2014年湖北省高考数学试卷(理科)
2014年高考湖北理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试〔湖北卷〕数学〔理科〕一、选择题:本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项符合题目要求.〔1〕【2014年湖北,理1,5分】i 为虚数单位,则21i 1i -⎛⎫⎪+⎝⎭〔 〕〔A 〕1- 〔B 〕1 〔C 〕i - 〔D 〕i 【答案】A【解析】因为21i 2i11i 2i --⎛⎫==- ⎪+⎝⎭,故选A . 【点评】此题考查复数的运算,容易题.〔2〕【2014年湖北,理2,5分】假设二项式72a x x ⎛⎫+ ⎪⎝⎭的展开式中31x 的系数是84,则实数a =〔 〕〔A 〕2 〔B 〕54 〔C 〕1 〔D 〕24【答案】D【解析】因为()77727722xrrr r r r a C x C a x x ---+⎛⎫⋅⋅=⋅⋅⋅ ⎪⎝⎭,令723r -+=-,得2r =,22727284C a -⋅⋅=,解得24a =,故选D .【点评】此题考查二项式定理的通项公式,容易题. 〔3〕【2014年湖北,理3,5分】设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C C ⊆是“A B =∅”的〔 〕〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充要条件 〔D 〕既不充分也不必要条件【答案】A【解析】依题意,假设A C ⊆,则U U C C C A ⊆,U B C C ⊆,可得A B =∅;假设A B =∅,不能推出U B C C ⊆,故选A .【点评】此题考查集合与集合的关系,充分条件与必要条件判断,容易题. 〔4〕【2014年湖北,理4,5分】根据如下样本数据x 3 4 5 6 7 8 y得到的回归方程为ˆybx a =+,则〔 〕 〔A 〕0a >,0b > 〔B 〕0a >,0b < 〔C 〕0a <,0b > 〔D 〕0a <,0b < 【答案】B【解析】依题意,画散点图知,两个变量负相关,所以0b <,0a >,故选B . 【点评】此题考查根据已知样本数判断线性回归方程中的b 与a 的符号,容易题. 〔5〕【2014年湖北,理5,5分】在如下图的空间直角坐标系O xyz -中,一个四面体的顶点坐标分别是()0,0,2,()2,2,0,()1,2,1,()2,2,2,给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为〔 〕〔A 〕①和②〔B 〕③和①〔C 〕④和③〔D 〕④和② 【答案】D【解析】在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D .【点评】此题考查空间由已知条件,在空间坐标系中作出几何体的形状,再正视图与俯视图,容易题. 〔6〕【2014年湖北,理6,5分】假设函数()f x ,()g x 满足()()110f x g x dx -=⎰,则称()f x ,()g x为区间[]1,1- 上的一组正交函数,给出三组函数:①()1sin 2f x x =,()1cos 2g x x =;②()1f x x =+,()1g x x =-;③()f x x =,()2g x x =,其中为区间[]1,1-的正交函数的组数是〔 〕〔A 〕0 〔B 〕1 〔C 〕2 〔D 〕3 【答案】C【解析】对①1111111111sin cos sin cos 02222x x dx x dx x ---⎛⎫⎛⎫⋅=== ⎪ ⎪⎝⎭⎝⎭⎰⎰,则()f x ,()g x 为区间[]1,1-上的正交函数;对②()()()11231111111103x x dx x dx x x ---⎛⎫+-=-=-≠ ⎪⎝⎭⎰⎰,则()f x ,()g x 不为区间[]1,1-上的正交函数;对③134111104x dx x --⎛⎫== ⎪⎝⎭⎰,则()f x ,()g x 为区间[]1,1-上的正交函数,所以满足条件的正交函数有2组,故选C .【点评】新定义题型,此题考查微积分基本定理的运用,容易题.〔7〕【2014年湖北,理7,5分】由不等式0020x y y x ≤⎧⎪≥⎨⎪--≤⎩确定的平面区域记为1Ω,不等式12x y x y +≤⎧⎨+≥-⎩,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为〔 〕〔A 〕18〔B 〕14 〔C 〕34 〔D 〕78【答案】D【解析】依题意,不等式组表示的平面区域如图,由几何公式知,该点落在2Ω内的概率为:11221172218222P ⨯⨯-⨯⨯==⨯⨯,故选D .【点评】此题考查不等式组表示的平面区域,面积型的几何概型,中等题. 〔8〕【2014年湖北,理8,5分】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为〔 〕〔A 〕227 〔B 〕258 〔C 〕15750 〔D 〕355113【答案】B【解析】设圆锥底面圆的半径为r ,高为h ,依题意,()22L r π=,()22122375r h r h ππ=,所以218375ππ=,即π的近似值为258,故选B .【点评】此题考查《算数书》中π的近似计算,容易题.〔9〕【2014年湖北,理9,5分】已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为〔 〕〔A 〕433 〔B 〕233〔C 〕3 〔D 〕2【答案】B【解析】设椭圆的短半轴为a ,双曲线的实半轴为1a ()1a a >,半焦距为c ,由椭圆、双曲线的定义得122PF PF a +=,1212PF PF a -=,所以11PF a a =+,21PF a a =-,因为1260F PF ∠=︒,由余弦定理得:()()()()22211114c a a a a a a a a =++--+-,所以222143c a a =+,即22221112222142a a a a a c c c c c ⎛⎫-=+≥+ ⎪⎝⎭,22111148e e e ⎛⎫∴+≤- ⎪⎝⎭,利用基本不等式可得椭圆和双曲线的离心率的倒数之和的最大值为233,故选B . 【点评】此题椭圆、双曲线的定义和性质,余弦定理及用基本不等式求最值,难度中等. 