原子物理学第一章 练习题

合集下载

最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版

最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版

原子物理学课后答案(第四版)杨福家著高等教育出版社第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第七章:原子核物理概论第八章:超精细相互作用原子物理学——学习辅导书吕华平刘莉主编(7.3元定价)高等教育出版社第一章习题答案1-1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为410-rad.解:设碰撞以后α粒子的散射角为θ,碰撞参数b 与散射角的关系为2cot 2θa b =(式中Ee Z Z a 02214πε=)碰撞参数b 越小,则散射角θ越大。

也就是说,当α粒子和自由电子对头碰时,θ取得极大值。

此时粒子由于散射引起的动量变化如图所示,粒子的质量远大于自由电子的质量,则对头碰撞后粒子的速度近似不变,仍为,而电子的速度变为,则粒子的动量变化为v m p e 2=∆散射角为410*7.21836*422-=≈≈∆≈v m v m p p e αθ 即最大偏离角约为410-rad.1-2 (1)动能为5.00MeV 的α粒子被金核以︒90散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚为1.0um ,则入射α粒子束以大于︒90散射(称为背散射)的粒子是全部入射粒子的百分之几? 解:(1)碰撞参数与散射角关系为:2cot 2θa b =(式中Ee Z Z a 02214πε=)库伦散射因子为:Ee Z Z a 02214πε==fm MeV MeV fm 5.45579*2**44.1= 瞄准距离为: fm fm a b 8.2245cot *5.45*212cot 2===︒θ(2)根据碰撞参数与散射角的关系式2cot 2θa b =,可知当︒≥90θ时,)90()(︒≤b b θ,即对于每一个靶核,散射角大于︒90的入射粒子位于)90(︒<b b 的圆盘截面内,该截面面积为)90(2︒=b c πσ,则α粒子束以大于︒90散射的粒子数为:π2Nntb N =' 大于︒90散射的粒子数与全部入射粒子的比为526232210*4.98.22*142.3*10*0.1*19788.18*10*02.6--===='πρπtb M N ntb N N A 1—3 试问:4.5Mev 的α粒子与金核对心碰撞时的最小距离是多少?若把金核改为Li 7核,则结果如何? 解:(1)由式4—2知α粒子与金核对心碰撞的最小距离为=m r Ee Z Z a 02214πε==fm MeV MeV fm 6.505.479*2**44.1=(2)若改为Li 7核,靶核的质量m '不再远大于入射粒子的质量m ,这时动能k E 要用质心系的能量c E ,由式3—10,3—11知,质心系的能量为:)(212mm mm m v m E u u c +''==式中 得k k k Li He Li k u c E E E A A A E m m m v m E 117747212=+=+≈+''==α粒子与Li 7核对心碰撞的最小距离为:=m r Ee Z Z a 02214πε==fm MeV MeV fm 0.37*5.411*3*2**44.1=1—4 (1)假定金核半径为7.0fm ,试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核的表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm 。

《原子物理与量子力学》一至三章习题解答

《原子物理与量子力学》一至三章习题解答

转动频率为
4 0 n r me 2
2
2cRH 3 n
n 1
2
RH
4 4 0 3c
2
me 4
m r n fn 2 2r 2mr 2mr
HUST
n 4 2 me 2 4 h 2 n 2 2m 0
( x) 0
II
粒子被完全束缚在势阱中, 在势阱外波函数为0,即 在阱内(0 < x < a),定 态Schrö dinger方程为 方程的通解为
HUST
2 E k 2
2
2 d2 I E I 2 d x 2
d2 I k 2 I 0 d x2
( x ) A sinkx B cos kx
或由牛顿公式:
可得:
f ( xn ) xn1 xn , x0 5.0 f ( x n )
x 4.965
b hc 2.898 10 3 m K 4.965 k
APPLIED PHYSICS 6
若对(v,T) 求导可得: f ( x ) 3(1 Exp[ x]) x 0 x 2.821
I
APPLIED PHYSICS 9
定解(单值、有限、连续)
( 0) ( 0) 0 B 0 ka n I (a ) II (a ) 0 A sin(ka) 0
I II
2 E 2 k 2
定态能级 定态波函数
2 2 n 2 En , n 1,2,3, 2 2 a
0 a 0 0 a a 0
nh 4
4
/2
0
a
0

