高二数学基本不等式试题
高二数学专项练习:基本不等式训练题

高二数学专项练习:基本不等式训练题为了帮助学生们更好地学习高中数学,查字典数学网精心为大家搜集整理了高二数学专项练习:基本不等式训练题,希望对大家的数学学习有所帮助!高二数学专项练习:基本不等式训练题1.若xy>0,则对xy+yx说法正确的是()A.有最大值-2 B.有最小值2C.无最大值和最小值D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()A.400 B.100C.40 D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:244.已知f(x)=12x+4x.(1)当x>0时,求f(x)的最小值;(2)当x<0 时,求f(x)的最大值.解:(1)∵x>0,12x,4x>0.12x+4x212x?4x=83.当且仅当12x=4x,即x=3时取最小值83,当x>0时,f(x)的最小值为83.(2)∵x<0,-x>0.则-f(x)=12-x+(-4x)212-x??-4x?=83,当且仅当12-x=-4x时,即x=-3时取等号.当x<0时,f(x)的最大值为-83.一、选择题1.下列各式,能用基本不等式直接求得最值的是()A.x+12x B.x2-1+1x2-1C.2x+2-x D.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3 B.-3C.62 D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.3.已知m、nR,mn=100,则m2+n2的最小值是() A.200 B.100C.50 D.20解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b(0,+),ba+ab2ba?ab=2;②∵x,y(0,+),lgx+lgy2lgx?lgy;③∵aR,a0,4a+a 24a?a=4;④∵x,yR,,xy<0,xy+yx=-[(-xy)+(-yx)]-2?-xy??-yx?=-2.其中正确的推导过程为()A.①② B.②③C.③④ D.①④解析:选D.从基本不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合基本不等式的条件,故①的推导过程正确;②虽然x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合基本不等式的条件,4a+a24a?a=4是错误的;④由xy<0得xy,yx均为负数,但在推导过程中将全体xy +yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a>0,b>0,则1a+1b+2ab的最小值是()A.2 B.22C.4 D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab =1时,等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64 B.最大值164C.最小值64 D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x?2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y2x?4y=4xy,xy116.答案:大1169.(2019年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x>0,y>0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x>-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.解:(1)∵x>-1,x+1>0.y=x+4x+1+6=x+1+4x+1+52 ?x+1??4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x>1,x-1>0.(x-1)+9x-1+22?x-1??9x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)?(1b -1)?(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120191600x?225x+12019=36000(元)当且仅当x=225x(x>0),“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
高中数学专题7-1 基本不等式和对钩函数(解析版)

4
4
无法直接使用基本不等式,需要凑配位和定:
f (x) 4x(3 2x) 22x(3 2x) 2( 2x 3 2x)2 9 ;
2
2
再如:f (x) 4x 2 1 直接使用基本不等式,则 f (x) 4x 2 1 2 (4x 2) 1 ,
4x 5
4x 5
4x 5
发现积不定,则需要凑配为积定:
【答案】1
【详解】因为 a 1,所以 a 2 a 1 2 1 2 a 1 2 1 2 2 1,
a 1
a 1
a 1
当且仅当 a 1 2 时取等号.故 m 2 2 1, n 2 1,所以, 2n m 1. 故答案为:1. 2.(2022·云南·屏边苗族自治县第一中学高一阶段练习)( 若 x 2 ,求: x 2 的最小值.
【答案】(1) 9
【详解】(1)由题得 y 4x 1 1 4(x 1) 1 5,
x 1
x 1
因为 x 1,所以 x 1 0 ,
所以 4(x 1) 1 5 2 4(x 1) 1 5 9 ,
x 1
x 1
当且仅当 4(x 1) 1 ,即 x 3 时取得等号,
x 1
2
所以 y 4x 1 1 的最小值为 9 . x 1
y
4x2
9 x2
2
4x2
9 x2
12 ,
当且仅当 4x2
9 x2
,即 x
6 时取等号,
2
所以 ymin 12 , 故选:C.
2.(2022·黑龙江·哈尔滨工业大学附属中学校高二学业考试)若 x 0 ,则 x 1 1的最小 x
值是( )
A.0 【答案】B
B.1
C. 3 2
高二数学一元二次不等式试题