〔10〕【2014年湖北,理10,5分】已知函数()f x 是定义在R 上的奇函数,当0x ≥时,2221()(|||2|3)2f x x a x a a =-+--,假设R x ∀∈,(1)()f x f x -≤,则实数a 的取值范围为〔 〕〔A 〕11,66⎡⎤-⎢⎥⎣⎦ 〔B 〕66,66⎡⎤-⎢⎥⎣⎦ 〔C 〕11,33⎡⎤-⎢⎥⎣⎦ 〔D 〕33,33⎡⎤-⎢⎥⎣⎦ 【答案】B【解析】依题意,当0x ≥时,()2222223220x a x a f x a a x a xx a ⎧->⎪=-<≤⎨⎪-≤≤⎩,作图可知,()f x 的最小值为2a -,因为函数()f x 为奇函数,所以当0x <时,()f x 的最大值为2a ,因为对任意实数x 都有,()()1f x f x -≤,所以,()22421a a --≤,解得6666a -≤≤,故实数a 的取值范围是66,66⎡⎤-⎢⎥⎣⎦,故选B . 【点评】此题考查函数的奇函数性质、分段函数、最值及恒成立,难度中等.二、填空题:共6小题,考生需作答5小题,每题5分,共25分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分. 〔一〕必考题〔11-14题〕〔11〕【2014年湖北,理11,5分】设向量()3,3a =,()1,1b =-,假设()()a b a b λλ+⊥-,则实数λ= . 【答案】3±【解析】因为()3,3a b λλλ+=+-,()3,3a b λλλ+=++,因为()()a b a b λλ+⊥-,所以()()()()33330λλλλ+-+++=,解得3λ±.【点评】此题考查平面向量的坐标运算、数量积,容易题. 〔12〕【2014年湖北,理12,5分】直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += . 【答案】2【解析】依题意,圆心()0,0到两条直线的距离相等,且每段弧的长度都是圆周的14,即22a b =,2cos 4522a=︒=,所以221a b ==,故222a b +=. 【点评】此题考查直线与圆相交,点到直线的距离公式,容易题. 〔13〕【2014年湖北,理13,5分】设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a 〔例如815a =,则()158I a =,()851D a =〕.阅读如下图的程序框图,运行相应的程序,任意输入一个a ,输出的结果b = . 【答案】495【解析】当123a =,则321123198123b =-=≠,当198a =,则981198783198b =-=≠;当783a =,则954459b a =-=,终止循环,故输出495b =.【点评】新定义题型,此题考查程序框图,当型循环结构,容易题. 〔14〕【2014年湖北,理14,5分】设()f x 是定义在()0,+∞上的函数,且()0f x >,对任意0a >,0b >,0a >,0b >,假设经过点()()af a ,()(),b f x ()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为a ,b 关于函数()f x 的平均数,记为[],f M a b ,例如,当()1f x =())0(1>=x x f 时,可得2f a bM c +==,即(),f M a b 为,a b 的算术平均数.〔1〕当()f x =________〔0x >〕时,(),f M a b 为,a b 的几何平均数; 〔2〕当()f x =________〔0x >〕时,(),f M a b 为,a b 的调和平均数2aba b+; 〔以上两空各只需写出一个符合要求的函数即可〕【答案】〔1〕x 〔2〕x 〔或填〔1〕1k x 〔2〕2k x ,其中12,k k 为正常数均可〕【解析】设()()0f x x x =>,则经过点(),a a ,(),b b -的直线方程为y a b a x a b a ---=--,令0y =,所以2abc x a b ==+,所以当()()0f x x x =>,(),f M a b 为,a b 的调和平均数2aba b+.【点评】此题考查两个数的几何平均数与调和平均数,难度中等.〔一〕选考题〔请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.〕 〔15〕【2014年湖北,理15,5分】〔选修4-1:几何证明选讲〕如图,P 为O 的两条切线,切点分别为,A B ,过PA 的中点Q 作割线交O 于,C D 两点,假设1QC =,3CD =,则PB = _______. 【答案】4【解析】由切割线定理得()21134QA QC QD =⋅=⨯+=,所以2QA =,4PB PA ==. 【点评】此题考查圆的切线长定理,切割线定理,容易题.〔16〕【2014年湖北,理16,5分】〔选修4-4:坐标系与参数方程〕已知曲线1C 的参数方程是33x tty ⎧=⎪⎨=⎪⎩〔t 为参数〕,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,则1C 与2C 交点的直角坐标为 .【答案】()3,1【解析】由33x t t y ⎧=⎪⎨=⎪⎩,消去t 得()2230,0x y x y =≥≥,由2ρ=得224x y +=,解方程组222243x y x y ⎧+=⎪⎨=⎪⎩,得1C 与2C 的交点坐标为()3,1.【点评】此题考查参数方程,极坐标方程与平面直角坐标方程的转化,曲线的交点,容易题.三、解答题:共6题,共75分.解答应写出文字说明,演算步骤或证明过程. 〔17〕【2014年湖北,理17,11分】某实验室一天的温度〔单位:C ︒〕随时间t 〔单位:h 〕的变化近似满足函数关系;()103cossin,[0,24)1212f t t t t ππ=--∈.〔1〕求实验室这一天的最大温差;〔2〕假设要求实验室温度不高于11C ︒,则在哪段时间实验室需要降温?解:〔1〕因为31()102(cos sin )102sin()212212123f t t t t ππππ=-+=-+,又024t ≤<,所以7,1sin()131233123t t ππππππ≤+<-≤+≤,当2t =时,sin()1123t ππ+=;当14t =时,sin()1123t ππ+=-,于是()f t 在[0,24)上取得最大值12,取得最小值8,故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.