建筑结构抗震能力分析
建筑结构的抗震性能分析及改进设计

建筑结构的抗震性能分析及改进设计1. 引言地震是地球自然界常见的一种地壳运动形式,造成了许多严重的人身财产损失。
对于建筑结构而言,抗震性能是保障人们生命安全的重要因素之一。
因此,对建筑结构的抗震性能进行分析和改进设计具有重要的意义。
本文将探讨建筑结构的抗震性能分析方法,以及如何进行改进设计,以提高建筑结构的抗震能力。
2. 抗震性能分析2.1 结构参数分析在进行抗震性能分析前,首先需要对建筑结构的结构参数进行分析。
包括结构质量,基础形式,结构材料等。
这些参数将影响结构的稳定性和抗震性能。
因此,在设计过程中必须仔细考虑这些参数,确保结构在地震发生时能够承受地震力的作用。
2.2 结构动力分析结构动力分析是抗震性能分析的核心内容之一。
通过数值模拟或物理试验等方法,对结构在地震作用下的响应进行分析。
常用的方法包括有限元方法、动力弹塑性分析等。
通过这些方法可以得到结构在地震作用下的位移、加速度等参数,从而评估结构的抗震性能。
2.3 结构强度分析在抗震性能分析中,结构的强度是一个重要的指标。
通过对结构强度进行分析,可以确定结构的承载能力,进而评估结构在地震发生时的稳定性。
强度分析涉及材料的强度、梁柱节点的强度等方面,必须充分考虑这些因素,以确保结构在地震中不发生破坏。
3. 改进设计3.1 结构刚度改进提高结构的刚度是改进抗震性能的常用方法之一。
通过采用加固材料、增加支撑、增加结构横向刚度等手段,增加结构的刚度,使其能够更好地抵抗地震力的作用。
这一改进设计方法在现有结构的加固和新结构的设计中都可以采用。
3.2 结构阻尼改进结构的阻尼是指结构在地震作用下能够吸收和耗散能量的能力。
通过增加结构的阻尼,可以减小地震作用对结构的影响,提高结构的抗震性能。
常用的改进方法包括增加阻尼器、减震器等。
3.3 结构刚-柔组合设计刚-柔组合设计是结构抗震性能改进的一种有效方法。
通过在结构中引入柔性元件,如剪切墙、剪力楼层等,与原有的刚性结构相结合,使结构能够在地震中发挥更好的抗震性能。
结构抗震与地下结构抗震探析

结构抗震与地下结构抗震探析摘要:本文通过探讨结构抗震和地下结构抗震的相关问题,旨在深入理解这些领域中的关键概念和挑战。
正文部分将分析结构抗震和地下结构抗震的原理和方法,并探讨它们在实际工程中的应用。
结束语将总结本文的主要发现,并探讨未来研究方向和应对地震风险的重要性。
关键词:结构抗震;地下结构抗震;探析引言:地震是一种具有极大破坏力的自然灾害,给人类社会带来了巨大的威胁。
而结构抗震是为了减少地震对建筑物和其他结构造成的损害而进行的技术和工程措施。
近年来,随着人口的增长和城市化程度的加深,地下结构的建设日益普遍,地下结构抗震也成为重要的研究领域。
本文将对结构抗震和地下结构抗震进行详细探析,以期为相关领域的研究和工程实践提供一定的参考和指导。
1. 结构抗震的原理与方法1.1 结构抗震的基本原理在进行结构抗震设计时,需考虑地震引起的地面运动对建筑物的影响。
结构抗震的基本原理是通过合理的结构布局、选择适当的材料和工艺、采用有效的连接方式,来增强建筑物的抵抗地震力的能力。
关键在于提高结构的抗侧移能力、抗剪切能力和抗轴向拉压能力。
1.2 结构抗震的设计方法结构抗震的设计方法包括静力设计法和动力设计法。
静力设计法是根据结构的自重和静力荷载进行设计,以保证结构在静力下的稳定性。
而动力设计法则是根据地震荷载的特点,考虑结构的动力响应,通过动力分析和计算,保证结构在地震作用下的安全性。
1.3 结构抗震的评估和监测手段对已建成的建筑物进行结构抗震评估可以帮助我们了解其抗震能力并提出改进意见。
评估手段包括建筑物结构档案查阅、目视检查和非破坏性测试等方法。