高二数学一元二次不等式试题1.不等式的解集为()A.B.C.D.【答案】D【解析】由,得,即所以,故选D.【考点】一元二次不等式的解法.2.已知不等式的解集为,则不等式的解集为( )A.B.C.D.【答案】B【解析】由已知可得是方程的两根.由根与系数的关系可知,,.代入不等式解得.【考点】本题考查一元二次不等式的解法.3.不等式的解集是()A.B.C.D.【答案】C【解析】先将不等式转化为,结合二次函数的图像可得二次不等式的解集为,选C.【考点】二次不等式.4.某公司欲建连成片的网球场数座,用288万元购买土地20000平方米,每座球场的建筑面积为1000平方米,球场每平方米的平均建筑费用与所建的球场数有关,当该球场建n座时,每平方米的平均建筑费用表示,且(其中),又知建5座球场时,每平方米的平均建筑费用为400元.(1)为了使该球场每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应建几座网球场?(2)若球场每平方米的综合费用不超过820元,最多建几座网球场?【答案】(1)12;(2)18【解析】(1)根据球场建n座时,每平方米的平均建筑费用表示,且(其中),又知建5座球场时,每平方米的平均建筑费用为400元.所以可以求出的值,这样就求出每平方米的平均建筑费用的表达式.另外每平米的购地费用是总费用除以总的建筑面积.再通过应用基本不等式即可得到结论.本小题的关键是购地费用不是总费用除以购买了20000平方米,这也是易错点.(2)由(1)可知球场每平方米的综合费用的表达式,又球场每平方米的综合费用不超过820元,通过解不等式即可得到结论.试题解析:(1)设建成个球场,则每平方米的购地费用为,由题意知,则,所以.所以,从而每平方米的综合费用为(元).当且仅当=12时等号成立.所以当建成12座球场时,每平方米的综合费用最省. 8分(2)由题意得,即,解得:.所以最多建 18个网球场. 12分【考点】1.基本不等式的应用.2.二次不等式的解法.5.设,解关于的不等式.【答案】当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为【解析】由实数的取值是不为零关系到不等的类型,所以要首先考虑的情况;、当时,要解不等式,需要先解方程得两根:2和,可以发现实数的取值对两根的大小起决定作用,故又需要依此对的取值进行分类讨论.试题解析:解:(1)若,则不等式化为,解得 2分(2)若,则方程的两根分别为2和 4分①当时,解不等式得 6分②当时,不等式的解集为 8分③当时,解不等式得 10分④当时,解不等式得或 12分综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为 14分【考点】1、一元一次、一元二次不等式的解法;2、分类讨论的思想.6.不等式对一切R恒成立,则实数a的取值范围是.【答案】.【解析】根据一元二次不等式的解集与二次方程的根及二次函数的图象之间的关系求解,不等式变形为,对一切R恒成,则有解得.【考点】一元二次不等式的解集.7.不等式对一切R恒成立,则实数a的取值范围是.【答案】【解析】根据一元二次不等式的解集与二次方程的根及二次函数的图象之间的关系求解,不等式变形为,对一切R恒成,则有解得.【考点】一元二次不等式的解集.8.设若关于的不等式的解集中的整数恰有3个,则()A.B.C.D.【答案】C【解析】要使关于x的不等式(x-b)2>(ax)2的解集中的整数恰有3个,那么此不等式的解集不能是无限区间,从而其解集必为有限区间,由题得不等式(x-b)2>(ax)2,即(a2-1)x2+2bx-b2<0,它的解应在两根之间,,因此应有 a2-1>0,解得a>1或a<-1,注意到0<b<1+a,从而a>1,,故有△=4b2+4b2(a2-1)=4a2b2>0,,不等式的解集为或者若不等式的解集为又由0<b<1+a得0<<1,故-3<<-2,0<<1,这三个整数解必为-2,-1,0,2(a-1)<b≤3 (a-1),,注意到a>1,并结合已知条件0<b<1+a.,故要满足题设条件,只需要2(a-1)<1+a<3(a-1)即可,则,b>2a-2,b<3a-3,又0<b<1+a,故 1+a>2a-2,3a-3>0解得1<a<3,综上1<a<3.故选C.【考点】本试题主要考查了解一元二次不等式解法,二次函数的有关知识,逻辑思维推理能力,含有两个变量的题目是难题.点评:解决该试题的关键是对于二次不等式的开口方向和因式分解的正确处理。
高二数学不等式的性质试题答案及解析

高二数学不等式的性质试题答案及解析1.根据条件:满足,且,有如下推理:(1)(2) (3) (4) 其中正确的是()A.(1)(2)B.(3) (4)C.(1) (3)D.(2) (4)【答案】B【解析】由,因为,所以,对于的值可正可负也可为0,对于(1)错误,因为,而,所以;对于(2)错误,因为,从而;对于(3)正确,因为,当时,,当时,由;对于(4)正确,因为;综上可知,选B.【考点】不等式的性质.2.设.则下列不等式一定成立的是( )A.B.C.D.【答案】D【解析】由得不到,故A错误.利用基本不等式得,故B错误;令a=-1,b=-1得,即,故C错误;,,故选D.【考点】不等式的基本性质;基本不等式。
3.若,则下列结论不正确的是()A.B.C.D.【答案】D【解析】由已知,则均正确,而故D不正确【考点】不等式的性质4.如果关于x的不等式和的解集分别为和,那么称这两个不等式为对偶不等式. 如果不等式与不等式为对偶不等式,且,则 .【答案】【解析】由题意得:不等式与为对偶不等式.,因此与同解,即与同解,所以【考点】不等式解集5.设,则下列不等式中一定成立的是A.B.C.D.【答案】A【解析】A.故A正确;B中,故B不正确,D中,故D不正确;C中当,故C不正确【考点】不等式的性质6.已知,则下列推证中正确的是()A.B.C.D.【答案】C【解析】A 当时不成立;B 当时不成立;D 当均为负值时,不成立.【考点】本题主要考查不等式的性质.7.已知,则下列说法正确的是 ( )A.若,则B.若,则C.若,则D.若,则【答案】A【解析】当时,B和D均不正确。
当时,若则。
故C不正确。
由不等式的性质可知A正确。
【考点】不等式的性质。
8.设,现有下列命题:①若,则;②若,则;③若,则;④若,则其中正确命题的序号为 .【答案】①,④【解析】因为,现有下列命题:①若即,又.所以成立,即①式成立;因为,令.所以.所以②式不成立;因为令则所以不成立.故③式不成立;因为所以又因为所以.故④式成立.【考点】1.不等式的性质.2.含绝对值的运算.3.含根式的运算.9.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是( )A.[-2,+)B.(-,-2)C.[-2,2]D.[0,+)【答案】A【解析】对一切实数x,恒成立.当时, 恒成立.当时,因为的最大值为-2, 故【考点】恒成立问题,及参数分离法.10.若,,,则A.B.C.D.【答案】A【解析】根据题意,由于>1,,<0,0<<1那么可知其大小关系为,故选A.【考点】对数函数与指数函数的值域点评:解决的关键是根据指数函数与对数函数性质来求解范围,比较大小,属于基础题。
高二数学不等式的性质试题