〔2〕依题意,当()11f t >时实验室需要降温,由〔1〕得()102sin()123f t t ππ=-+,故有102sin()11123t ππ-+>,即1sin()1232t ππ+<-,又024t ≤<,因此71161236t ππππ<+<,即1018t <<,在10时至18时实验室需要降温. 〔18〕【2014年湖北,理18,12分】已知等差数列{}n a 满足:12a =,且123,,a a a 成等比数列.〔1〕求数列{}n a 的通项公式;〔2〕记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+?假设存在,求n 的最小值;假设不存在,说明理由.解:〔1〕设数列{}n a 的公差为d ,依题意,2,2,24d d ++成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=,解得0d =或4d =,当0d =时,2n a =;当4d =时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项 公式为2n a =或42n a n =-.〔2〕当2n a =时,2n S n =,显然260800n n <+,此时不存在正整数n ,使得60800S n >+成立,当42n a n =-时,2[2(42)]22n n n S n +-==,令2260800n n >+,即2304000n n -->,解得40n >或10n <-〔舍去〕,此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.〔19〕【2014年湖北,理19,12分】如图,在棱长为2的正方体1111ABCD A B C D -中,,,,E F M N 分别是棱1111,,,AB AD A B A D 的中点,点,P Q 分别在棱1DD ,1BB 上移动,且 ()02DP BQ λλ==<<.〔1〕当1λ=时,证明:直线1BC 平面EFPQ ;〔2〕是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?假设存在,求出λ的值;假设不存在,说明理由.解:解法一:〔1〕如图1,连接1AD ,由1111ABCD A B C D =是正方体,知11//BC AD ,当1λ=时,P 是1DD 的中点,又F 是AD 的中点,所以1//FP AD ,所以1//BC FP ,而FP ⊂平面 EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ .〔2〕如图2,连接BD ,因为E ,F 分别是AB ,AD 的中点,所以//EF BD ,且12EF BD =,又,//DP BQ DP BQ =,所以四边形PQBD 是平行四边形,故//PQ BD ,且PQ BD =,从而//EF PQ ,且12EF PQ =,在Rt EBQ ∆和Rt FDP ∆中,因为BQ DP λ==,1BE DF ==,于是21DQ FP λ==+,所以四边形EFPQ 是等腰梯形.同理可证四边形PQMN 是等腰梯形. 分别取,,EF PQ MN 的中点为,,H O G ,连接,OH OG ,则,GO PQ HO PQ ⊥⊥,而GO HO O =, 故GOH ∠是面EFPQ 与面PQMN 所成的二面角的平面角.假设存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则90GOH ∠=,连接EM ,FN ,则 由//EF MN ,且EF MN =,知四边形EFNM 是平行四边形,连接GH ,因为H ,G 是EF ,MN 的中点,所以2GH ME ==,在GOH ∆中,22222214,1()22GH OH λλ==+-=+,2222211(2)()(2)22OG λλ=+--=-+,由222OG OH GH +=,得2211(2)422λλ-+++=,解得1λ=±,故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角. 解法二:以D 为原点,射线1,,DA DC DD 分别为,,x y z 轴的正半轴建立如图3所示的空间直角坐标系D xyz -,由已知 得(2,2,0)B ,1(0,2,2)C ,(2,1,0)E ,(1,0,0)F ,(0,0,)P λ,(2,0,2)BC -,(1,0,)FP λ-,(1,1,0)FE . 〔1〕当1λ=时,(1,0,1)FP =-,因为1(2,0,2)BC =-,所以12BC FP =,即1//BC FP ,而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . 〔2〕设平面EFPQ 的一个法向量为(,,)n x y z =,则由0FE n FP n ⎧⋅=⎪⎨⋅=⎪⎩,可得00x y x z λ+=⎧⎨-+=⎩,于是可取(,,1)n λλ=-,同理可得平面MNPQ 的一个法向量为(2,2,1)m λλ=--,假设存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则(2,2,1)(,,1)0m n λλλλ⋅=--⋅-=,即(2)(2)10λλλλ---+=,解得1λ=±.故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角. 〔20〕【2014年湖北,理20,12分】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米〕都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. 〔1〕求未来4年中,至多1年的年入流量超过120的概率;〔2〕水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;假设某台发电机运行,则该台年利润为5000万元;假设某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值到达最大,应安装发电机多少台?解:〔1〕依题意,110(4080)0.250p P X =<<==,235(80120)0.750p P X =≤≤==,35(120)0.150p P X =>==由二项分布,在未来4年中至多有1年的年入流量超过120的概率为04134343433991(1)(1)()4()()0.9477101010p C p C p p =-+-=+⨯⨯=.