原子物理学课后习题答案

原子物理学课后习题答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

F 2Ze 2 / 4 R2和F0 2Ze 2r/ 4 R 3 。可见,原0 子表面处粒子所受的斥力最大,越
靠近原子的中心粒子所受的斥力越小,而且瞄准距离越小,使粒子发生散射最强的垂 直入射方向的分力越小。我们考虑粒子散射最强的情形。设粒子擦原子表面而过。此时受
力为F 2Ze 2 / 4 R2 。可0 以认为粒子只在原子大小的范围内受到原子中正电荷的作
Z2
Li
Z
2 H
9
c) 第一激发能之比:
E
2 He
E He
1
E2H E 1 H
22 E1 22
E
1
12 22
E1 E
22
12 12 1 12
4
E
2 Li
E Li
1
E2H E 1 H
22 E1 32
E
1
12 22
E1 E
32
12 12 1 12
9
d) 氢原子和类氢离子的广义巴耳末公式:
{ v~ Z R (2
达到的最小距离多大又问如果用同样能量的氘核(氘核带一个 e电荷而质量是质子的 两倍,
是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大
解:当入射粒子与靶核对心碰撞时,散射角为180 。当入射粒子的动能全部转化为两
粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得:
1 Mv2 K 2
解:设 粒子和铅原子对心碰撞,则 粒子到达原子边界而不进入原子内部时的能量有 下式 决定:
1 Mv2 2
2Ze 2 / 4 R 10016 焦耳 103电子伏特
由此可见,具有106 电子伏特能量的粒子能够很容易的穿过铅原子球。粒子在到达原子

原子物理学(第一章)

原子物理学(第一章)

Mv 2 ctg 4 0 b 2 2 zze

(1)’
23
原子物理学
第一章 原子的基本状况
例题1.1 (P18 ,1—5)
动能为1.0MeV 的质子与静止的钍原子核(Z 90 )发生 弹性碰撞时,在远离原子核的地方相对于初始运动方向 偏转 900 ,试求这一质子对钍核的瞄准距离。
24
Thomson,Joseph John 约瑟夫· 约翰· 汤姆逊(1856~1940年)。 1891年用法拉第管开始了原子核结构的 理论研究。他研究了阴极射线在磁场和 电场中的偏转,作了比值e/m(电子的电荷与质量之比) 的测定,结果他从实验上发现了电子的存在。他把电子 看成原子的组成部分,用原子内电子的数目和分布来解 释元素的化学性质。提出了原子模型,把原子看成是一 个带正电的球,电子在球内运动。他还进一步研究了原 子的内部构造和阳极射线。1912年与阿斯顿共同进行阳 极射线的质量分析,发现了氖的同位素。1906年他因在 气体导电研究方面的成就获得了诺贝尔物理学奖。另有, 威廉· 汤姆逊(1824~1907年)。英国物理学家。
1.2 原子的核式结构 二、粒子的散射实验 P9-12 3、解释 P10— (1)用汤姆逊模型解释,遇到困难。P10—11
20
原子物理学
第一章 原子的基本状况
1.2 原子的核式结构 二、粒子的散射实验 P9-12 3、解释 P10— (2)用卢瑟福核式结构模型就可以解释。P11-12
21
原子物理学
①电子是平均的分布在整个原子上的,就如同散布在 一个均匀的正电荷的海洋之中,它们的负电荷与那些正 电荷相互抵消。 ②在受到激发时,电子会离开原子,产生阴极射线。
汤姆逊的学生卢瑟福完成的α粒子轰击金箔实验(散射

原子物理习题集

原子物理习题集

第六章 X射线
• 例1.某X光机的高压为10万伏,问发射光子 的最大能量多大?算出发射X光的最短波长。 • 例2.铝(Al)被高速电子束轰击而产生的连 续X光谱的短波限为5A。问这时是否也能观 察到其标识谱K系线。
• 例3.已知Al和Cu对于λ=0.7A的X光的质量 吸收系数分别是0.5m2/kg和5.0m2/kg。Al和 Cu的密度分别为2.7×103kg/m3和 8.93×103kg/m3。现若分别单独用Al板或铜 板作挡板,要使波长为0.7A的X光的强度减 至原来强度的1/100,问要选用的Al板或Cu 板应多厚?
• 例7.已知一对正负电子绕共同的质心转动会 暂时形成类似于H原子结构的“正电子素”, 试计算“正电子素”由第一激发态向基态 跃迁发射光谱的波长为多少? • 例8.某类H原子,它的帕邢系第三条谱线和 H原子的Lyman系第一条谱线的频率几乎一 样,问该原子是何种元素?
• 例9.计算H原子的2p态电子在质子处产生的磁场 (根据玻尔模型作估计) • 例10.在Stern-Gerlach实验中,处于基态的窄银原 子束通过不均匀横向磁场,梯度为103T/m,磁场 横向范围L1=0.04m,L2=0.10m,原子速度为5 ×102m/s,屏上两束分开的距离为d=0.002m,试 确定原子磁矩在磁场方向上的投影的大小(磁场 边缘的影响可忽略)。
第一章 卢瑟福模型
• 例1.若Rutherford 散射用的α粒子是放射性 物质Ra放射的,其动能是7.68MeV,散射 物质是原子序数Z=79的金箔,试问θ=150。 所对应的瞄准距离b多大? • 例2. 若用动能为1MeV的质子射入金箔 (Z=79),问质子与金箔原子核可能达到的 最小距离多大。若用同样能量的D核代替质 子,其与金箔原子核的最小距离是多大?

