迭代法解非线性方程
7、解非线性方程的迭代法

§3 迭代收敛的加速方法
一、埃特金加速收敛方法
对于收敛的迭代过程,由迭代公式校正一次得 x1 = ϕ ( x0 ),
二分法优、缺点; 用途。
§2
一、不动点迭代
迭代法
将非线性方程f ( x) = 0化为等价形式 x = ϕ ( x).
(2.1)
f ( x*) = 0 ⇔ x* = ϕ ( x*) ; 称x * 为函数ϕ ( x)的一个不动点.
给定初始近似值x0 , 可以得到x1 = ϕ ( x0 ). 如此反复,构造迭代公式 xk +1 = ϕ ( xk ), k = 0,1,2,⋯. 称ϕ ( x)为迭代函数. (2.2)
(ϕ ( x) − x) 2 . ψ ( x) = x − ϕ (ϕ ( x)) − 2ϕ ( x) + x
(3.4)
(3.5)
定理5 定理5 若x * 为ψ ( x)的不动点, 则x * 为ϕ ( x)的不动点. 反之, x * 为ϕ ( x)的不动点,设ϕ ′′( x)存在, ϕ ′( x*) ≠ 1,则x * 为ψ ( x) 的不动点,且斯蒂芬森迭代法(3.3)是2阶收敛的.
k +1
.
(1.ቤተ መጻሕፍቲ ባይዱ)
例2 求x3 − x − 1 = 0在[1.0,1.5]内的一个实根,准确到 小数点后2位.
k ak 0 1.0 1 1.25 2 3 1.3125 4 5 6 1.3203 bk 1.5 1.375 1.3438 1.3281 xk 1.25 1.375 1.3125 1.3438 1.3281 1.3203 1.3242 f(xk)符号 − + − + + − −
求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法迭代法是一种通过反复递推计算得到逼近解的方法,对于非线性方程求解而言,迭代法通过不断更新变量的值,使得方程逐渐趋近于真实解。
下面将介绍三种新的迭代法:逐次缩小区间法、割线法和弦截法。
第一种迭代法是逐次缩小区间法。
逐次缩小区间法是一种通过不断递推缩小变量的取值范围来求解非线性方程的方法。
算法步骤如下:1. 选取一个初始区间[a, b],使得f(a)和f(b)异号,即f(a)*f(b)<0。
2. 将区间[a, b]均分,得到区间的中点c=(a+b)/2。
3. 比较f(a)*f(c)和f(b)*f(c),如果f(a)*f(c)<0,则说明解在区间[a, c]内;如果f(b)*f(c)<0,则说明解在区间[c, b]内。
4. 重复步骤2和步骤3,直到得到精度要求的解。
逐次缩小区间法的优点是简单易懂,计算量较小;但缺点是需要事先给出一个初始区间,初始区间的选择对结果有影响,并且对于复杂的方程可能需要很多次均分才能逼近解。
第二种迭代法是割线法。
割线法是一种通过利用连续两个点的斜率来逼近解的方法。
算法步骤如下:1. 选取两个初始点x0和x1,计算出对应斜率f(x0)和f(x1)。
2. 利用斜率和已知点构造直线方程,得到直线和x轴的交点x2,并将x1更新为新的x0,x2更新为新的x1。
3. 重复步骤2,直到满足精度要求。
割线法的优点是不需要计算导数,因此适用于不易求导的情况;但缺点是可能出现迭代过程不收敛的情况,需要事先给出两个初始点,并且计算量相对较大。
弦截法与割线法相似,也是通过利用连续两个点的连线来逼近解的方法,但不同之处在于弦截法的直线是通过前两个点的连线来构造的。