〔2〕记水电站年总利润为Y 〔单位:万元〕〔1〕安装1台发电机的情形:由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润5000,()500015000Y E Y ==⨯=.〔2〕安装2台发电机的情形:依题意,当4080X <<时,一台发电机运行,此时50008004200Y =-=,因此1(4200)(4080)0.2P Y P X p ==<<==;当80X ≥时,两台发电机运行,此时5000210000Y =⨯=,因此(10000)(80)0.8P Y P X p p ==≥=+=;由此得Y 的分布列如下:所以,()E Y =〔3〕安装3台发电机的情形:当4080X <<时,一台发电机运行,此时500016003400Y =-=,因此1(3400)(4080)0.2P Y P X p ==<<==;当80120X ≤≤时,两台发电机运行,此时 500028009200Y =⨯-=,因此2(9200)(80120)0.7P Y P X p ==≤≤==;当120X >时,三台发电机运行,5000315000Y =⨯=,因此3(15000)(120)0.1P Y PX p ==>==, 由此得所以,()34000.292000.7150000.18620E Y =⨯+⨯+⨯=综上,欲使水电站年总利润的均值到达最大,应安装发电机2台.〔21〕【2014年湖北,理21,14分】在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .〔1〕求轨迹为C 的方程;〔2〕设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.解:〔1〕设点(,)M x y ,依题意得||||1MF x =+||1x =+,化简整理得22(||)y x x =+,故点M 的轨迹C 的方程为24,00,0x x y x ≥⎧=⎨<⎩.〔2〕在点M 的轨迹C 中,记212:4,:0(0)C y x C y x ==<,依题意,可设直线l 的方程为1(2)y k x -=+,由方程组21(2)4y k x y x-=+⎧⎨=⎩,可得244(21)0ky y k -++= ①〔1〕当0k =时,此时1y =,把1y =代入轨迹C 的方程,得14x =,故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4〔2〕当0k ≠时,方程①的判别式为216(21)k k ∆=-+- ②设直线l 与x 轴的交点为0(,0)x ,则由1(2)y k x -=+,令0y =,得021k x k+=-③ 〔ⅰ〕假设000x ∆<⎧⎨<⎩由②③解得1k <-,或12k >,即当1(,1)(,)2k ∈-∞-⋃+∞时,直线l 与1C 没有公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.〔ⅱ〕假设000x ∆=⎧⎨<⎩或000x ∆>⎧⎨≥⎩,由②③解得1{1,}2k ∈-,或102k -≤<,即当1{1,}2k ∈-时,直线l 与1C只有一个公共点,与2C 有一个公共点,当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点,故当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点.〔ⅲ〕假设000x ∆>⎧⎨<⎩由②③解得112k -<<-,或102k <<,即当11(1,)(0,)22k ∈--⋃时,直线l 与1C 有两个公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综合〔1〕〔2〕可知,当1(,1)(,){0}2k ∈-∞-⋃+∞⋃时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--时,直线l 与轨迹C 恰好有三个公共点.〔22〕【2014年湖北,理22,14分】π为圆周率,e =2.71828……为自然对数的底数.〔1〕求函数xxx f ln )(=的单调区间; 〔2〕求33,3,,,3,e e e e ππππ这6个数中的最大数与最小数;〔3〕将33,3,,,3,eee e ππππ这6个数按从小到大的顺序排列,并证明你的结论.解:〔1〕函数()f x 的定义域为(0,)+∞,因为ln ()x f x x =,所以21ln ()xf x x-'=,当()0f x '>,即0x e <<时,函 数()f x 单调递增;当()0f x '<,即x e >时,函数()f x 单调递减.故函数()f x 的单调递增区间为(0,)e ,单调递减区间为(,)e +∞.〔2〕因为3e π<<,所以ln 33ln ,ln ln 3e e πππ<<,即ln3ln ,ln ln3e e e πππ<<,于是根据函数ln ,x y x y e ==, x y π=在定义域上单调递增,可得333,3e e e e ππππ<<<<,故这6个数的最大数在3π与3π之中,最小数在3e 与3e 之中.由3e π<<及〔1〕的结论,得()(3)()f f f e π<<,即ln ln3ln 3eeππ<<. 由ln ln33ππ<,得3ln ln 3ππ<,所以33ππ>;由ln 3ln 3e e<,得3ln 3ln e e <,所以33e e >. 综上,6个数中最大数是3π,最小数是3e.〔3〕由〔2〕知,3333,3e e e e πππ<<<<,又由〔2〕知,ln ln ee ππ<,得e e ππ<故只需比较3e 与e π和e π 与 3π的大小,由〔1〕知,当0x e <<时,1()()f x f e e <=,即ln 1x x e<,在上式中,令2e x π=,又2e e π<,则2ln e e ππ<,从而2ln e ππ-<,即得ln 2eππ>- ①由①得, 2.72ln (2) 2.7(2) 2.7(20.88) 3.02433.1e e e ππ>->⨯->⨯-=>,即ln 3e π>,亦即3ln ln e e π>,所以3e e π<,又由①得,33ln 66ee πππ>->->,即3ln ππ>,所以3e ππ<.综上可得,3333e e e e ππππ<<<<<,即6个数从小到大的顺序为333,,,,,3e e e e ππππ.。