高二数学不等式的性质试题1.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sin x>sin y D.x3>y3【答案】D【解析】函数y=a x当0<a<1时单调递减,所以x>y;又因为函数y= x3 在R上单调递增,所以x3>y3也可以用特殊值法.【考点】函数的单调性.2.函数在恒为正,则实数的范围是.【答案】【解析】注意到,所以函数在恒为正显然不可能;或,故应填入:.【考点】不等式的恒成立.3.设,,,(e是自然对数的底数),则()A.B.C.D.【答案】D【解析】由于,所以;又因为,从而有,故选D.【考点】比较大小.4.已知满足且,则下列选项中不一定能成立的是( )A.B.C.D.【答案】C【解析】由已知满足且得到:,所以A、B、D一定成立,故选C.【考点】不等式的基本性质.5.已知且,则下列不等式中成立的是( )A.B.C.D.【答案】D【解析】A.当时不成立,同理B.、 C.也不成立,由指数函数的单调性, D.成立【考点】不等式,指数函数的单调性6.已知,则下列推证中正确的是()A.B.C.D.【答案】C【解析】A 当时不成立;B 当时不成立;D 当均为负值时,不成立.【考点】本题主要考查不等式的性质.7.已知,则下列不等关系正确的是()A.B.C.D.【答案】C【解析】A中当时不等式不成立,A错;B中当时,不等式不成立,B错;C中对于,因为在范围内是增函数,当时,不等式成立,所以C正确;D中要使不等式成立需,故选C.【考点】不等式的性质;指数函数与对数函数的单调性.8.如果, 那么()A.B.C.D.【答案】D【解析】利用不等式的性质:故选D【考点】不等式的性质。
9.下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则【答案】D【解析】选项A中忽略了当的情况,故A错;选项B的结论中不等号方向没改变,故B错;选项C中忽略了的情况,故C错;所以正确答案是D.【考点】不等式的基本性质.10.下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则【答案】D【解析】选项A中忽略了当的情况,故A错;选项B的结论中不等号方向没改变,故B错;选项C中忽略了的情况,故C错;所以正确答案是D.【考点】不等式的基本性质.11.若不等式与同时成立,则必有( )A.B.C.D.【答案】C【解析】因为两个不等式同时成立,利用2个等价关系可以得到a与b的关系.又因为所以.故答案为C【考点】不等式的性质12.若a、b、c,则下列不等式成立的是()A.B.C.D.【答案】C【解析】因为,,不等式两边同时乘以或除以一个正数,不等号的方向不变,因此.A答案中或为0则不成立,B答案中要求,D答案中为0则不成立.【考点】不等式的性质.13.下列命题中的真命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】不等式基本性质中,与乘法有关的性质,不等式两边都要是非负数,才可能得出相应的结论,如果出现负数,结论不一定成立.如A中为负数,结论就可能不成立:,但;B中如,但,C中,但,故A、B、C都是错误的,排除A、B、C,只能选D.实际上D中条件不等式右边的是,,不等式两边均非负,可同时平方得.【考点】不等式的基本性质.14.已知,,则A.B.C.D.【答案】C【解析】因为,,,所以,,即,故选C。
高二数学基本不等式试题答案及解析

高二数学基本不等式试题答案及解析1.已知且,则的最大值为 .【答案】【解析】已知且,,因此,.【考点】基本不等式的应用.2.设为正实数,满足,则的最大值为.【答案】【解析】由,原式【考点】基本不等式3.若实数满足,则的最大值___________;【答案】【解析】因为,所以【考点】基本不等式的应用4.若a,b,cÎR+,且a+b+c=1,求的最大值.【答案】【解析】解:∵()2=a+b+c+2() 3分≤1+2()=1+2(a+b+c)=3. 6分∴,当且仅当a=b=c=时取“=”号. 8分【考点】不等式的求解最值点评:主要是考查了运用均值不等式来求解最值,属于基础题5.交通管理部门为了优化某路段的交通状况,经过对该路段的长期观测发现:在交通繁忙的时段内,该路段内汽车的车流量(千辆/时)与汽车的平均速度(千米/时)之间的函数关系为①求在该路段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(精确到千辆/时)②若要求在该时段内车流量超过千辆/时,则汽车的平均速度应限定在什么范围内?【答案】①时,(千辆/时)②【解析】解:①依题意,得=当且仅当,即时,上式等号成立,所以(千辆/时)②由条件得,整理,得即,解得答:当千米/时时,车流量最大,最大车流量约为千辆/时,如果要求在在该时段内车流量超过千辆/时,则汽车的平均速度应大于千米/时且小于千米/时。
【考点】基本不等式;解一元二次不等式点评:求式子的最值,方法可以结合二次函数、函数的导数、基本不等式和三角函数等。
本题就是结合基本不等式。
6.设、为正数,则的最小值为()A.B.C.D.【答案】B【解析】,当且仅当即时等号成立,所以最小值为9【考点】均值不等式点评:利用均值不等式求最值时要注意其成立的条件:都是正数,当和为定值时,乘积取最值,当乘积为定值时,和取最值,最后验证等号成立的条件是否满足7.设求证:【答案】可以运用多种方法。
【解析】证明[法一]:2分10分当且仅当,取“=”号。
2022版新教材高中数学第二章一元二次函数方程和不等式2基本不等式提升训练新人教A版必修第一册

基本不等式基础过关练题组一 对基本不等式的理解1.若a ,b ∈R,且ab >0,则下列不等式恒成立的是 ( ) A.a 2+b 2>2ab B.a +b ≥2√aa C.1a +1a >√aaD.a a +a a≥22.不等式(x -2y )+1a -2a ≥2成立的前提条件为 ( ) A.x ≥2y B.x >2y C.x ≤2y D.x <2y3.(2020山东德州夏津一中高一月考)不等式9a -2+(x -2)≥6(其中x >2)中等号成立的条件是 ( ) A.x =5 B.x =-3C.x =3 D.x =-54.(2020浙江杭州高一月考)下列不等式一定成立的是 ( ) A.3x +12a≥√6 B.3x 2+12a 2≥√6C.3(x 2+1)+12(a 2+1)≥√6D.3(x 2-1)+12(a 2-1)≥√6题组二 利用基本不等式比较大小5.(多选)(2021辽宁葫芦岛高一质量检测)已知两个不等正数a ,b 满足a +b =1,则下列说法正确的是 ( ) A.ab <14 B.1a +1a<4C.√a +√a <√2D.a 2+b 2>126.若0<a <b ,则下列不等式一定成立的是 ( ) A.b >a +a 2>a >√aa B.b >√aa >a +a 2>aC.b >a +a 2>√aa >aD.b >a >a +a 2>√aa7.小W 从A 地到B 地和从B 地到A 地的速度分别为m 和n (m >n ),其全程的平均速度为v ,则 ( ) A.a +a 2<v <m B.n <v <√aaC.