中考数学第二轮复习专题训练--三角函数应用题
初三数学总复习专题之三角函数篇

第5讲三角函数实际应用1.图1是一辆自行车的侧面图,图2是他的简化示意图,经测量,车轮的直径为66cm,车座B到地面的距离BE为90cm,中轴轴心C到地面距离CF为33cm,车架中立管BC的长为60cm,后轮切地面l于点D(1)后轴轴心A与中轴轴心C所在直线AC与地面l是否平行?请说明理由(2)求∠ACB的大小(精确到1°)(3)如果希望车座B到地面的距离B´E´为93.8cm,车架中立管BC拉长长度BB´是多少?2.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)3.如图1,某种三角形台历被放置在水平桌面上,其左视图如图2所示,其中点O是台历支架OA,OB 的交点,同时又是台历顶端连接日历的螺旋线圈所在圆的圆心,现测得OA=OB=14cm,CA=CB=4cm,∠ACB=120°(1)求点O到直线AB的距离(2)求张角∠AOB的大小(3)把某月的日历从台历支架正面翻到背面(即OB与OA重合),求点B所经历路径长(参考:sin14.33°≈0.25,cos14.33°≈0.97,tan14.33°≈0.26,π取 3.14,所有结果精确到0.01)4.如图,李华晚上在两盏相距50cm的路灯下来回踱步,已知李华的身高AB=1.7m,灯柱高OP=OP´=8.5m,两灯柱之间的距离OO´=50m,(1)若李华距灯柱OP´的水平距离OA=xm,他的影子AC=ym,求y关于x的函数关系式(2)若李华在两路灯之间行走,则他前后两个影子的长度和(DA+AC)是否发生变化?请说明理由5.图1是小华在健身器材上进行仰卧起坐锻炼时情景.图2是小华锻炼时上半身由EM 位置运动到与地面垂直的EN 位置时示意图.已知BC=0.64米,AD=0.24米,AB=1.30米. (1)求AB 的倾斜角α的度数(精确到1);(2)若测得EN=0.85米,试算小华头顶由M 点运动到N 点的路径 MN 长度(精确到0.01米)(参考数据:sin18︒≈0.31,cos18︒≈0.95,tan18︒≈0.32)6如图,某投影仪E 正对投影幕布AB 中央,其距离EG=3.60米,为方便教学,现将投影幕布由黑板正中AB 位置调整到左面DB 位置处,测得AB=BD=2.6米,∠DBC=39.85°,此时投影仪E 调整到线段EB 上点F 处且恰好正对投影幕布DB 中央,若投影仪与投影幕布安装距离控制在3.45米到3.65米之间视觉效果最好,则调整后投影仪F 与投影幕布BD 之间的距离是否符合要求?(参考数据:tan70.15°≈2.770,tan70°≈2.747,cos39.85°≈0.7677,tan39.85°≈0.8346,可用科学计算器,结果精确到0.01)图1图2BCED AM α N7.下图是躺椅结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,∠EOF=90°,∠ODC=30°,ON=40cm,EG=30cm, (1)求两支架落点E,F之间的距离(2)若MN=60cm,求躺椅高度(点M到地面的距离,结果取整数)8.身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上,在如图所示的平面图形中,矩形CDEF代表建筑物,兵兵位于建筑物前点B处,风筝挂在建筑物上方的树枝点G处(点G在FE的延长线上),经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A据地面的高度AB=1.4米,风筝线与水平线夹角为37°。
中考三角函数应用题

中考三角函数应用题中考三角函数应用题总体介绍:中考中的数学考试中,有着多种与三角函数相关的应用题目,其中涵盖了许多领域,例如:几何、物理等。
掌握三角函数的特性及其应用,是考取高分的关键。
今天我们来看看几个常见的中考三角函数应用题目。
第一类题目:求解直角三角形的边长这种题目利用三角函数中的正弦、余弦、正切关系式,求解直角三角形中的某一边长或角度。
例如:已知∠B=30°,BC=3,求AB。
解析:我们知道正弦函数的定义是:sinA=对边/斜边。
所以我们可以根据细节进行计算,得知sin30°=1/2,因此AB=BC/sinB=3/(1/2)=6。
第二类题目:求解角度这种题目利用三角函数中的正弦、余弦、正切关系式,求解直角三角形中的某一角度。
例如:已知 AB=5,AC=3,求∠BAC。
解析:我们知道正切函数的定义是:tanA=对边/邻边。
所以tan∠BAC=AB/AC=5/3,因此∠BAC=tan⁻¹(5/3)≈59.04°。
第三类题目:求最值这种题目通常需要应用到三角函数相关的图像及其函数性质,通过求导、极值等方法解决。