弦截法的优缺点与割线法类似,不需要计算导数,但迭代过程可能不收敛。
三种新的迭代法均有各自的特点和适用范围,适合于不同类型的非线性方程。
在实际应用中,需要根据具体的方程和精度要求选择合适的迭代方法。
2.2 迭代法

= ϕ ' (ξ )( x * − x * *) ≤ L x * − x * *
又, L < 1
⇒ x* = x * *
计算方法
② ∀x0 ∈ [a, b] 则 xk +1 − x *= ϕ ( xk ) − ϕ ( x*) = ϕ ' (ξ )( xk − x*)
≤ L xk − x * ≤ L2 xk −1 − x * x k +1 − x *
计算方法
二、收敛性分析
定理2.1 (全局收敛定理) 全局收敛定理) 定理
在区间[a,b]上可导 上可导 设ϕ ( x )在[a, b] 在区间
a (1)当a ≤ x ≤ b时, ≤ ϕ ( x ) ≤ b;
( 2) ∀x ∈ [a, b], | ϕ ' ( x ) |≤ L < 1 ( L为常数) 为常数)
ϕ ′( x ) ≤ L < 1
计算方法
则对于任意的初始值 x0 ∈ S ,由迭代公式 收敛于方程的根。 产生的数列 { xn } 收敛于方程的根。 (这时称迭代法在 α 的S邻域具有局部收敛性。) 邻域具有局部收敛性。)
x n +1 = ϕ ( x n )
Remark1:全局与局部收敛定理中的条件都是充分 Remark1: 条件,条件满足则迭代法收敛,不满足则不能判定, 条件,条件满足则迭代法收敛,不满足则不能判定, 此时可以用试算来判定迭代法的是收敛性。 此时可以用试算来判定迭代法的是收敛性。
p! p!
由迭代公式 xk +1 = ϕ ( xk ) 及 x * = ϕ ( x * ) 有 ϕ ( p ) (ξ ) * * p
′( x* ) = ϕ ′′( x* ) = L = ϕ ( p−1) ( x* ) = 0, ϕ ( p ) ( x* ) ≠ 0 ϕ 邻域是p阶收敛的。 则迭代过程在 x * 邻域是p阶收敛的。
第4章 非线性方程求根的迭代法

精选版课件ppt
18
若{ x k }收敛,即lkimxk x 称迭代法收敛,否则称迭代法发散
精选版课件ppt
19
迭代法的几何意义
x (x)yy(xx)交点的横坐标
y=x
x* x2
x1
x0
精选版课件ppt
20
例题
例 试用迭代法求方程
f(x)x3x10
在区间(1,2)内的实根。 解:由x3 x1 建立迭代关系
精选版课件ppt
30
例题
若取迭代函数 (x)x3 1 , 因为|'(x)||3x2|3 x[1,2] 不满足压缩映像原理,故不能肯定 xn1 (xn) n0,1,....收敛到方程的根。
精选版课件ppt
31
简单迭代收敛情况的几何解释
精选版课件ppt
32
是否取到合适的初值,是否构造合适的 迭代格式,对于是否收敛是关键的。
x2 0.739085178
x3 0.739085133 x4 0.739085133
故取 x* x4 0.739085133
精选版课件ppt
48
例题
例 用Newton法计算 。 2
解: f(x)x2a0 其 中 a2
由 f (x) 2x及Newton迭代公式得
xn 1xnx2 n 2x n21 2(xnx 2 n) n0,1 ,......