√aa <v <a +a 2D.v =a +a 28.若a >b >c ,则a -a 2与√(a -a )(a -a )的大小关系是 .9.某商店出售的某种饮料需分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价a +a 2%,若p ,q >0,且p ≠q ,则提价多的方案是 .题组三 利用基本不等式求最值10.已知实数x ,y >0,则x +y +4a +1a 的最小值为 ( ) A.4√2 B.6 C.2√10 D.3√611.(2020浙江诸暨高二期末)已知函数y =x +4a -1(x >1),则函数的最小值等于 ( )A.4√2B.4√2+1C.5D.912.(2021宁夏大学附属中学高二上期中)若-2<x <0,则函数y =-x (x +2)的最大值为 ( ) A.1 B.2 C.4 D.513.已知a >b >0,则a 2+16a (a -a )的最小值为 ( ) A.8 B.8√2 C.16D.16√214.若正数x ,y 满足x +4y -xy =0,则当x +y 取得最小值时,x 的值为 ( )A.9B.8C.6D.315.(2021江苏溧阳高一期末检测)已知正实数x ,y 满足x +y =1,则1a +1a的最小值是 .16.(2021黑龙江鹤岗第一中学高一上月考)(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)已知x <54,求4x -2+14a -5的最大值.题组四 利用基本不等式证明不等式17.(2021福建三明第一中学高一上月考)已知a ,b 均为正实数,求证:a 2b 2+a 2+b 2≥ab (a +b +1).18.(2021安徽六安城南中学高二上开学考试)已知a ,b ,c 是三个不全相等的正数. 求证:a +a -a a +a +a -a a +a +a -aa>3.19.设x >0,求证:x +22a +1≥32.题组五 利用基本不等式解决实际问题20.某人要用铁管做一个形状为直角三角形且面积为1m 2的铁架框(铁管的粗细忽略不计),在下面四种长度的铁管中,最合理(够用,又浪费最少)的是 ( ) A.4.6m B.4.8m C.5mD.5.2m21.(2020广东广州荔湾高二期末)为满足人民日益增长的美好生活需要,实现群众对舒适的居住条件、更优美的环境、更丰富的精神文化生活的追求,某大型广场计划进行升级改造.改造的重点工程之一是新建一个矩形音乐喷泉综合体A1B1C1D1,该项目由矩形核心喷泉区ABCD(阴影部分)和四周的绿化带组成.规划核心喷泉区ABCD的面积为1000m2,绿化带的宽分别为2m和5m(如图所示).当整个项目A1B1C1D1占地面积最小时,核心喷泉区的边BC的长度为()A.20mB.50mC.10√10mD.100m22.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层,每层建筑面积为4000平方米的楼房.经初步估计得知,若将楼房建为x(x≥12,x∈N*)层,则每平方米的平均建筑费用s=3000+50x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用的最小值是多少? 注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积能力提升练题组一利用基本不等式求最值1.(2020广东惠州高二期末,)已知x>0,y>0,且2x+y=1,则xy的最大值是()A.14B.4C.18D.82.(2021黑龙江大庆实验中学高一上开学考试,)已知a >0,b >0,a +b =1,则a 2+4a +a 2+4a 的最小值为 ()A.6B.8C.15D.173.(2021河北辛集中学高一上月考,)已知a >0,b >0,a +b =4ab ,则a +b 的最小值为 ( )A.12 B.1 C.2 D.44.(2020河南三门峡外国语高级中学高一下期中,)设正数x ,y 满足x 2+a 22=1,则x √1+a 2的最大值为( )A.32 B.3√22C.34D.3√245.(2020浙江丽水高一期末,)设正数a ,b 满足a 2+4b 2+1aa =4,则a = ,b = .6.(2020河北唐山第一中学高一下月考,)已知x >0,则a 2+3a +6a +1的最小值是.7.(2020湖北麻城一中高一月考,)已知a ,b ∈R,且a >b >0,a +b =1,则a 2+2b 2的最小值为 ,4a -a +12a的最小值为 . 8.(2021江苏苏州高一期末,)已知a ,b 均为正实数且ab +a +3b =9,则a +3b 的最小值为 .9.(2021吉林长春东北师范大学附属中学高一上段考,)已知x >0,y >0,4x 2+y 2+xy =1,求:(1)4x 2+y 2的最小值; (2)2x +y 的最大值.题组二 利用基本不等式证明不等式 10.()已知a ,b为正数,求证:1a +4a ≥2(√2+1)22a +a.11.()若a>b,且ab=2,求证:a2+a2a-a≥4.12.(2021湖南长沙长郡中学高一上检测,)已知a>0,b>0,a+b=1,求证:(1)1a +1a+1aa≥8;(2)(1+1a )(1+1a)≥9.13.()(1)已知a,b,c∈R,求证:√a2+a2+√a2+a2+√a2+a2≥√2(a+b+c);(2)若0<x<1,a>0,b>0,求证:a2a +a21-a≥(a+b)2.题组三基本不等式在实际问题中的应用14.(2021山东日照五莲高一上期中,)某工厂过去的年产量为a,技术革新后,第一年的年产量增长率为p(p>0),第二年的年产量增长率为q(q>0,p≠q),这两年的年产量平均增长率为x,则()A.x=a+a2B.x=√aaC.x>a+a2D.x<a+a215.(2020湖北宜昌高三期末,)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似表示为y=12x2-300x+80000,为使每吨的平均处理成本最低,则该厂每月的处理量应为()A.300吨B.400吨C.500吨D.600吨16.(2021山东菏泽第一中学等六校高一上联考,)欲在如图所示的锐角三角形空地中建一个内接矩形花园(阴影部分),则矩形花园面积的最大值为m2.17.(2021四川绵阳南山中学高三上开学考试,)网店和实体店各有利弊,两者的结合将在未来一段时间内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月的运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足关系式x=3-2a+1.已知网店每月固定的各种费用支出为3万元,每1万件产品的进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是万元.18.