原子物理学答案

原子物理学答案

原子物理学习题第一章作业教材 20页 3题:若用动能为 1 MeV 的质子射向金箔,问质子和金箔原子核(Z=79)可以达到的最小距离多大?又问如用同样能量的氕核代替质子,最小距离为多大?解:r m =Z 1*Z 2*e 2/4*π*ε0*E = …… = 1.14 ⨯ 10-13m氕核情况结论相同----------------------------------------------------------------------------------------------- 21页 4题:α粒子的速度为 1.597 ⨯ 107 m/s ,正面垂直入射于厚度为 10-7米、密度为1.932 ⨯104 kg/m 3 的金箔。

试求所有散射在 θ ≥ 90︒ 的α粒子占全部入射粒子的百分比。

金的原子量为197。

解:金原子质量 M Au = 197 ⨯ 1.66 ⨯ 10-27 kg = 3.27 ⨯ 10-25 kg箔中金原子密度 N = ρ/M Au = …… = 5.91 ⨯ 1028个/m 3入射粒子能量 E = 1/2 MV 2= 1/2 ⨯ 4 ⨯ 1.66 ⨯ 10-27kg ⨯ (1.597 ⨯ 107m/s)2= 8.47 ⨯ 10-13J若做相对论修正 E = E 0/(1-V 2/C 2)1/2 = 8.50 ⨯ 10-13 J对心碰撞最短距离 a=Z 1⨯Z 2⨯e 2/4⨯π⨯ε0⨯E = …. = 4.28 ⨯ 10-14 m 百分比d n/n(90︒→180︒)=⎪⎭⎫ ⎝⎛︒-︒⨯90sin 145sin 14222Nta π= … = 8.50 ⨯ 10-4%-----------------------------------------------------------------------------------------------------------21页7题:3.5 MeV α粒子细束射到质量厚度为 0.01 kg/m2 的银箔上(图1-1)。

《原子物理学》第一章习题解答

《原子物理学》第一章习题解答

1第一章习题解答1-1 速度为v 的非相对论α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角为104- rad 。

证:α粒子在实验系及在质心系下的关系有:粒子在实验系及在质心系下的关系有:a a c c v v v += 由此可得:由此可得:îíì+=+=c c c L cc c L v v v v v v q q q q a aa a cos cos cos cos ①由②解得:由②解得:uC CL +=q qq cos sin tan 其中u=a c c v v ②()c e vm m v m +=aa 00v m m m v ec +=\a a③ ∵ ce c c e v v v v v -=-=a a a ,与坐标系的选择无关,与坐标系的选择无关∴ce c v v v -=a 0 ④又 ∵ 0=+ce e v m v m aa∴0v m m v ece a-= 代入④式,可得:代入④式,可得:0v m m m v e ec aa +=由此可以得到:ec m m v v a a = 代入②式中,可以得到:代入②式中,可以得到:rad m m m m ecec L 410cos sin tan -»£+=aa q q q 证毕。