例如:求函数f(x)=2cosx+3sinx在区间[0, π]上的最小值。
解析:首先,我们将f(x)化简为f(x)=√13sin(x+θ),其中θ=tan⁻¹(3/2),因为:2cosx+3sinx=√13(cos(arcsin(3/√13))sinx+sin(arcsin(3/√13))cosx)=√13sin(x+θ)达到化简的目的。
其次,我们知道在[0, π]区间,√13sin(x+θ)的最大值为√13,最小值为-√13,而当x=π/2时,f(x)达到最小值-√13。
结语:需要注意的是,三角函数应用题通常牵扯到多个相关的概念及其公式,考生们需要在日常复习中多加练习。
掌握好三角函数的应用,才能在数学考试中游刃有余,争取高分。
中考数学专题 初中三角函数应用题10道-含答案

初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。
备考2023年中考数学二轮复习-图形的变换_锐角三角函数_解直角三角形的应用-综合题专训及答案

备考2023年中考数学二轮复习-图形的变换_锐角三角函数_解直角三角形的应用-综合题专训及答案解直角三角形的应用综合题专训1、(2018扬州.中考模拟) 有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长AB=50cm,拉杆的伸长距离最大时可达35cm,点A,B,C在同一条直线上.在箱体底端装有圆形的滚轮⊙A,⊙A与水平地面MN相切于点D.在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平地面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感到较为舒服.某人将手自然下垂在C 端拉旅行箱时,CE为80cm,=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:,,)2、(2017南京.中考模拟) 如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).3、(2018嘉兴.中考模拟) 已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H.(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30 ,连接AG交PD于F,连接BF,tan∠BFE= ,求∠C的度数;(3)如图3,在(2)的条件下,PD=6 ,连接QG交BC于点M,求QM的长.4、(2019金华.中考真卷) 如图,在OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.(1)求的度数。
(2)如图,点E在⊙O上,连结CE与⊙O交于点F。
若EF=AB,求∠OCE的度数.5、(2019包河.中考模拟) 如图,AB是⊙O的直径,点C在⊙O上,EO⊥AB,垂足为O,EO交AC于E,过点C作⊙O的切线CD交AB的延长线于点D.(1)求证:∠AEO+∠BCD=90°;(2)若AC=CD=3,求⊙O的半径。
初中数学 四川省成都市中考二轮专题训练三角函数实际应用解答题2

2021年成都市中考专题训练三角函数实际应用解答题21.小明一家去某著名风景区旅游,准备先从山脚A走台阶步行到B,再换乘缆车到山顶C.从A到B的路线可看作是坡角为30°的斜坡AB,长度为1000米;从B到C的缆车路线可看作是线段BC,长度为2400米,其与水平线的夹角为48°,求山顶C到地面AD的距离CE的长.(参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)2.某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)3.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE 垂直),则古树CD的高度约为多少米?(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)4.如图,一艘货轮以40海里/小时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B,货轮继续向北航行30分钟后到达C点,发现灯塔B在它北偏东75°方向,求此时货轮与灯塔B的距离.(结果精确到0.1海里,参考数据:√2≈1.414,√3≈1.732)5. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45°,向前走6m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°. (1)求∠BPQ 的度数;(2)求该电线杆PQ 的高度(结果精确到1m). 