迭代法及收敛性
考察方程 x(x)。不能直接求出它的
根,但如果给出根的某个猜测值 x 0, 代
入 x(x)中的右端得到x1 (x0) ,再以 x 1
为一个猜测值,代入x(x) 的右端
得 x2 (x1)
数值分析第四章 解非线性方程的迭代法

即
(xk+1-α)2≈(xk-α)(xk+2-α) xk+12-2xk+1α+α2≈xkxk+2-(xk+xk+2)α+α2
解得
x k x k + 2 x k2+1 α≈ x k + 2 2 x k +1 + x k
( x k +1 x k ) 2 = xk x k + 2 2 x k +1 + x k
可见,|xk-xk-1|充分小可保证|xk-α|充分小, 而且对任 一ε>0,要使|xk-α|<ε, 只要 k > ln ε (1 L) ÷ ln L x1 x 0
证 记(x)=(x)-x,则(a)=(a)-a≥0, (b)=(b)b≤0, 由(x)的连续性,必存在α∈[a,b]使(α)=(α)-α=0, 即α=(α), 又′(x)=′(x)-1<0, 所以x=(x)的根唯一. |xk+1-xk|=|(xk)-(xk-1)| =|′(ξ)(xk-xk-1)|≤L|xk-xk-1| |xk+1-α|=|(xk)-(α)|=|′(ξ)(xk-α)|≤L|xk-α| |xk-α|=|(xk-xk+1)+(xk+1-α)| ≤|xk-xk+1|+|xk+1-α|≤L|xk-xk-1|+L|xk-α| 于是有:
k 0 1 2 3 4 5 xk 0.5 0.60653 0.54524 0.57970 0.56006 0.57117 |xk-xk-1| 0.10653 0.06129 0.03446 0.01964 0.01111 k 6 7 8 9 10 xk 0.56486 0.56844 0.56641 0.56756 0.56691 |xk-xk-1| 0.00631 0.00358 0.00203 0.00115 0.00065
42 非线性方程组的迭代解法讲解

x ( k ) x ( k 1) x
(k )
;
2o 由
L知简单迭代法是线性收敛的;
3o 对线性方程组迭代函数G ( x ) Bx d , 有L= B <1是收敛的充分 必要条件。
局部收敛定理 定理5(局部收敛定理 ) 设G:D R n R n ,x * int( D )
其中, 0 k 1, k 1, 2,
, n。
三、收敛向量序列的收敛速度
定义3 设向量序列 xk 收敛于 x * , ek x * xk 0,
k 1,2,
, 如果存在常数r 1和常数c 0,使极限
lim
k
e
k
e k 1
r
c
r
成立,或者使得当k K (某个常数)时,有 ek 1 ek
(4Байду номын сангаас2.2)
其中,F : D R n R n是定义在区域D R n上的向量 值函数。 若存在x * D , 使F ( x * ) ,则称x *是方程组(4.2.1)或 (4.2.2)的解。
二、多元微分学补充
定义1 设f :D R n R,x int( D ) (即x是D的内点), 若存在向量l ( x ) R n ,使极限
L (k ) ( k 1) L(1 L ) ( k ) ( k 1) x x x x 1 L 1 L L * (k ) 再让m , 得 x x x ( k ) x ( k 1) ■ 1 L
m
i 1 i 1
说明
1o 简单迭代法的精度控制与终止条件e( k ) x * x ( k +1) x x
迭代法解非线性方程

则对一个任意接近 x*的初始值,迭代公式
xk1 ( xk )是 p阶收敛的,且有
lim
k
xk1 x * ( xk x*)p
( p)( x*)
p!
定理3可以利用泰勒展开式加以证明
二、弦截法
1. 弦截法的算法过程
(1)过两点(a,f (a)),(b,f (b))作一直线,它与x轴有一个交点,记为x1; (2)如果f (a)f (x1)<0,过两点(a,f (a)),(x1,f (x1 ))作一直线,它与x轴的交点 记为x2, 否则过两点(b,f (b)),(x1,f (x1 ))作一直线,它与x轴的交点记为x2; (3)如此下去,直到|xn-xn-1|< , 就可认为xn为 f (x)=0在区间[a,b]上的一 个根。
2. 弦截法的迭代公式
x1
a
ba f (b) f (a)
f (a),
xk
1
xk
1
a b
xk a f ( xk ) f (a)
xk b f ( xk ) f (b)
f (a), f (b),
f (a) f ( xk ) 0 f (a) f ( xk ) 0
3.弦截法的Matlab编程实现
function root=chord_cut(f,a,b,e)
%弦截法求函数f在区间[a,b]上的一个零点 %f函数名,a区间左端点,b区间右端点,e根的精度,root函数的零点
function [root,n]=chord_cut2(f,a,b,e)
%弦截法求函数f在区间[a,b]上的一个零点 %f函数名,a区间左端点,b区间右端点,e根的精度,root函数的零点,n迭代次数
