(4分)若最简二次根式3x
(1)求xy的值;(2)求x、y平方和的算术平方根.
23.(4分)记者从教育部获悉,2004年全国普通高校招生报名人数总计723万,•除少部分参加各省中专、中职、中技考试的考生外,参加统考的考生中有文史类、理工类、文理综合类.下面的统计图反映了今年全国普通高校招生人数的部分情况,请认真阅读图表,解答下列问题:(1)请将该统计图补充完整;(3分)
(2)请你写出从图中获得的三个以上的信息;(3分)
(3)记者随机采访一名学生,采访到哪一类考生的可能性较大?(2分)
24.(4分)一桶内装满了纯农药液体,从中倒出5升后用水加满,然后再倒出5升液体,再用水加满,
这时桶内农药的浓度是原来浓度的16
25
,求该桶的容积.
25.(4分)k取何值时,关于x的方程3x2-2(3k+1)x+3k2-1=0,(1)有一根为零;(2)•有两个互为相反数的实数根.
26.(6分)如图所示,已知在梯形ABCD中,AD∥BC,∠ABC=60°,BD•平分∠ABC,•且BD⊥DC.(1)求证:梯形ABCD是等腰梯形;(2)当CD=1时,求等腰梯形ABCD的周长.
27.(6分)已知 ABCD中,点E在BC边上,AE平分∠BAD,∠BCD的平分线交AD于点F.(1)根据题意,作∠BCD的平分线,补全图形;(2)求证:BE=DF.
答案:
7.14,10 8.略 9.20 10.30° •
11.A 12.B 13.B 14.D 15.D 16.C 17.A 18.C 19.A 20.D
22.(1)12,(2)5
23.略
24.25升
25.(1)±,•(2)-1 3
26.(1)略(2)5 27.略。

相关文档
最新文档