此外,监测手段可以实时监测建筑物的结构运行状态,包括振动传感器、位移传感器和应力传感器等设备,通过数据的采集和分析,及时发现结构异常,以保证结构安全。
通过以上的方法和手段,我们能够更好地理解结构抗震的原理与方法,并在设计、建造和评估过程中不断完善我们的抗震技术,确保建筑物在地震中具有较好的安全性能。
建筑结构与抗震性能分析

建筑结构与抗震性能分析建筑结构是指支撑和保护建筑物的骨架,承载着各种力的作用。
在地震频繁的地区,建筑结构的抗震性能至关重要。
抗震性能是指建筑结构在地震作用下的表现和承受力。
在设计与建造过程中,建筑师和结构工程师需要考虑许多因素来确保建筑物的安全性和可持续性。
首先,地震的力学作用需要被研究和理解。
地震是指地球上的地壳发生剧烈变动,通过岩石的振动传递到建筑物上。
地震力学是研究这种振动和力的行为。
地震产生的主要力有水平作用力、垂直作用力和扭转作用力。
建筑结构的抗震设计需要考虑这些力的作用以及其对结构的影响。
其次,建筑结构的抗震性能取决于结构的形式和材料的选择。
建筑结构的形式包括框架结构、剪力墙结构和桥梁结构等。
不同形式的结构在地震力下的表现也不同。
例如,框架结构是由纵横两个方向的柱和梁组成,其抗震性能在柱和梁之间的连接点决定。
剪力墙结构则通过墙体的刚性和强度来抵抗地震力。
材料的选择也非常重要,常用的建筑结构材料包括钢筋混凝土、钢材和木材。
这些材料在抗震性能方面有不同的表现,需要根据具体情况进行选择。
第三,建筑结构的抗震性能还与设计和施工的质量密切相关。
在设计阶段,结构工程师需要进行力学和数值模拟分析,以评估结构的抗震性能。
通过识别和解决潜在的问题,可以提高建筑物的抗震能力。
在施工阶段,施工工人需要按照设计要求正确安装结构。
精确的施工和质量控制对于确保建筑结构的抗震性能至关重要。
最后,建筑结构的抗震性能还与维护和监测相关。
建筑结构需要定期维护和检查,以确保其在地震作用下的完整性和稳定性。
监测技术可以用来实时监测结构的变化和损伤,以便及时采取修复和加固措施。
对于一些特定的高风险建筑物,还可以采取主动防御措施,如减震装置和基础隔离系统,来提高其抗震性能。
总结起来,建筑结构的抗震性能是保障建筑物安全的重要因素。
通过研究地震力学、选择合适的建筑结构形式和材料、高质量的设计和施工、以及定期的维护和监测,可以提高建筑物的抗震性能。
建筑抗震能力

建筑抗震能力
地震是一种自然灾害,对建筑物造成的破坏常常是灾难性的。
因此,建筑抗震能力成为衡量建筑物安全性的一个重要指标。
建筑抗震能力指的是建筑物在地震作用下保持稳定性、结构完整性和功能性的能力。
以下将从建筑抗震设计、抗震性能及提高抗震能力等方面进行探讨。
1. 建筑抗震设计
在建筑设计阶段,抗震设计是非常重要的一环。
抗震设计主要包括考虑建筑物所处地区的地震烈度、地质条件、建筑结构特点等因素,通过合理的抗震设计方案来提高建筑物的整体抗震性能。
抗震设计的主要原则包括建筑结构的整体性、耐震性、位移能力等。
2. 抗震性能
建筑物的抗震性能是指建筑物在地震发生后的抗震表现。
主要包括建筑物的承载能力、变形能力、位移能力等。
提高建筑物的抗震性能可以通过加强构造柱、加固连接件、设置减震器等方式来实现。
3. 提高抗震能力
除了在建筑设计阶段进行抗震设计外,还可以通过一些措施来提高建筑物的抗震能力。
例如,定期检查维护建筑物,加固脆弱部位,设置减震装置等。
此外,利用新型材料、新型技术也可以提高建筑物的抗震性能。
综上所述,建筑抗震能力是保障建筑物在地震发生时保持稳定和完整的重要指标。
通过抗震设计、提高抗震性能以及采取相应措施,可以有效提高建筑物的抗震能力,减少地震灾害造成的损失。
建筑行业应当不断加强抗震设计及研究,提高建筑物的抗震能力,确保人民生命财产的安全。
高层建筑结构抗震性能分析