2. 迭代法的收敛性
牛顿迭代法在求解非线性方程重根问题中的研究

牛顿迭代法在求解非线性方程重根问题中的研究摘要:牛顿迭代法是求解非线性方程的根的常用方法。
在实际计算中往往会遇到重根情况,针对这种情况,我们在牛顿迭代法的理论基础上,探讨了三种不同的迭代格式。
为了对比这三种方法,本文进行了两个实验,分别是含有重根的非线性方程求解问题实例和牛顿迭代法在求解购房按揭利率的应用实例。
在分析运算结果后,得出了三种算法优势和劣势。
关键词:牛顿迭代法;MA TLAB;重根Abstract:Newton iteration method is a common method to solve the roots of nonlinear equations. In order to solve this problem, we discuss three different iteration schemes based on Newton iteration method. In order to compare the three methods, two experiments are carried out in this paper, one is the solving of nonlinear equations with heavy roots, and the other is the application of Newton iteration method in solving house mortgage interest rate. The advantages and disadvantages of three algorithms are obtained after analyzing the results.Key words:Newton iterative method;MA TLAB;Root weight目录摘要 (Ⅰ)Abstract (Ⅰ)目录 (Ⅱ)1 相关概念 (1)1.1 非线性方程 (1)1.2 重根问题 (1)1.3 不动点和不动点迭代法 (1)1.4 迭代法的收敛性 (2)2 牛顿迭代法 (2)2.1 牛顿迭代算法 (2)2.2 重根情形 (3)3 牛顿迭代法的数值实验 (5)3.1 实验一 (5)3.2 实验二 (7)4 结论 (8)参考文献: (9)附录 (10)附录A 算法1 (10)附录B 算法2 (10)附录C 算法3 (11)附录D 实验一程序 (11)附录E 算法1 (12)附录F 算法2 (12)附录G 算法3 (13)附录H 实验二程序 (13)1 相关概念1.1 非线性方程在科学和工程计算中存在大量的方程()0f x =求根的问题,比如代数方程10110n n n n a x a x a x a --++++=,其中00a ≠,当1,2n =时其解是熟知的,当3,4n =时解的公式可以在数学手册上查到,但是当5n ≥时,方程的跟是不能用四则运算和根式运算的公式表示出来的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解非线性方程 的迭代法
一、迭代法原理 二、弦截法
三、牛顿法
四、小结
求解非线性方程的迭代法
一、迭代法原理
1. 迭代法的思想
迭代法是数值计算中的一类典型方法, 不仅用于方程求根,而且可用于方程组求解, 矩阵求特征值等许多问题。
迭代法的基本思想是一种逐次逼近的方法。 首先取一个粗糙的近似值,然后用同一个递推 公式,反复校正这个初值,直到满足给定的精 度为止。迭代法的关键在于构造递推公式。
(x) 的不动点
数
当迭代序列收敛时,称迭代公式收敛或迭代收 敛,否则称迭代发散。 这种求非线性方程根的方法称为迭代法。
目录 上页 下页 返回 结束
求解非线性方程的迭代法
2. 迭代法的收敛性
关于迭代法的收敛性与迭代函数之间的关系, 我们不加证明地给出如下几个定理。
定理 1
设( x)在区间[a,b]上具有一阶连续的导数,
(3)如此下去,直到|xn-xn-1|< , 就可认为xn为 f
(x)=0在区间[a,b]上的一个根。
目录 上页 下页 返回 结束
求解非线性方程的迭代法
2. 弦截法的迭代公式
x1
a
f
ba (b) f (a)
f (a),
xk1 xk1
a b
f f
xk a (xk) f
xk b (xk) f
(a) (b)
xk1xkff'((x xkk)),k1,2,
求解非线性方程的迭代法
3.迭代法的局部收敛性
定理 2
设方程 x (x)有根 x *,且在 x *的某个邻域 D { x x x * }内( x)存在一阶连续的导数,
那么
(1)当 x D ,| '( x) | 1时,迭代公式 xk1 ( xk )
是局部收敛的;
(2)当 x D ,| '( x) | 1时,迭代公式 xk1 ( xk )
目录 上页 下页 返回 结束
求解非线性方程的迭代法
构造 f (x) = 0 的一个等价方程:x (x)
从某个近似根 x0 出发,计算
xk1 (xk) k = 0, 1, 2, ... ...