(2020山东滨州高一上期末,)物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络,其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费为y1(单位:万元),仓库到车站的距离为x(单位:千米),x>0,其中y1与x+1成反比,每月库存货物费y2(单位:万元)与x成正比,若在距离车站9千米处建仓库,则y1和y2分别为2万元和7.2万元.这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最少?最少费用是多少?答案全解全析基础过关练1.D∵a2+b2-2ab=(a-b)2≥0,∴A不符合题意;当a<0,b<0时,明显B,C不符合题意;∵ab>0,∴aa >0,aa>0,∴aa+aa≥2√aa·aa=2,当且仅当a=b时等号成立,∴D符合题意.2.B 因为不等式成立的前提条件是x -2y 和1a -2a均为正数,所以x -2y >0,即x >2y ,故选B .3.A 当x >2时,9a -2+(x -2)≥2√9a -2·(a -2)=6,等号成立的条件是9a -2=x -2,即(x -2)2=9,解得x =5(x =-1舍去).故选A .4.B 对于A,x 可能是负数,不成立;对于B,由基本不等式可知,3x 2+12a 2≥√6,当且仅当3x 2=12a 2,即x 4=16时取等号,故成立;对于C,当3(x 2+1)=12(a 2+1)时,(a 2+1)2=16,x 无解,不成立;对于D,x 2-1可能是负数,不成立.故选B .5.ACD A.因为a ,b 为两个不等正数,所以√aa <a +a 2=12,可得ab <14,故选项A 正确;B.因为1a +1a =a +aaa =1aa,所以由选项A 可知,1aa>4,故选项B 不正确;C.因为(√a +√a )2=a +b +2√aa =1+2√aa ,所以由选项A 可知选项C 正确; D.因为a 2+b 2=(a +b )2-2ab =1-2ab ,所以由选项A 可知,a 2+b 2=1-2ab >12,故选项D 正确.6.C ∵0<a <b ,∴2b >a +b ,∴b >a +a 2>√aa .∵b >a >0,∴ab >a 2,∴√aa >a. 故b >a +a 2>√aa >a.7.B 设从A 地到B 地的路程为s ,小W 从A 地到B 地和从B 地到A 地所用的时间分别为t 1,t 2,则t 1=aa ,t 2=aa ,其全程的平均速度为v =2aa 1+a 2=2aaa +aa=2aaa +a.∵m >n >0,∴v =2aaa +a <2√aa=√aa ,v -n =2aaa +a -n =2aa -aa -a 2a +a=a (a -a )a +a>0,∴n <v <√aa . 故选B . 8.答案a -a 2≥√(a -a )(a -a )解析 因为a >b >c ,所以a -a 2=(a -a )+(a -a )2≥√(a -a )(a -a ),当且仅当a -b =b -c ,即2b =a +c 时,等号成立.9.答案 乙解析 不妨设原价为1,则按方案甲提价后的价格为(1+p%)(1+q%),按方案乙提价后的价格为(1+a +a 2%)2,易知√(1+a %)(1+a %)≤1+a %+1+a %2=1+a %+a %2,当且仅当1+p%=1+q%,即p =q 时等号成立,又p ≠q ,故(1+p%)(1+q%)<(1+a +a 2%)2,所以提价多的方案是乙.10.B ∵x ,y >0,∴x +y +4a +1a≥2√a ·4a+2√a ·1a=4+2=6,当且仅当x =4a且y =1a,即x =2,y =1时等号成立.故选B .11.C 因为x >1,所以y =x +4a -1=(x -1)+4a -1+1≥2√(a -1)·4a -1+1=5,当且仅当x -1=4a -1,即x =3时,等号成立.故选C . 12.A ∵-2<x <0,∴-x >0,x +2>0,∴y =-x (x +2)≤(-a +a +22)2=1,当且仅当-x =x +2,即x =-1时等号成立. 故选A .规律总结 1.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,缺一不可.2.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分,消元或配凑因式.13.C ∵a >b >0,∴由基本不等式的变形可得b (a -b )≤(a +a -a 2)2=a 24,∴a 2+16a (a -a )≥a 2+16a 24=a 2+64a 2≥2√a 2×64a 2=16,当且仅当{a -a =a ,a 2=64a2,即{a =2√2,a =√2时,等号成立.误区警示 利用基本不等式求最值,若需多次应用基本不等式,则要注意等号成立的条件必须一致,如本题中第一次利用基本不等式取等号的条件为b =a -b ,第二次利用基本不等式取等号的条件为a 2=64a 2,故最终的最值应该是在这两个条件下共同取得的. 14.C ∵x >0,y >0,x +4y =xy ,∴4a +1a =1, ∴x +y =(x +y )(4a +1a )=5+a a +4a a ≥5+2√a a ·4aa=9,当且仅当x =2y 时,等号成立,此时{a =2a ,a +4a =aa ,解得{a =6,a =3.故选C . 15.答案 4解析 由题意可得,1a +1a =a +a a+a +aa=2+a a +aa ≥2+2√aa ·aa =4, 当且仅当x =y =12时等号成立.16.解析 (1)∵1=4a +b ≥2√4aa =4√aa ,∴√aa ≤14,∴ab ≤116,当且仅当4a =b ,即a =18,b =12时取等号, 故ab 的最大值为116.(2)∵x <54,∴5-4x >0, ∴4x -2+14a -5=-(5-4a +15-4a)+3≤-2√(5-4a )×15-4a +3=1, 当且仅当5-4x =15-4a ,即x =1时,等号成立,故4x -2+14a -5的最大值为1. 17.证明 由基本不等式得a 2b 2+a 2≥2a 2b ,a 2b 2+b 2≥2ab 2,b 2+a 2≥2ab , 三式相加得2a 2b 2+2a 2+2b 2≥2a 2b +2ab 2+2ab =2ab (a +b +1). 所以a 2b 2+a 2+b 2≥ab (a +b +1).18.证明 ∵a ,b ,c 是三个不全相等的正数,∴三个不等式a a +a a≥2,a a +a a≥2,a a +a a≥2的等号不能同时成立, 则a a +a a +a a +a a +a a +aa >6, ∴(aa +aa -1)+(aa +aa -1)+a a +aa-1>3,即a +a -a a +a +a -a a +a +a -aa>3. 