高层建筑结构抗震性能分析随着城市化进程的加快,高层建筑的兴起已成为都市发展的一道靓丽风景线。
然而,高层建筑由于其特殊的结构形式,常常面临地震带来的巨大挑战。
因此,对高层建筑结构抗震性能进行深入分析和研究,具有重要的理论和实践意义。
一、高层建筑结构的特点高层建筑结构通常具有以下几个特点:1. 高度:高层建筑一般高度超过50米,甚至更高。
这种高度特点使得结构容易受到地震力的影响。
2. 自重:高层建筑自身的自重通常较大,使得结构需要更强的抗震能力。
3. 柔性:高层建筑通常采用柔性的结构形式,如钢结构、混凝土框架结构等。
这种柔性使得结构在地震中更容易受到水平荷载的作用。
二、高层建筑抗震设计原则为了确保高层建筑在地震中具备较强的抗震能力,需要遵循以下抗震设计原则:1. 抗震性能目标:确定高层建筑的抗震性能目标,包括地震烈度、安全性能要求等。
2. 结构计算方法:选择合适的结构计算方法,包括静力计算、准静力计算和动力响应谱计算等。
3. 结构材料和形式:选择适当的结构材料和结构形式,如钢结构、混凝土框架结构等。
4. 结构稳定性:保证高层建筑结构的整体稳定性,防止结构在地震中发生局部破坏。
5. 预制与拼装:采用预制和拼装结构,提高结构的整体性能和施工质量。
6. 基础处理:合理设计高层建筑的基础,确保其抗震性能。
三、高层建筑结构抗震分析方法高层建筑结构抗震分析有多种方法,可以根据具体情况选择合适的方法,常用的有:1. 静力分析方法:通过静态荷载计算,分析结构的受力情况和位移响应。
2. 响应谱分析方法:基于地震响应谱,分析结构的动力特性和受力情况。
3. 时程分析方法:通过地震波时程分析,模拟结构在地震中的实际受力情况。
4. 参数分析方法:通过改变结构参数,分析结构的敏感性和抗震性能。
四、高层建筑结构抗震加固与改造对于现有的高层建筑,如何提升其抗震性能是一个重要的问题。
常见的高层建筑结构抗震加固与改造方法有:1. 增加承载力:通过增大柱子和梁的截面,提高结构的抗震能力。
如何评估房屋的地震抗震能力与建筑结构

如何评估房屋的地震抗震能力与建筑结构地震是一种极具破坏性的自然灾害,对房屋的地震抗震能力与建筑结构评估具有重要意义。
评估房屋的地震抗震能力可以为人们提供保护措施和改进建筑结构的建议。
本文将介绍如何评估房屋的地震抗震能力和建筑结构,以及如何提高房屋的地震抗震能力和建筑结构。
1.了解地震抗震设计准则地震抗震设计准则是评估房屋地震抗震能力的基础。
不同地区的地震抗震设计准则可能存在差异。
因此,在评估房屋的地震抗震能力时,需要了解当地的地震抗震设计准则。
这些设计准则通常包括房屋的结构材料、建筑结构的强度要求、基础设计要求等。
2.检查建筑结构的完整性建筑结构的完整性是房屋地震抗震能力的重要指标之一。
评估建筑结构的完整性可以从以下几个方面入手:(1)墙体:检查墙体是否存在开裂、倾斜等损坏情况。
墙体的完好程度对房屋的抗震能力有重要影响。
(2)屋顶:检查屋顶是否存在裂缝、漏水等问题。
强烈的地震力会对屋顶造成巨大的压力,因此屋顶结构的完整性对房屋的地震抗震能力至关重要。
(3)柱子和梁:检查柱子和梁是否存在裂缝、变形等问题。
柱子和梁是房屋的主要承重结构,其完整性直接影响房屋的地震抗震能力。
3.评估地基的稳定性房屋地基的稳定性对地震抗震能力具有重要意义。
评估地基的稳定性可以从以下几个方面入手:(1)地基基本情况:了解地基的类型、土壤情况等。
不同类型的地基对地震的响应也有所不同。
(2)地基的承载能力:评估地基的承载能力是否满足当地的地震抗震设计要求。
(3)地基的沉降情况:检查地基是否存在沉降问题,沉降会对房屋的整体稳定性造成影响。
4.分析房屋的结构材料房屋的结构材料也是评估房屋地震抗震能力的重要指标之一。
不同的结构材料具有不同的抗震性能,评估房屋的结构材料可以从以下几个方面入手:(1)混凝土结构:检查混凝土的强度和质量。