备用数据:√3≈1.7,√2≈1.4.6. 如图,从楼层底部B 处测得旗杆CD 的顶端D 处的仰角是53°,从楼层顶部A 处测得旗杆CD 的顶端D 处的仰角是45°,已知楼层AB 的楼高为3米.求旗杆CD 的高度约为多少米?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43.)7.为保护师生健康,新都某中学在学校门口安装了红外测温通道,对进校师生进行体温监测,测温装置安装在E处.某同学进校时,当他在地面D处,开始显示测量体温,此时在其额头A处测得E的仰角为30°,当他走到地面C处,结束显示体温,此时在其额头B处测得E的仰角为45°,已知该同学脚到额头的高度为AD,且AD=1.6米,CD=1米,求测温装置E距地面的高度约为多少米?(保留小数点后两位有效数字,√3≈1.73)8.某次台风来袭时,一棵笔直大树树干AB(树干AB垂直于水平地面)被刮倾斜后折断倒在地上,树的顶部恰好接触到地面D处,测得∠CDA=37°,∠ACD=60°,AD=5米,求这棵大树AB的高度.(结果精确到0.1米)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,√3≈1.73)9. 如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB ,在景区道路CD 的C 处测得栈道一端A 位于北偏西42°方向,另一端B 位于北偏东45°方向,又测得AC 为100米,求木栈道AB 的长度(结果保留整数). (参考数据:sin42°≈2740,cos42°≈34,tan42°≈910)10. 如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB 的长度是19.5米,MN 是二楼楼顶,MN//PQ ,点C 是MN 上处在自动扶梯顶端B 点正上方的一点,BC ⊥MN ,在自动扶梯底端点A 处测得C 点的仰角∠CAQ 为45°,坡角∠BAQ 为37°,求二楼的层高BC(精确到0.1米).(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)11.如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)12.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60米,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1米,HF段的长为1.50米,篮板底部支架HE的长为0.75米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板顶端F到地面的距离.(结果精确到0.1米;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,√3≈1.732,√2≈1.414)13.如图,我市常璩广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,在C点上方E处加固另一条钢缆ED,钢缆ED与地面夹角为60°,现在要在EC处放置一个广告牌,请问广告牌EC的高度为多少?(sin40°≈0.6,cos40°≈0.8,tan40°≈0.8)14.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度,(结果精确到0.1m.温馨提示:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)15.我国第一艘国产航空母舰山东舰2019年12月17日在海南三亚某军港交付海军,中国海军正式迈入双航母时代.如图,在一次海上巡航任务中,山东舰由西向东航行,到达A处时,测得小岛C位于它的北偏东54°方向,再航行一段距离到达B处,测得小岛C 位于它的北偏东30°方向,且与山东舰相距30海里.求山东舰从A到B航行了多少海里?(精确到0.1)参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38,√3≈1.73.16.小明尝试用自己所学的知识检测车速,如图,他将观测点设在到公路l的距离为0.1千米的P处.一辆轿车匀速直线行驶过程中,小明测得此车从A处行驶到B处所用的时间为4秒,并测得∠APO=59°,∠BPO=45°.根据以上的测量数据,请求出该轿车在这4秒内的行驶速度.(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)17.