证毕。

a c vce ve v c va v1-2 (1)(1)动能为动能为5.00Mev 的α粒子被金核以9090°散射时,它的瞄准距离(碰撞参°散射时,它的瞄准距离(碰撞参数)为多大?数)为多大?(2)如果金箔厚1.01.0µµm ,则上述入射α粒子束以大于9090°散射°散射(称为背散射)的粒子数是全部入射例子的百分之几?的粒子数是全部入射例子的百分之几? 解:(1)由库仑散射公式可得(1)由库仑散射公式可得: :b =2a cot 2q =21E e Z Z 02214pe cot 2q =21´E Z Z 21´24pee cot 4p =21´5792´´1.44´1=22.752 fm(2)在大于9090°的情况下,相对粒子数为°的情况下,相对粒子数为°的情况下,相对粒子数为: :òN dN '=nt(E Z Z 421´024pe e )2òW 2sin4q d =t N M A A r (E Z Z 421´024pe e )2q q qp ppdò242sin sin 2 =9.4´105-1-3 试问:4.5Mev 的α粒子与金核对心碰撞的最小距离是多少?若把金核改为7Li 核,则结果如何?核,则结果如何?解:α粒子与金核对心碰撞时金核可看作静止,由此可得到最小距离为:粒子与金核对心碰撞时金核可看作静止,由此可得到最小距离为:r m =a=Ee Z Z 02214pe =EZZ 21´24pe e =1.44´105-´5792´»50.56 fmα粒子与7Li 核对心碰撞时,我们可以在质心系下考虑,我们可以在质心系下考虑,此时此时α粒子与金核相对于质心的和动量为零,质心系能量为各粒子相对于质心的动能之和,因此有:于质心的和动量为零,质心系能量为各粒子相对于质心的动能之和,因此有:221v ECm ==m r e Z Z 02214pe +0=L Li LiE m m m +a 其中L E =21mv 2为入射粒子实验室动能,由此可以得到为入射粒子实验室动能,由此可以得到m r =024pe e LE Z Z 21LiLim mm +a=3.02 fm1-4 (1)假定金核的半径为7.0fm 试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm. 解:仍然在质心系下考虑粒子的运动,由1仍然在质心系下考虑粒子的运动,由1--3题可知:EC =mr e Z Z 02214pe (1)(1)对金核可视为静止,对金核可视为静止,实验系动能与质心系动能相等,由此得到由此得到 E=E=E=16.25Mev 16.25Mev (2)(2)对铝核,E=对铝核,E=对铝核,E=1.441.44´AlAlp m m m +´413=4.85Mev1-5 动能为动能为1.0Mev 的窄质子束垂直地射在质量厚度为1.5mg/cm 2的金箔上,计数器纪录以6060°角散射的质子,计数器圆形输入孔的面积为°角散射的质子,计数器圆形输入孔的面积为1.5cm 1.5cm²,离金箔散²,离金箔散射区的距离为10cm 10cm,输入孔对着且垂直于射到它上面的质子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章原子的核式结构
1.选择题:
(1)原子半径的数量级是:
A.10-10cm; -8m C. 10-10m -13m
(2)原子核式结构模型的提出是根据α粒子散射实验中
A. 绝大多数α粒子散射角接近180︒
B.α粒子只偏2︒~3︒
C. 以小角散射为主也存在大角散射
D. 以大角散射为主也存在小角散射
(3)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍
A. 1/4 B . 1/2 C . 1 D. 2
(4)动能E K=40keV的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m):
A.5.910
10-
⨯⨯⨯如果用相同动能的⨯ B.3.012
10-
质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍
2 C.1 D .4
(6)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少
A. 16
(7)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:
A.4:1 B.2:2 C.1:4 :8
(8)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:
A.质子的速度与α粒子的相同; B.质子的能量与α粒子的相同;
C.质子的速度是α粒子的一半; D.质子的能量是α粒子的一半
2.计算题:
(1)当一束能量为的α粒子垂直入射到厚度为×10-5cm的金箔上时探测器沿20°方向上每秒记录到×104个α粒子试求:
①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子
②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子
③α粒子能量仍为,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子(ρ金=19.3g/cm3ρ铅=27g /cm3;A金=179 ,A铝=27,Z金=79 Z铝=13)
(2)10MeV的质子射到铜箔片上,已知铜的Z=29, 试求质子散射角为900时的瞄准距离b和最接近于核的距离r m.
(3)动能为的α粒子被金核散射,试问当瞄准距离分别为1fm和10fm时,散射角各为多大
1 解:
2
22
12
4
1
'()()
44sin(/2)
Z Z e d
dN Nnt
E
πεθ
Ω
=
22
22
12
4
1'/
()()
44sin(/2)
Z Z e S r
Nnt
E
πεθ
=
(1) 当︒=60θ时, 每秒可纪录到的α粒子2'dN 满足:
01455.030sin 10sin )2/(sin )2/(sin ''44241412=︒
︒==θθdN dN 故 2
41210909.210201455.0'01455.0'⨯=⨯⨯==dN dN (个)
(2) 由于2/1'αE dN ∝,所以 413108'4'⨯==dN dN (个) (3) 由于2
'nZ dN ∝,故这时:
3
12113
42442112441410/10/''--⨯⨯==A Z N A Z N Z n Z n dN dN A A ρρ 55310227793.19197137.2''4221421112444=⨯⨯⨯⨯⨯⨯=⋅⋅=dN A Z A Z dN ρρ(个)
2.解: 由库仑散射公式:2cot 241
2020θπεMv Ze b =,当︒=90θ时,12cot =θ,这时202
0241
Mv Ze b πε= 而对心碰撞的最小距离:
2
200
12224m Ze r b Mv πε=⋅=。

相关文档
最新文档