优质的混凝土结构具有更好的抗震性能。
(2)钢结构:检查钢材的质量和连接方式。
优质的钢结构具有更好的韧性和抗震性能。
结构工程抗震分析

结构工程抗震分析地震是地球上常见的自然现象之一,对人类社会造成了严重的威胁。
为了确保建筑物在地震中能够保持稳固并保护人们的生命财产安全,结构工程抗震分析成为了建筑设计中的重要环节。
本文将就结构工程抗震分析的背景、方法和案例进行详细探讨。
一、背景地震是由于地壳内部的构造运动产生的,它可以导致地表的振动,进而对建筑物和人员造成破坏。
地震的破坏性与建筑物本身的结构特点密切相关。
因此,在设计过程中进行抗震分析是至关重要的。
二、方法1. 地震波分析法地震波分析法是应用广泛的一种抗震分析方法。
它通过将地震波作为输入信号,对结构进行动力响应分析,以评估结构在地震荷载下的性能。
该方法需要考虑结构的动力特性、地震波参数以及结构的非线性行为等因素。
通过对结构的动力响应进行模拟和分析,可以估计结构在地震中的受力情况,为结构的设计和改进提供依据。
2. 弹性静力分析法弹性静力分析法是一种常用的简化方法,适用于对刚性或半刚性结构的抗震性能进行初步评估。
该方法假设结构在地震荷载下的响应仅受弹性力的控制,可以通过应力和变形的平衡方程来计算结构的响应。
虽然该方法不考虑结构的非线性性质,但在一些简单结构的抗震设计中仍然具有一定的实用性。
三、案例分析1. 高层建筑抗震设计高层建筑由于其特殊的形态和结构,对于地震的抗力要求更高。
在高层建筑的抗震设计中,常采用地震波分析法进行性能评估。
通过对结构钢筋混凝土核心筒的布置和加固等措施,提升建筑物的整体抗震能力。
此外,还需要在建筑物的设计与施工过程中考虑抗震措施,如采用抗震连接件、提高结构的顶部和底部刚度等。
2. 桥梁抗震设计桥梁是交通运输的重要枢纽,其抗震能力直接关系到公共安全。
在桥梁抗震设计中,需要综合考虑结构的刚度、强度和动力性能等因素。
通过采用合适的横向和纵向连接形式,选择适宜的结构材料和构造方式,以及进行合理的减震设计,可以提高桥梁的抗震能力,减少地震造成的损害。
四、总结结构工程抗震分析是建筑设计中的重要环节,能够提供对结构在地震作用下的响应评估。
几种建筑结构抗震性能比较与分析

几种建筑结构抗震性能比较与分析1. 前言地震是一种突发性的自然灾害,至今可预报性仍然很低。
强烈地震发生时会使建筑物产生沿竖直和水平方向的加速度,给建筑局部构件以严重破坏,严重时甚至造成整体结构的倒塌,并造成人身和财产的巨大损失。
由于建筑物依附在地球表面,建筑物受地震破坏的方式主要受地震波的传播方式影响。
通常,地震对建筑物的破坏有三种方式:上下颠簸、水平摇摆、左右扭转。
多数时候,还是三种方式的复合作用。
地震波传播方式有纵波、横波、面波,由于地球表层岩性的复杂性,传播过程中也会出现像激流中“漩涡”的复杂情况。
我国属地震多发国家,需要考虑抗震设防的地域辽阔。
自五十年代开始,在国际抗震理论的推动下,我国逐渐形成了自己的抗震设防的特色。
经过充分的研究和大量的实践,在2001年新修订的抗震设计规范(gb5001122001)中,建筑物的抗震能力较之前的规范可提高10 %以上,其技术含量达到国际先进水平。
但是受经济实力的限制,我国建筑安全可靠度的设置仍低于欧美等发达国家。
因此研究结构的抗震性能在我国具有充分的必要性。
2. 几种建筑结构的特点及抗震分析目前,我国主要民用建筑的结构主要有三类:底框结构、砌体结构和混凝土结构。
2.1 底框结构底框结构能够在建筑物底层形成大空间,是我国现阶段经济条件下特有的一种结构。
这种结构多用于临街的住宅、办公楼等建筑在底层设置商店、饭店、邮局或银行等。
这样,房屋的上面几层为纵横墙较多的砌体承重结构,而底层则因使用要求上需要大空间的原因采用框架结构形成了砖混底层框架结构。