小颖“综合与实践”小组学习了三角函数后,开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,如表是不完整测量数据.测量示意图说明:线段器的高度与距离可以直接测得,CE(1)任务一:完成表格中两次测点A,B之间的距离的平均值.(2)任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(精确到0.1m)(参考数据:sin31°≈0.51,cos31°≈0.86,tan31°≈0.60,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)18.某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=308米,步行道BD=336米,∠DBC=30°,在D处测得山顶A的仰角为45°,求电动扶梯DA的长.(结果保留根19.如图,一艘船由A港沿北偏东60°方向航行20km至B港,然后再沿北偏西30°方向航行20km至C港.(1)求A,C两港之间的距离;(结果保留到0.1km)(2)确定C港在A港的什么方向.(参考数据:√2≈1.414,√3≈1.732)11。
中考数学总复习《三角函数》专项测试卷-附带参考答案

中考数学总复习《三角函数》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.在Rt△ABC中∠C=90∘,AB=6,cosB=23则BC的长为( )A.4B.2√5C.18√1313D.12√13132.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC于点F,cos∠ADE=√32,DF=4则BF的长为( )A.2√3B.4C.4√3D.83.已知α为锐角sin(α−20∘)=√32,则α=( )A.20∘B.40∘C.60∘D.80∘4.在Rt△ABC中cosA=12,则sinA的值是( )A.√22B.√32C.√33D.125.如图,已知矩形ABCD,AB=3,将矩形ABCD沿着过点C的直线CE折叠,折痕所在直线与AD交于点E,点B对应点F在AD延长线上tan∠CED=3,则BF的长为( )A.3√5B.√10C.3√10D.106.如图,AB为⊙O的直径,过点B作⊙O的切线BC,若tan∠BCO=12则tan∠ACO= ( )A.√22B.13C.√24D.147.如图,在△ABC中AC⊥BC,∠ABC=30∘点D是CB延长线上的一点,且BD=BA则tan∠DAC的值为( )A.2+√3B.2√3C.3+√3D.3√38.有一副三角板,含45∘的三角板的斜边与含30∘的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,则AF的长为( )A.2B.2√3−2C.4−2√3D.2√3−6二、填空题(共5题,共15分)9.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个内角为60∘,A,B,C都是格点,则tan∠ABC=.10.如图,甲楼AB的高度为20米,自甲楼楼顶A处,测得乙楼顶端C处的仰角为45∘测得乙楼底部D处的俯角为30∘,则乙楼CD的高度是米.11. sin30∘=;cos45∘=;tan60∘=.12.等腰梯形上底长为2,下底长为8,高为4,则下底与腰的夹角的余切值为.13.在正方形ABCD中AD=4,点E在对角线AC上运动,连接DE,过点E作EF⊥ED 交直线AB于点F(点F不与点A重合),连接DF,设CE=x,tan∠ADF=y则x和y之间的关系是(用含x的代数式表示).三、解答题(共3题,共45分)14.如图,在△ABC中∠B=45∘,∠C=75∘,BC=6,求△ABC的面积.15.如图∠MAN=60∘,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN 上运动.当△ABC是锐角三角形时,求BC的取值范围.16.设计建造一条道路,路基的横断面为梯形ABCD,如图所示(单位:m).设路基高为ℎ,两侧的坡角分别为α和β,已知ℎ=2,α=45∘,tanβ=1,CD=10.2(1) 求路基底部AB的宽;(2) 修筑这样的路基1000m,需要多少土石方.参考答案1. 【答案】A2. 【答案】C3. 【答案】D4. 【答案】B5. 【答案】C6. 【答案】B7. 【答案】A8. 【答案】D9. 【答案】√3910. 【答案】20+20√311. 【答案】12√22√312. 【答案】3413. 【答案】y=−√24x+1或y=√24x−114. 【答案】9+3√315. 【答案】√3<BC<2√3.16. 【答案】(1) 16m.(2) 26000m3.。