2014年全国高考统一招生【湖北卷】【理科】数学试卷

2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(i i( )A.1-B. 1C. i -D. i2. 若二项式7)2(x a x +的展开式中31x 的系数是84,则实数=a ( )A.2B. 54C. 1D. 423. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件得到的回归方程为a bx y +=ˆ,则( )1.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )1.①和② B.③和① C. ④和③ D.④和②6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数: ①x x g x x f 21cos )(,21sin )(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是( )A.0B.1C.2D.37.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A.81 B.41 C. 43 D.878.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258 C.15750 D.3551139.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )C.3D.2。
2014年湖北省高考数学理科试题及解析(全部题目)

2014年湖北省高考数学理科试题及解析1. i 为虚数单位,=+-2)11(ii A. -1 B.1 C. -i D. i 【解题提示】利用复数的运算法则进行计算 【解析】选A . 122)1)(1()1)(1()11(2-=-=++--=+-iii i i i i i 2.若二项式7)2(x a x +的展开式中31x 的系数是84,则实数a = A. 2 B.34 C.1 D.42【解题提示】 考查二项式定理的通项公式 【解析】选C . 因为1r T += r r r r rrrx a C xa x C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得a =1. 3.设U 为全集,B A ,是集合,则“存在集合C 使得,U A C B C ⊆⊆”是“∅=B A ”的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【解题提示】考查集合与集合的关系,充分条件与必要条件的判断 【解析】选C . 依题意,若C A ⊆,则UUC A ⊆,当UB C ⊆,可得∅=B A ;若∅=B A ,不妨另C A = ,显然满足,UA CBC ⊆⊆,故满足条件的集合C 是存在的.4.得到的回归方程为a bx y +=ˆ,则A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a【解题提示】 考查根据已知样本数判绘制散点图,由散点图判断线性回归方程中的b 与a 的符号问题【解析】选B .画出散点图如图所示,y 的值大致随x 的增加而减小,因而两个变量呈负相关,所以0<b ,0>a5..在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A.①和②B.③和①C. ④和③D.④和②【解题提示】 考查由已知条件,在空间坐标系中作出几何体的大致形状,进一步得到正视图与俯视图 【解析】选D . 在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D . 6.若函数f(x),()g x 满足11()g()d 0f x x x -=⎰,则称f(x),()g x 为区间[-1,1] 上的一组正交函数,给出三组函数:①11()sin,()cos 22f x x g x x ==;②()1,g()1f x x x x =+=-;③2(),g()f x x x x ==其中为区间]1,1[-的正交函数的组数是( ) A.0 B.1 C.2 D.3【解题提示】 考查微积分基本定理的运用【解析】选C . 对①,1111111111(sin cos )(sin )cos |02222x x dx x dx x ---⋅==-=⎰⎰,则)(x f 、)(x g 为区间]1,1[-上的正交函数;对②,1123111114 (1)(1)(1)()|033x x dx x dx x x---+-=-=-=-≠⎰⎰,则)(x f、)(x g不为区间]1,1[-上的正交函数;对③,1341111()|04x dx x--==⎰,则)(x f、)(x g为区间]1,1[-上的正交函数.所以满足条件的正交函数有2组.7.由不等式⎪⎩⎪⎨⎧≤--≥≤2xyyx确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21yxyx,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为()A.81B.41C.43D.87【解题提示】首先根据给出的不等式组表示出平面区域,然后利用面积型的几何概型公式求解【解析】选D. 依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDF CEFBDFS SPS⨯⨯-⨯⨯-===⨯⨯.8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,另相乘也。
2014年全国高考理科数学试题及答案-湖北卷