19.证明 因为x >0,所以x +12>0,所以x +22a +1=x +1a +12=x +12+1a +12-12≥2√(a +12)·1a +12-12=32,当且仅当x +12=1a +12,即x =12时,等号成立.故x >0时,x +22a +1≥32.20.C 设直角三角形两直角边长分别为x m,y m,则12xy =1,即xy =2. 周长l =x +y +√a 2+a 2≥2√aa +√2aa =2√2+2≈4.83(m), 当且仅当x =y 时等号成立.结合实际问题,可知选C . 21.B 设BC =x m,则CD =1000am,所以a 矩形a 1a 1a 1a 1=(x +10)(1000a+4)=1040+4x +10000a≥1040+2√4a ·10000a=1440,当且仅当4x =10000a,即x =50时,等号成立,所以当BC 的长度为50m 时,整个项目占地面积最小.故选B . 22.解析 设楼房每平方米的平均综合费用为y 元. 依题意得y =s +8000×100004000a=50x +20000a+3000(x ≥12,x ∈N *).因为50x +20000a+3000≥2×√50a ·20000a+3000=5000,当且仅当50x =20000a,即x =20时,等号成立,所以当x =20时,y 取得最小值5000.所以为了使楼房每平方米的平均综合费用最少,该楼房应建为20层,每平方米的平均综合费用的最小值为5000元.能力提升练1.C 由题意得,xy =12×2xy ≤12×(2a +a 2)2=12×(12)2=18,当且仅当2x =y ,即x =14,y =12时等号成立,所以xy 的最大值是18.故选C . 2.D易得a 2+4a +a 2+4a =a +b +4a +4a =1+4(a +a )aa =1+4aa.又ab ≤(a +a 2)2=14,∴1aa ≥4,∴1+4aa ≥17,∴a 2+4a+a 2+4a ≥17,当且仅当a =b =12时取等号.故选D .3.B ∵a +b =4ab ,a >0,b >0,∴等式两边同除以ab ,得1a +1a =4, ∴a +b =(a +b )·14(1a +1a )=12+14(a a +aa ) ≥12+14×2√a a ·a a =12+12=1, 当且仅当a a =a a ,即a =b =12时取等号.故选B . 4.D ∵正数x ,y 满足x 2+a 22=1,∴2x 2+y 2=2, ∴x √1+a 2=√22×√2x ×√1+a 2≤√22×(√2a )2+(√1+a 2)22=√22×2a 2+a 2+12=3√24,当且仅当{2a 2+a 2=2,√2a =√1+a 2,即{a =√32,a =√22时取等号,∴x √1+a 2的最大值为3√24.5.答案 1;12解析 a 2+4b 2+1aa =(a -2b )2+4ab +1aa ≥(a -2b )2+2√4aa ·1aa =(a -2b )2+4,当且仅当a -2b =0且4ab =1aa ,即a =1,b =12时,等号成立,所以a =1,b =12. 6.答案 5解析 ∵x >0,∴x +1>1,∴a 2+3a +6a +1=(a +1)2+(a +1)+4a +1=x +1+1+4a +1≥2√(a +1)·4a +1+1=5, 当且仅当x +1=4a +1,即x =1时,等号成立, ∴a 2+3a +6a +1的最小值是5.7.答案 23;9解析 因为a +b =1,所以a =1-b ,因为a >b >0,所以0<b <12.所以a 2+2b 2=(1-b )2+2b 2=3b 2-2b +1=3(a -13)2+23,所以当b =13时,a 2+2b 2有最小值且最小值为23. 易得4a -a +12a =41-2a +12a ,故4a -a +12a =(41-2a +12a )(1-2b +2b )=5+8a1-2a +1-2a 2a ≥5+2√8a 1-2a ·1-2a 2a=5+4=9,当且仅当8a1-2a =1-2a 2a,即b =16时等号成立,故4a -a +12a 的最小值为9.8.答案 6解析 ∵ab +a +3b =9,∴a =9-3aa +1,由题意可知,a =9-3aa +1>0,故0<b <3, ∵a +3b =9-3aa +1+3b =12-3(a +1)a +1+3b =12a +1+3(b +1)-6≥2√12a +1×3(a +1)-6=6,当且仅当12a +1=3(b +1),即{a =3,a =1时取等号.方法点睛 求含多个字母的代数式的最值,常见的方法有消元法、基本不等式法等.应用消元法时要注意变元范围的传递.应用基本不等式法时,需遵循“一正、二定、三相等”的原则,如果原代数式中没有积为定值或和为定值,则需要将给定的代数式变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.9.解析 (1)∵4x 2+y 2≥2·2x ·y =4xy ,∴xy ≤4a 2+a 24,当且仅当2x =y 时等号成立,又4x 2+y 2+xy =1,∴1=4x 2+y 2+xy ≤4x 2+y 2+4a 2+a 24,∴4x 2+y 2≥45,当且仅当x =√1010,y =√105时等号成立, ∴4x 2+y 2的最小值是45.(2)由4x 2+y 2+xy =1,得(2x +y )2-1=3xy. 又∵2xy ≤(2a +a )24,当且仅当2x =y 时等号成立,∴(2x +y )2-1≤32×(2a +a )24,解得(2x +y )2≤85,∴2x +y ≤2√105.当且仅当x =√1010,y =√105时等号成立, ∴2x +y 的最大值是2√105.10.证明 因为a >0,b >0,所以(2a +b )(1a +4a )=6+a a +8a a ≥6+2√a a ·8aa=6+4√2=2(√2+1)2(当且仅当b =2√2a 时,等号成立).因为2a +b >0, 所以1a +4a ≥2(√2+1)22a +a.11.证明a 2+a 2a -a =(a -a )2+2aa a -a =(a -a )2+4a -a =(a -b )+4a -a ≥2√(a -a )·4a -a=4,当且仅当a =1+√3,b =-1+√3或a =1-√3,b =-1-√3时等号成立.所以a 2+a 2a -a≥4. 12.证明 (1)∵a +b =1,a >0,b >0, ∴1a +1a +1aa =1a +1a +a +aaa =2(1a +1a ), 1a +1a=a +a a +a +a a=2+a a +a a ≥2+2=4,当且仅当a =b =12时等号成立,∴1a +1a +1aa ≥8.