中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总

精品文档3 三角函数在实际中的应用专题.1某数学兴趣小组在活动课上测量学校旗杆的高度•已知小亮站着测量,眼睛与自我诊断AB1.7E30 °小敏蹲着测量,眼睛与地面的米,看旗杆顶部)是地面的距离(的仰角为CD0.7E455B°)是米且位于旗杆同侧(点距离(米,看旗杆顶部•两人相距的仰角为DF .、在同一直线上)1DF (结果保留根号))求小敏到旗杆的距离.(2EF1.41.7 ' :'((结果保留整数,参考数据:)求旗杆,的高度.A.A2上方有一些管道,如图所示,某古代文物被探明埋于地下的自我诊断处, 由于点BCB处挖掘时,最短路线考古人员不能垂直向下挖掘,他们被允许从处或处挖掘,从30CBA56CA且与地面所成的锐角是处挖掘时,最短路线,从与地面所成的锐角是=0.83Bsin56BC=20m°,若考古人员最终从处挖掘,求挖掘的最短距离.(参考数据:1.48tan561.73.「,结果保留整数),地面 3 C跟踪训练11•年4月20日,四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距4米,探测线与地面的夹角分别为30°和60°如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据':■:2.6m45APQA。
向前走立在山坡上,从地面的点测得杆顶端点看,,的仰角为一电线杆60PQB0和,又测得杆顶端点的仰角分别为到达点和杆底端点30° BPQ1 的度数;()求/ PQ21m))求该电线杆(的高度.(结果精确到p3. AB的距离,飞机以距海、如图,为了开发利用海洋资源,某勘测飞机测量岛屿两端CA60AB。
的方向的俯角为平面垂直同一高度飞行,在点,然后沿着平行于处测得端点500DB45AB541.91。
的距离的俯角为,已知岛屿两端米,在点测得端点水平飞行了、 1.411.73H 卜才米,参考数据:,米,求飞机飞行的高度.(结果精确到4. DABABCBC在同一条直线上,小红在,且点,如图,某建筑物顶部有釘一旗杆,DE42D47AB。
九年级数学下册三角函数的应用练习题

九年级数学下册三角函数的应用练习题题目一:已知直角三角形ABC,其中∠B为直角,AB = 12cm,BC = 5cm。
计算以下各题:1. 计算∠ACB的正弦值、余弦值、正切值;2. 计算∠ACB的余弦值、余割值、正切值;3. 若点D在线段BC上,且BD = 3cm,计算∠ADB的正弦值、余弦值、正切值;4. 若点D在线段BC上,且BD = 3cm,计算角度∠ADB的正弦值、余弦值、正切值。
解答:1. ∠ACB的正弦值:sin(∠ACB) = 对边/斜边 = AB/BC = 12/5;∠ACB的余弦值:cos(∠ACB) = 临边/斜边 = BC/AB = 5/12;∠ACB的正切值:tan(∠ACB) = 对边/临边 = AB/BC = 12/5。
2. ∠ACB的余弦值:cos(∠ACB) = 临边/斜边 = BC/AB = 5/12;∠ACB的余割值:cosec(∠ACB) = 斜边/对边 = AB/BC = 12/5;∠ACB的正切值:tan(∠ACB) = 对边/临边 = AB/BC = 12/5。
3. ∠ADB的正弦值:sin(∠ADB) = 对边/斜边 = BD/AB = 3/12;∠ADB的余弦值:cos(∠ADB) = 临边/斜边 = AD/AB = (AB-BD)/AB = (12-3)/12 = 9/12;∠ADB的正切值:tan(∠ADB) = 对边/临边 = BD/AD = 3/(12-3) = 3/9 = 1/3。
4. ∠ADB的正弦值:sin(∠ADB) = 对边/斜边 = BD/AB = 3/12;∠ADB的余弦值:cos(∠ADB) = 临边/斜边 = AD/AB = (AB-BD)/AB = (12-3)/12 = 9/12;∠ADB的正切值:tan(∠ADB) = 对边/临边 = BD/AD = 3/(12-3) = 3/9 = 1/3。
题目二:一支标枪离地面的水平距离为20m,离地面的高度为5m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
专题之三角形函数解决实际问题
1. 如图,山顶建有一座铁塔,塔高 CD = 30m ,某人在点 A 处测得塔底 C 的仰角为 20 , D 塔顶 D 的仰角为 23 ,求此人距 CD 的水平距离 AB .
C
造时保持坡脚 A 不动,从坡顶 B 沿 BC 削进到 E 处,问 BE 至少是多少米(结果保留根
号)?