2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(ii ( ) A.1- B. 1 C. i - D. i 2. 若二项式7)2(xa x +的展开式中31x 的系数是84,则实数=a ( ) A.2 B. 54 C. 1 D.42 3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4. 根据如下样本数据x 3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a5. 在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和② 6. 若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数: ①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是( ) A.0 B.1 C.2 D.37. 由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A.81 B.41 C. 43 D.87 8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一。
2014年高考真题——理科数学(湖北卷)解析版(选择、填

2014年湖北卷理科A 卷一、选择题(本大题共10小题,每小题5分,共50分)1. i 为虚数单位,211i i -⎛⎫= ⎪+⎝⎭( ) A .-1 B .1 C .-i D .i【解析】()()2221121121i i i i i i ---⎛⎫===- ⎪+⎝⎭+. 【答案】A .2. 若二项式72a x x ⎛⎫+ ⎪⎝⎭的展开式中31x 的系数是84,则实数a =( )A .2 B.C .1 D.4【解析】72a x x ⎛⎫+ ⎪⎝⎭的通项是()777217722k k k k k kk k a T C x a C x x ---+⎛⎫==⋅⋅⋅ ⎪⎝⎭,令7-2k =-3得:k =5 ∴31x的系数是2527284a C ⋅⋅=,即a 5=1,∴a =1. 【答案】C .3. 设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆U C ð” 是“A ∩B =∅” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【解析】若存在集合C 使得A ⊆C ,B ⊆U C ð,则A ∩B =∅,否则有x ∈A ∩B , 由A ⊆C ,得x ∈C ,由B ⊆U C ð,得x ∈U C ð,即x C ∉,矛盾;若A ∩B =∅,则取C =A ,有A ⊆C ,B ⊆U C ð,故“存在集合C 使得A ⊆C ,B ⊆U C ð” 是“A ∩B =∅” 的充要条件。
【答案】C .4. 根据如下样本数据x 3 4 5 6 7 8 y4.0 2.5 -0.5 0.5 -2.0 -3.0得到的回归方程为y ^=bx+a ,则( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0 【解析】画出散点图知a >0,b <0 【答案】B .5. 在如图所示的空间直角坐标系O -xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号为①、②、③、④的四个图,则该四面体的正视图和府视图分别为( ) A .①和② B .③和① C .④和③ D .④和②【解析】设A (0,0,2),B (2,2,0),C (1,2,1),D (2,2,2), 作出四面体ABCD ,四面体ABCD 的府视图是⊿OBC 1,即图② 正视图是Rt ⊿AEF 和AG ,即图④.【答案】D .6. 若函数f (x ),g (x )满足()()110f x g x dx -=⎰,则称f (x ),g (x )为区间[-1,1] 上的一组正交函数,给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]的正交函数的组数是( )A .0B .1C .2D .3【解析】对于①,()()()11111111022f xg x dx sin xdx cos x ---==-=⎰⎰;对于②,()()()11123111141033f x g x dx x dx x x ---⎛⎫=-=-=-≠ ⎪⎝⎭⎰⎰;对于③,113411104x dx x--==⎰; 【答案】C .7. 由不等式0020x y y x ⎧⎪⎨⎪--⎩≤≥≤确定的平面区域记为Ω1,不等式12x y x y +⎧⎨+-⎩≤≥,确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A .18B .14C .34D .78【解析】如右图,区域Ω1为⊿AOC 及其内部,面积为12×2×2=2;区域Ω2为直线x +y =1与直线x +y =-2之间的部分,Ω1与Ω2的公共部分是四边形AOBD ,面积为2-12×1×12=74,故所求概率为p =78.【答案】D .8. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么近似公式2275V L h ≈. 相当于将圆锥体积公式中的π近似取为( ) A .227 B .258 C .15750 D .355113【解析】∵2221133212L V r h h L hππππ⎛⎫=== ⎪⎝⎭,∴由2275V L h ≈得: 22217512L h L h π≈,即258π≈. 【答案】B .9. 已知F 1、F 2是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )ABC .3D .2【解析】设椭圆和双曲线的方程分别为2222111x y a b +=、2222221x y a b -=,|PF 1|=m ,|PF 2|=n .则m +n =2a 1,|m -n |=2a 2,在中由余弦定理,(2c )2=m 2+n 2-2mncos 60°=m 2+n 2-mn∴4c 2=(m +n )2-3mn =2143a mn -,且4c 2=(m -n )2+mn =224a mn +,消去m 、n 得:2221234a a c +=,即2212134e e +=由柯西不等式得:22222121211111613e e e e ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥++⋅+=⎢⎥ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦≤ 可计算得当e 1=3e 2=3时,等号成立。
2014年高考数学湖北卷(理工类) 试题及详细答案解析

3
曲线 C2 的极坐标方程为ρ=2, 可得方程 x2+y2=4,②
由①②联立解得
x
3 ,故 C1 与 C2 交点的直角坐标为
3,1 .