(2)证法一:∵a >0,b >0,a +b =1, ∴1+1a =1+a +a a =2+aa, 同理,1+1a =2+aa ,∴(1+1a )(1+1a )=(2+a a )(2+aa)=5+2(a a +a a )≥5+4=9,当且仅当a =b =12时等号成立, ∴(1+1a )(1+1a)≥9. 证法二:(1+1a )(1+1a )=1+1a +1a +1aa . 由(1)知,1a +1a +1aa≥8,故(1+1a )(1+1a )=1+1a +1a +1aa ≥9,当且仅当a =b =12时,等号成立. 13.证明 (1)∵a +a 2≤√a2+a 22,∴√a 2+a 2≥√2=√22(a +b )(当且仅当a =b 时,等号成立).同理,√a 2+a 2≥√22(b +c )(当且仅当b =c 时,等号成立),√a 2+a 2≥√22(a +c )(当且仅当a =c 时,等号成立).三式相加得√a 2+a 2+√a 2+a 2+√a 2+a 2≥√22(a +b )+√22(b +c )+√22(a +c )=√2(a +b +c )(当且仅当a =b =c 时,等号成立). (2)∵0<x <1,∴1-x >0. 又∵a >0,b >0,∴不等式左边=(x +1-x )(a 2a+a 21-a )=a 2+b 2+a 1-a ·b 2+1-a a ·a 2≥a 2+b 2+2√a 1-a ·a 2·1-a a·a 2=a 2+b 2+2ab =(a +b )2=右边当且仅当a1-a ·b 2=1-aa·a 2,即x =aa +a 时,等号成立.故a 2a +a 21-a≥(a +b )2. 14.D 由题意可得a (1+p )(1+q )=a (1+x )2,即(1+p )(1+q )=(1+x )2. 易得(1+p )(1+q )≤(1+a +1+a 2)2,当且仅当p =q 时取等号,∵p ≠q ,∴(1+p )(1+q )<(1+a +1+a 2)2,则1+x <2+a +a2=1+a +a 2,即x <a +a 2.故选D .15.B 设每吨的平均处理成本为s 元, 由题意可得s =a a =12a 2-300a +80000a=a 2+80000a -300,其中300≤x ≤600.由基本不等式可得a 2+80000a -300≥2√a 2·80000a-300=400-300=100, 当且仅当a 2=80000a,即x =400时,每吨的平均处理成本最低.故选B .16.答案 400解析 如图,设矩形花园的一边DE 的长为x (x >0)m,邻边长为y (y >0)m,则矩形花园的面积为xy m 2,∵花园是矩形,∴△ADE 与△ABC 相似, ∴aa aa =aaaa ,又∵AG =BC =40, ∴AF =DE =x ,FG =y ,∴x +y =40.由基本不等式可得x +y ≥2√aa ,则xy ≤400,当且仅当x =y =20时,等号成立,故矩形花园的面积的最大值为400m 2. 17.答案 37.5解析 由题意,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足x =3-2a +1, 即t =23-a-1(1<x <3),设月利润为y 万元,则y =(48+a 2a )x -32x -3-t =16x -a 2-3=16x -13-a +12-3 =45.5-[16(3-a )+13-a ]≤45.5-2√16=37.5, 当且仅当16(3-x )=13-a ,即x =114时取等号, 故该公司的最大月利润为37.5万元. 18.解析 设y 1=aa +1(k ≠0),y 2=mx (m ≠0),其中x >0.当x =9时,y 1=a9+1=2,y 2=9m =7.2, 解得k =20,m =0.8, 所以y 1=20a +1,y 2=0.8x ,设两项费用之和为z (单位:万元), 则z =y 1+y 2=20a +1+0.8x =20a +1+0.8(x +1)-0.8 ≥2√20a +1·0.8(a +1)-0.8=7.2.=0.8(x+1),即x=4时,等号成立,当且仅当20a+1所以这家公司应该把仓库建在距离车站4千米处才能使两项费用之和最少,最少费用是7.2万元.解题模板已知函数类型的应用问题,可以用待定系数法求出解析式;含分式的函数求最大(小)值,往往利用基本不等式求解,解题时要注意验证基本不等式成立的三个条件.。
高二数学不等式试题

高二数学不等式试题,且恒成立,则n的最大值为( ).1.若a>b>c,n∈N+A.2B.3C.4D.5【答案】C【解析】=.=4.或者(a-c)·=[(a-b)+(b-c)]·所以nmax≥2·2 =4.2.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c ∈(0,1)),已知他投篮一次得分的数学期望为2(不计其他得分情况),则ab的最大值为()A.B.C.D.【答案】【解析】由又,所以,当且仅当时取等号.故答案选【考点】1.离散型随机变量的期望;2.基本不等式.3.若实数满足,则的最小值为_______【答案】18【解析】不等式表示的区域是直线的右上方区域,而表示点(x,y)与点(-3,1)两点的距离的平方。
显然两点间的最小距离为点(-3,1)到直线的距离,所以z的最小值为.【考点】利用几何意义求最值。
4.若为非零实数,且,则下列不等式成立的是()A.B.C.D.【答案】C【解析】:∵实数a,b满足a<0<b,若 a=-3,b=1,则 A、B、D都不成立,只有C成立【考点】不等关系与不等式5.若不等式的解集为,则不等式的解集为()A.B.或C.D.或【解析】由三个二次关系可知方程的解为且,设,所以,所以不等式为,解集为【考点】三个二次关系与一元二次不等式解法6.已知实数,满足不等式组,则关于的方程的两根之和的最大值和最小值分别是()A.,B.,C.,D.,【答案】A【解析】作出不等式组表示的平面区域,如图所示,则关于的方程的两根之和,由图可知当目标函数经过点时取得最大值,=,经过点时取得最小值,,故选A.【考点】简单的线性规划问题.7.不等式的解集是【答案】;【解析】,解集为【考点】分式不等式解集8.设关于x,y的不等式组表示的平面区域内存在点,满足,则m的取值范围是()A.B.C.D.【解析】将化成,将其代入,得,即,由题意,得有解,即,解得,即m的取值范围是;故选C.【考点】不等式组与平面区域.【技巧点睛】本题考查二元一次不等式组和平面区域、不等式组的解的存在性,属于中档题;学生解决本题的常用方法是先画出可行域再思考如何处理,难度较大;本题的解题技巧在于,将平面区域内存在点使成立,利用消元法将其转化为关于的不等式组有解的问题,再利用集合间的关系进行求解.9.(2015秋•宁德校级期中)不等式x2+2x﹣3≤0的解集为()A.[﹣1,3]B.[﹣3,﹣1]C.[﹣3,1]D.[1,3]【答案】C【解析】根据解一元二次不等式的基本步骤,进行解答即可.