但这种结构形式在抗震性能方面却是不利的:上部砖混结构部分纵横墙较密,不仅重量大,抗侧移刚度也大,而底框部分抗侧移刚度则较小,形成“上刚下柔”的结构体系。
地震位移反应相对集中于底层,引起底层的严重破坏,从而危及整个房屋的安全。
底框结构建筑因其在使用上的方便性和灵活性而被广泛采用,但是从抗震角度来看它是一种不合理的结构形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑结构抗震能力分析
【摘要】破坏性地震会给国家经济建设和人民生命财产安全造成直接和间接的危害和损失,尤其是强烈的地震会给人类带来巨大的灾害。
目前,每年全世界由地震灾害造成的平均死亡人数达8000-10000 人/次,平均经济损失每次达十亿美元。
尽管如此,地震造成的惨重人员伤亡和巨大的财产损失,主要却是由建筑物的破坏所引起。
因此,如何提高建筑物抗震能力就成为一个人们很关注的问题。
地震是一种危害性极大的自然灾害。
地震造成的惨重人员伤亡和巨大的财产损失,主要是由建筑物的破坏所引起。
抗震就是和地震这种自然灾害进行斗争。
【关键词】地震;建筑结构;抗震能力
1.影响建筑结构抗震能力的主要因素
1.1建造结构所用的材料及施工质量
这个因素是显而易见的,但是也容易被人们忽视。
对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。
一般说在相同条件下,质量大,地震作用就大,震害程度就大;质量小,地震作用就小,震害就小。
所以,在建筑的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材、瓦楞铁等轻质材料,将能显著改善建筑的抗震性能。
施工质量的影响是深远的,在整个施工过程中,任何一个环节出现问题,都可能影响建筑结构本身的抗震能力。
施工中造成的材料性能和截面几何特征在一定范围内变动,砂浆强度、混凝土浇筑质量以及延性构造措施在施工中的变动等施工质量问题,对实际结构抗震性能具有重要影响。
1.2建筑物本身的设计
建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,则会加剧了地震的破坏作用,海城地震和唐山地震中有不少这样的震害实例.台湾921 地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。
抗震设计中,要求结构平面布置尽可能地使结构的刚心和质心相一致,以减小地震作用下结构产生的扭转效应,对于结构平面布置不规则的房屋应注意偏离结构刚心远端抗震墙或框架柱承载力的验算。
建筑立面应避免头重脚轻,结构重心尽可能的降低,出屋面部分如屋顶的女儿墙、水箱间等,由于根部与下部结构连接薄弱,刚度突变,受鞭梢效应影响严重,在地震时容易率先破坏倾倒;另外,其地震作用通过周边的屋面结构传至下部结构,如屋面结构刚度不够时,在突出屋面结构的下部一定范围内破坏相对集中。
1.3建筑场地
地震造成建筑物的破坏,情况是各种各样的,其一,由于地震时的地面强烈运动,使建筑物在振动过程中,因丧失整体性或强度不足,或变形过大而破坏;其二,由于水坝倒塌、海啸、火灾、爆炸等次生灾害所造成;其三,由于断层错动、山崖崩塌、河岸滑坡、地层陷落等地面严重变形直接造成。
前两种可以通过工程措施加以防治,而后一种情况,单靠工程措施很难达到预防目的,或者代价昂贵。
2.建筑结构抗震能力评估方法
建筑结构抗震能力评估方法是高层建筑结构分析的核心内容。
只有对建筑结
构抗震能力正确的评估,才能有预见性的研究出合理而科学的建筑结构。
2.1弹塑性计量法
目前,弹塑性分析已经成为结构抗震设计的一个重要组成部分。
国内外大量地震震害教训表明,建于强震区的早期结构,具有较高的地震易损伤性。