y 1
三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分 11 分)某实验室一天的温度(单位:℃)随时间 t (单位:h)的变化近似满足函
D(a)=851).阅读如图所示的程序框图,运行相应的程序,
任意输入一个 a , 输出的结果 b=
.
【答案】495
【解析】不妨取 a=815,则 I(a)=158,D(a)=851,b=693;
则取 a=693,则 I(a)=369,D(a)=963,b=594;
则取 a=594,则 I(a)=459,D(a)=954,b=495;
对于③,
1 x x2dx
1
1 1
x3dx
1 4
x4
1 1
0
,故③为一组正交函数,故选
C.
7.由不等式组
x
y
y
0 0 x
2
0
确定的平面区域记为Ω1,不等式组
x x
y y
1 2
确定的平面区域
记为Ω2,在Ω1 中随机取一点,则该点恰好在Ω2 内的概率为( ).
x t
已知曲线
C1
的参数方程是
y
3t (t 为参数).以坐标原点为极点, x 轴的正半轴为
3
极轴建立极坐标系,曲线 C2 的极坐标方程是ρ=2,则 C1 与 C2 交点的直角坐标为
2014年高考理科数学试题(湖北卷)及参考答案

2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)试题及参考答案一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(ii A. 1- B. 1 C. i - D. i 2. 若二项式7)2(xa x +的展开式中31x的系数是84,则实数=a A.2 B.54 C. 1 D.42 3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 4.根据如下样本数据A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0), (1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A. ①和②B.③和①C. ④和③D.④和② 6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数:①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是A.0B.1C.2D.37.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为 A.81 B.41 C. 43 D.87 8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为 A.227 B.258C.15750D.355113 9.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为A.3B.3C.3D.2 10.已知函数f (x )是定义在R 上的奇函数,当0x ≥时,2221()(||)|2|3).2f x x a x a a =-+--若,(1)(),x R f x f x ∀∈-≤则实数a 的取值范围为( )A.11[,]66-B.[C. 11[,]33-D.[二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.设向量)3,3(=,)1,1(-=b ,若)()(b a b a λλ-⊥+,则实数λ= . 12.直线a x y l +=:1和b x y l +=:2将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += .13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如右图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可) (二)选考题15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为三、解答题:本大题共6小题,共75分.解答题应写出文字说明、证明过程或演算步骤..17、(本小题满分11分)某实验室一天的温度(单位:C ︒)随时间t (单位:h )的变化近似满足函数关系;)24,0[,12sin12cos310)(∈--=t t t t f ππ(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于11C ︒,则在哪段时间实验室需要降温?18(本小题满分12分)已知等差数列}{n a 满足:21=a ,且321,,a a a 成等比数列. (1) 求数列}{n a 的通项公式.(2) 记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得80060+>n S n ?若存在,求n 的最小值;若不存在,说明理由.19(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP . (1)当1=λ时,证明:直线1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?若存在,求出λ的值;若不存在,说明理由.20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。
2014高考湖北数学真题(word版)

2014高考湖北数学真题(word版)
2014年普通高等学校招生全国统一考试(湖北卷)
数学(理科)
一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 为虚数单位,则 ( )
2.5
0.5
得到的回归方程为 ,则( )
A. B. C. D.
A. B. C. D. 2. 若பைடு நூலகம்项式 的展开式中 的系数是84,则实数 ( )
A.2 B. C. 1 D. 3. 设 为全集, 是集合,则“存在集合 使得 是“ ”的( )
A. 充分而不必要条件 B. 必要而不充分条件
C. 充要条件 D. 既不充分也不必要条件
4.根据如下样本数据
x
3
4
5
6
7
8
y
4.0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均数;
(2)当f(x)= (x>0)时,Mf(a,b)为a,b的调和平
均数
; (以上两空各只需写出一个符合要求的函数即可) 15.(2014•湖北)如图,P为⊙O外一点,过P点作⊙O的两条切线,切 点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1, CD=3,则PB= .
的单调区间;
(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;
(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并
证明你的结论.
2014年湖北省高考数学试卷(理科)
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的 四个选项中,只有一项是符合题目要求的. 1.(5分)(2014•湖北)i为虚数单位,(
)2=( )
A. ﹣1
B. 1
C. ﹣i
2.(5分)(2014•湖北)若二项式(2x+
)7的展开式中
(Ⅱ)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若 存在,求出λ的值;若不存在,说明理由.