C E B
(参考数据: sin 20 ≈ 0.342 , cos 20 ≈ 0.940 , tan 20 ≈ 0.364 ,
sin 23 ≈ 0.391 , cos 23 ≈ 0.921 , tan 23 ≈ 0.424 ) A 20
23
B
D
A
4. 汶川地震后,抢险队派一架直升飞机去 A 、B 两个村庄抢险,飞机在距地面 450 米 上空的 P 点,测得 A 村的俯角为 30︒ ,B 村的俯角为 60︒ (.如图 7).求 A 、B 两个村
庄间的距离.(结果精确到米,参考数据 2 = 1.414, 3 = 1.732 )
2. 又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下
面是两位同学的一段对话:请你根据两位同学的对话,计算白塔的高度(精确到 1 米). 甲:我站在此处看塔顶仰角为 600 乙:我站在此处看塔顶仰角为 300 甲:我们的身高都是 1.5m 乙:我们相距 20m
Q
60︒
30︒
P
450
A
B C
3. 某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示. BC ∥ AD ,
斜坡 AB = 40 米,坡角 ∠BAD = 60 ,为防夏季因瀑雨引发山体滑坡,保障安全,学校
决定对山坡进行改造.经地质人员勘测,当坡角不超过45 时,可确保山体不滑坡,改
5. 如图 7,河流两岸 a ,b 互相平行, C ,D 是河岸 a 上间隔 50m 的两个电线杆.某人
在 河 岸 b 上 的 A 处 测 得 ∠DAB = 30 , 然 后 沿 河 岸 走 了 100m 到 达 B 处 , 测 得
∠CBF = 60 ,求河流的宽度 CF 的值(结果精确到个位). D C
b
A E
B F
cos76°≈0.24,tan76°≈4.01)
((
(参考数据:tan18≈,tan32≈31
25
)
6.某超市(大型商场)在一楼至二楼之间安装有电梯,天花板(一楼的楼顶墙壁)与地面平行,请你根据图中数据计算回答:小敏身高1.85米,他乘电梯会有碰头危险吗?(sin28o≈0.47,tan28o≈0.53)9.如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处.
二楼A4m 4m C
4m
(1)求观测点B到航线l的距离;2)求该轮船航行的速度(结果精确到0.1km/h).参
考数据:3≈1.73,sin76°≈0.97,北
东
B
76°28°
一楼B C
D
60°E
l
A
7.如图,山脚下有一棵树AB,小华从点B沿山坡向上走50米到达点D,用高为1.5
米的测角仪CD测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB的高.(精
确到0.1米)
(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°
≈0.27.)
10.安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所
在直线相交与水箱横截面⊙O的圆心O,⊙O的半径为0.2m,AO与屋面AB的夹角为
32°,与铅垂线OD的夹角为40°,BF⊥AB于B,OD⊥AD于D,AB=2m,求屋面AB的坡
度和支架BF的长.
8.某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的
B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A 的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过D点作地面BE的垂线,垂足为C.
(1)求∠ADB的度数;
(2)求索道AB的长.(结果保留根号)
A
D
F 1
350
,tan40≈21
O
E F
C
B
A D
B C E
11.如图,AC是我市某大楼的高,在地面上B点处测得楼顶A的仰角为45º,沿BC
5
方向前进18米到达D点,测得tan∠ADC=3.现打算从大楼顶端A点悬挂一幅
庆祝建国60周年的大型标语,若标语底端距地面15m,请你计算标语AE的长度
应为多少?
A
E
B D C
(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)
12.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴
天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两
人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线
上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,颖颖
与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.
你能根据以上测量数据帮助他们求出住宅楼的高度吗?
M
B
A
C D N
13.(河南)如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?14.图(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm,求室内露出的墙的厚度a的值.(假设该门无论开到什么角度,门
和门框之间基本都是无缝的.精确到0.1cm,3≈1.73)
图1)图(2)。