得到一个迭代序列
xk
k0
迭代公式
迭
f (x) = 0 等价变换 x = (x)
代 函
f (x) 的零点
function [root,n]=chord_cut2(f,a,b,e)
%弦截法求函数f在区间[a,b]上的一个零点 %f函数名,a区间左端点,b区间右端点,e根的精 度,root函数的零点,n迭代次数
目录 上页 下页 返回 结束
求解非线性方程的迭代法
例 1 用弦截法求方程ln x x 2在区间[1,4]上 的一个根.
目录 上页 下页 返回 结束
求解非线性方程的迭代法
三、牛顿法
1. 牛顿法的基本思想
用线性方程来近似非线性方程,即采用 线性化方法, 对于非线性方程 f (x)=0 ,将 f (x) 在 xk 处 作 Taylor 展开,去掉高阶项后得
f ( x ) f ( x k ) f ( x k ) x ( x k ) 如果f(xk)≠0,用xk+1代替x,由f(x)=0可得 下列迭代公式
f (a), f (b),
f (a) f (xk)0 f (a) f (xk)0
目录 上页 下页 返回 结束
求解非线性方程的迭代法
3.弦截法的Matlab编程实现 function root=chord_cut(f,a,b,e)
%弦截法求函数f在区间[a,b]上的一个零点 %f函数名,a区间左端点,b区间右端点,e根的精 度,root函数的零点
显然,p越大收敛越快。
目录 上页 下页 返回 结束
求解非线性方程的迭代法
4.收敛的阶
定理 3 若( x)在 x *附近的某个邻域内有 p( p 1)
阶连续导数,且
( x*) x*,'( x*) 0, , ( p1)( x*) 0, ( p) 0
则对一个任意接近 x*的初始值,迭代公式
xk1 ( xk )是 p阶收敛的,且有
且满足下面 2 个条件:
(1)当 x [a,b]时,( x)[a,b];
(2)存在正常数 L 1,使得对任意 x [a,b],有
| ( x) | L。
目录 上页 下页 返回 结束
求解非线性方程的迭代法
2. 迭代法的收敛性定来自 1那么(i)方程 x ( x)在[a,b]上有唯一根x*;
(ii)对任意 x0 [a,b],迭代公式 xk1 ( xk )收
是发散的。
目录 上页 下页 返回 结束
求解非线性方程的迭代法
4.收敛的阶
为了进一步研究收敛速度问题,引入阶的 概念:
记ek xk x *,如果
lim
k
ek 1 ekp
c
0
(p N)
则称序列{ xk } 是 p 阶收敛的。
特别地,1阶收敛称为线性收敛,
2阶收敛称为平方收敛;
若p=1,c=0时,通常称为超线性收敛.
敛,且lim k
xk
x *;
(iii)对任意的k,有|
xk
x*
|
L 1 L
|
xk
xk 1
|;
(iv)对任意的k,有|
xk
x*
|
Lk 1 L
|
x1
x0
|;
(v)
lim xk1 x * ( x*)。
k xk x *
目录 上页 下页 返回 结束
求解非线性方程的迭代法
在实际计算中,对于给定的允许误差 ,当 L较小 时,常以前后两次迭代近似值 xk , xk1满足
| xk xk1 |
来终止迭代。定理 1 结论中的(iii)、(iv)、(v) 分别称为误差后验估计式、误差先验估计式、渐 进误差估计式。
定理1的两个条件有时较难验证也较难满足, 这时常用的是局部收敛条件。 所谓局部收敛,指的是迭代公式在x*的某个邻 域是收敛的。 关于局部收敛有如下的定理。
目录 上页 下页 返回 结束
lim
k
xk1 x * ( xk x*)p
( p)( x*)
p!
定理3可以利用泰勒展开式加以证明
目录 上页 下页 返回 结束
求解非线性方程的迭代法
二、弦截法
1. 弦截法的算法过程
(1)过两点(a,f (a)),(b,f (b))作一直线,它与x轴 有一个交点,记为x1; (2)如果f (a)f (x1)<0,过两点(a,f (a)),(x1,f (x1 )) 作一直线,它与x轴的交点记为x2, 否则过两点 (b,f (b)),(x1,f (x1 ))作一直线,它与x轴的交点记 为x2;