如何评定这些已建结构的抗震性能,并据此进行合理的抗震加固,对最大限度的降低地震震害损失以及保护人民生命财产安全,都具有重要意义。
弹塑性分析法主要用于对现有结构或设计方案进行抗侧力能力的计算,从而估计其抗震能力,自从基于性能的抗震设计理论提出之后,该方法的应用范围逐渐扩大到新建建筑结构的弹塑性抗震分析。
这种方法与传统的抗震静力方法区别主要在于它考虑了结构的弹塑性性能并将设计反应谱引入了计算过程和计算结果的解释。
基本原理是:在结构上施加竖向荷载并保持不变,同时施加某种分布的水平荷载,该水平荷载单调增加,构件逐步屈服,从而得到结构在横向静力作用下的弹塑性性能。
2.2反应谱法
用动力方法计算质点体系地震反应,建立反应谱;再用加速度反应谱计算结构的最大惯性力作为结构的等效地震荷载;然后按静力方法进行结构计算设计的方法,因此,是一种拟静力方法。
我国抗震规范及高层规范都要求在高层建筑中用反应谱方法计算等效地震力,一般有两种方法:第一种是反应谱底部剪力法:当结构高度小于40m,沿高度方向质量刚度分布比较均匀,以第一振型为主的高层建筑;第二种反应谱振型叠加法:当把结构简化为平面结构进行分析时,采用平方和的平方根法(SRSS方法);当采用空间协同分析或空间分析方法时,考虑空间各振型的相互影响,采用完全二次方程法(CQC方法)。
3.提高我国建筑结构抗震能力的建议
3.1对旧有建筑进行加固行动
建成于七十年代前后的建筑物,限于当时的具体条件,基本上都没有或者很少考虑抗震问题,很多房屋现在已经开始出现基础沉降、墙体裂缝、倾斜、面层剥落等现象或隐患,其中部分建筑已影响使用,甚至出现危房。
鉴于拆旧建新投资费用较大,为了确保人民生命财产的安全,充分利用原有旧房,对不符合抗震要求的进行加固,对部分部位及构件进行修缮,以满足抗震设防目标,是十分必要的。
而通常的方法是将结构隔震、消能减震技术应用到建筑物的抗震加固中。
这种方法在某些方面具有独特的优点,它摆脱了常规加固中以构件承载力为主的加固模式,寻求通过减小建筑物上地震作用的途径,从而使结构及构件满足承载力要求,从而达到加固目的。
我国人口众多,地震灾害频繁,因此多途径研究探索既有建筑物的抗震改造加固方法,以满足不同的改造加固要求,对工程结构抗震具有积极的意义。
3.2研究开发更为合理的结构形式
随着科技日益高速发展,自重轻、跨度大、功能多样、施工周期短成为现代建筑结构的发展方向。
因而,研制出轻质高强的新型建筑材料,研究开发合理的结构形式成为各种新型体系结构体系应运而生的前提和基础。
我们可以推荐开合屋盖结构。
这种结构是一种在很短时间内部分或全部屋盖结构可以移动或开合的结构形式,它使建筑物在屋顶开启和关闭两个状态下使用。
开合屋盖是将一个完整的屋盖结构划分成几个可动和固定单元,使可动单元能够按照一定轨迹移动达到屋盖开合运转的目的。
根据开合机理,屋盖体系的开合移动方式可分:水平移动方式、水平旋转移动方式、空间移动方式、绕枢轴转动方式、折叠移动方式和组合移动方式等。
开合屋盖结构的设计与施工涉及到建
筑、结构、机械、控制诸多方面的影响和控制,是一种全方位的知识的理解与运用的结晶。
开合结构体系运用的好坏与它的造型、功能相关,还与其屋盖在开启状态下的开启率、天空形状和亮度,屋盖关闭后的形状、运转和施工难度等许多方面的因素相关。
该种结构在屋顶中心设置液压阻尼器减震,避免了在开合过程中振幅过大导致附属材料之间的互相碰撞。
屋盖移动的轨道上装有地震仪,这一装置保证了该结构在发生地震时的结构安全和正常运转。
虽然现在我国的开合结构还处于起始状态,但是由于开合结构具有的独特优越性,我国的建筑师和结构工程师们已经开始关注这一新型结构体系。
【参考文献】
[1]王彦兴.框剪结构在地震作用的时程分析[J].山西建筑,2010,(01).。