20.(12分)(2014•湖北)计划在某水库建一座至多安装3台发电机的 水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年 内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不 足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年 份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年 的年入流量相互独立. (Ⅰ)求未来4年中,至多有1年的年入流量超过120的概率; (Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行 台数受年入流量X限制,并有如下关系:
=bx+a,则( ) x3 4 5 6 7 8 y4.02.5﹣0.50.5﹣2.0﹣3.0
A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0
5.(5分)(2014•湖北)在如图所示的空间直角坐标系O﹣xyz中,一 个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2, 1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面 体的正视图和俯视图分别为( )
,t∈[0,24) (Ⅰ)求实验室这一天的最大温差; (Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
18.(12分)(2014•湖北)已知等差数列{an}满足:a1=2,且a1, a2,a5成等比数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>
L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似
公式V≈
L2h相当于将圆锥体积公式中的π近似取为( )
A.
B.
C.
D.
9.(5分)(2014•湖北)已知F1,F2是椭圆和双曲线的公共焦点,P是 它们的一个公共点.且∠F1PF2=
,则椭圆和双曲线的离心率的倒数之和的最大值为( )
其中为区间[﹣1,1]上的正交函数的组数是( )
A. 0
B. 1
C. 2
7.(5分)(2014•湖北)由不等式组
D. 3
确定的平面区域记为Ω1,不等式组
确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概
率为( )
A.
B.
C.
D.
8.(5分)(2014•湖北)《算数书》竹简于上世纪八十年代在湖北省 江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载 有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该 术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈
A.
B.
C. 3
D. 2
10.(5分)(2014•湖北)已知函数f(x)是定义在R上的奇函数,当 x≥0时,f(x)=
(|x﹣a2|+|x﹣2a2|﹣3a2),若∀x∈R,f(x﹣1)≤f(x),则实数a的取
值范围为( )
A. [﹣
B. [﹣
C. [﹣
D. [﹣
,
,
,
,
]
]
]
]
二、填空题:本大题共3小题,每小题5分,共15分. 11.(5分)(2014•湖北)设向量
60n+800?若存在,求n的最小值;若不存在,说明理由. 19.(12分)(2014•湖北)如图,在棱长为2的正方体ABCD﹣
A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中 点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2) (Ⅰ)当λ=1时,证明:直线BC1∥平面EFPQ;
年入流量X
40<X<80 80≤X≤120 X>120
发电机最多可运行台数1
2
3
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行, 则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装 发电机多少台? 21.(14分)(2014•湖北)在平面直角坐标系xOy中,点M到点F(1, 0)的距离比它到y轴的距离多1,记点M的轨迹为C. (Ⅰ)求轨迹C的方程; (Ⅱ)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有 一个公共点、两个公共点、三个公共点时k的相应取值范围. 22.(14分)(2014•湖北)π为圆周率,e=2.71828…为自然对数的底 数. (Ⅰ)求函数f(x)=
16.(2014•湖北)已知曲线C1的参数方程是
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,
曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标
为 . 17.(11分)(2014•湖北)某实验室一天的温度(单位:℃)随时间 t(单位:h)的变化近似满足函数关系: f(t)=10﹣
D. i
的系数是84,则实数a=( )
A. 2
B.
C. 1
D.
3.(5分)(2014•湖北)设U为全集,A,B是集合,则“存在集合C使
得A⊆C,B⊆∁UC”是“A∩B=∅”的( )
A. 充分而不必要的条件
B. 必要而不充分的条件
C. 充要条件
D. 既不充分也不必要条件
4.(5分)(2014•湖北)根据如下样本数据,得到回归方程
三、解答题 14.(2014•湖北)设f(x)是定义在(0,+∞)上的函数,且f(x)> 0,对任意a>0,b>0,若经过点(a,f(a)),(b,﹣f(b))的直 线与x轴的交点为(c,0),则称c为关于函数f(x)的平均数,记为
Mf(a,b),例如,当f(x)=1(x>0)时,可得Mf(a,b)=c=
A. ①和②
B. ③和①
C. ④和③
D. ④和②
6.(5分)(2014•湖北)若函x)dx=0,则f(x),g(x)为区间[﹣1,1]上的一组正交函 数,给出三组函数: ①f(x)=sin
x,g(x)=cos
x; ②f(x)=x+1,g(x)=x﹣1;
③f(x)=x,g(x)=x2,
=(3,3),
=(1,﹣1),若(
+λ
)⊥(
﹣λ
),则实数λ= .
12.(5分)(2014•湖北)直线l1:y=x+a和l2:y=x+b将单位圆C: x2+y2=1分成长度相等四段弧,则a2+b2= .
13.(5分)(2014•湖北)设a是一个各位数字都不是0且没有重复数字 三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从 大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a) =851),阅读如图所示的程序框图,运行相应的程序,任意输入一个 a,输出的结果b= .