解:不等式x2+2x﹣3≤0可化为(x+3)(x﹣1)≤0,该不等式对应方程的两个实数根为﹣3和1,所以该不等式的解集为[﹣3,1].故选:C.【考点】一元二次不等式的解法.10.已知,则的最小值是()A.4B.3C.2D.1【答案】A【解析】因为,且,所以;则(当且仅当,即时取等号);故选A.【考点】1.对数的运算;2.基本不等式.11.表示不等式的平面区域(不含边界的阴影部分)是()【答案】A【解析】作出直线,将原点代入不等式不成立,因此不等式表示直线的右上方,因此只有A正确【考点】不等式表示平面区域12.若、满足,且的最小值为,则的值为()A.2B.C.D.【答案】D【解析】对不等式组中的讨论,可知直线与轴的交点在与轴的交点的右边,故由约束条件作出可行域如图,由,令得,,由得,由图可知,当直线过时直线在轴上的截距最小,即最小,此时,解得:,故选D.【考点】1、可行域的画法;2、已知最优解求参数.13.(2015秋•厦门期末)若a>b,c>d,则下列不等式成立的是()A.B.ac>bd C.a2+c2>b2+d2D.a+c>b+d【答案】D【解析】本题是选择题,可采用逐一检验,利用特殊值法进行检验,很快问题得以解决.解:∵a>b,c>d,∴设a=1,b=﹣1,c=﹣2,d=﹣5分别代入选项A、B、C均不符合,故A、B、C均错,而选项D正确,故选:D.【考点】不等式的基本性质.14.给定两个命题:对任意实数都有恒成立;:关于的方程有实数根.如果为假命题,为真命题,求实数的取值范围.【答案】(-∞,0)∪(,4)【解析】先求出,为真命题时的取值范围,由为假命题,为真命题可得,一真一假进行分类讨论求出的取值范围试题解析:命题P:对任意实数x都有ax2+ax+1>0恒成立,则“a=0”,或“a>0且a2-4a<0”.解得0≤a<4.命题:关于x的方程x2-x+a=0有实数根,则Δ=1-4a≥0,得a≤.因为P∧为假命题,P∨为真命题,则P,有且仅有一个为真命题,故∧为真命题,或P∧为真命题,则或解得a<0或<a<4.所以实数a的取值范围是(-∞,0)∪(,4).【考点】简单的逻辑用语的应用.【方法点睛】(1)正确理解逻辑连接词“或”、“且”,“非”的含义是关键,解题时应根据组成各个复合命题的语句中所出现的逻辑连接词进行命题结构与真假的判断,其步骤为:①确定复合命题的构成形式;②判断其中简单命题的真假;③判断复合命题的真假;(2)解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算;(3)注意或为真,且为假说明一真一假.15.若不等式ax2+bx-2>0的解集为则a,b的值分别是()A.B.C.D.【答案】C【解析】由不等式的解集可知方程的根为解方程得【考点】三个二次关系16.已知实数x、y满足,若不等式恒成立,则实数a的最小值是.【答案】【解析】不等式对应的可行域为直线围成的三角形及其内部,其中三个顶点为,设,不等式变形为恒成立最大值为,所以实数a的最小值是【考点】1.线性规划;2.不等式性质17.某人需要补充维生素,现有甲、乙两种维生素胶囊,这两种胶囊都含有维生素,,,和最新发现的.甲种胶囊每粒含有维生素,,,,分别是1mg,1mg,4mg,4mg,5mg;乙种胶囊每粒含有维生素,,,,分别是3mg,2mg,1mg,3mg,2mg.此人每天摄入维生素至多19mg,维生素至多13mg,维生素至多24mg,维生素至少12mg.(1)设该人每天服用甲种胶囊粒,乙种胶囊粒,为了能满足此人每天维生素的需要量,请写出,满足的不等关系.(2)在(1)的条件下,他每天服用两种胶囊分别为多少时,可摄入最大量的维生素.并求出最大量.【答案】(1)详见解析;(2)服用5粒甲种胶囊和4粒乙种胶囊时,可摄入最大量的维生素为33mg【解析】(1)直接由题意列出关于x,y的不等关系所组成的不等式组;(2)由(1)中的不等式组作出可行域,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案试题解析:(1).(2)目标函数为:作出以上不等式组所表示的平面区域,即可行域.作直线:,把直线向右上方平移,直线经过可行域上的点时,取得最大值.解方程组得点坐标为,此时(mg).答:每天服用5粒甲种胶囊和4粒乙种胶囊时,可摄入最大量的维生素为33mg.【考点】线性规划问题的实际应用18.已知常数,解关于的不等式【答案】当,原不等式为;当时,原不等式的解集为或.;当时,时,原不等式的解集为.当时,原不等式的解集为.【解析】讨论是否为0.当,再讨论的正负,同时讨论其判别式.当判别式大于0时注意两根的大小,画抛物线结合图像可解不等式.试题解析:解(1)若,则原不等式为,故解集为.(2)若①当,即时,方程的两根为,∴原不等式的解集为.②当时,即时,原不等式的争集为.③当,即时,原不等式的争集为.(3)若.①当,即,原不等式的解集为或.②当时,时,原不等式化为,∴原不等式的解集为.③当,即时,原不等式的解集为综上所述,当时,原不等式的解集为;当原不等式的解集为;当,原不等式为;当时,原不等式的解集为或.;当时,时,原不等式的解集为.当时,原不等式的解集为.【考点】一元二次不等式.19.若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.a+c≥b﹣c B.ac>bc C.>0D.(a﹣b)c2≥0【答案】D【解析】A、令a=﹣1,b=﹣2,c=﹣3,计算出a+c与b﹣c的值,显然不成立;B、当c=0时,显然不成立;C、当c=0时,显然不成立;D、由a大于b,得到a﹣b大于0,而c2为非负数,即可判断此选项一定成立.解:A、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;B、c=0时,ac=bc,本选项不一定成立;C、c=0时,=0,本选项不一定成立;D、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项一定成立,故选D【考点】两角和与差的正弦函数;正弦定理.20.若不等式ax2+bx+2>0的解集为{x|﹣},则a+b= .【答案】﹣14【解析】利用不等式的解集与方程解的关系,结合韦达定理,确定a,b的值,即可得出结论.解:∵不等式ax2+bx+2>0的解集为{x|﹣},∴﹣和为方程ax2+bx+2=0的两个实根,且a<0,由韦达定理可得,解得a=﹣12,b=﹣2,∴a+b=﹣14.故答案为:﹣14.【考点】一元二次不等式的应用.21.已知a,b,c都是正实数,求证(1)≥a+b+c.【答案】(1)(2)证明见解析【解析】(1)利用分析法证明,由于a,b,c都是正实数,所以最终只需要证明:(a﹣b)2≥0;(2)根据不等式特点,先利用基本不等式证明,,从而得证.证明:(1)要证即证:a2≥2ab﹣b2即证:(a﹣b)2≥0显然成立,故得证;(2)∵a,b,c都是正实数,∴,相加,化简得≥a+b+c.【考点】不等式的证明;其他不等式的解法.22.如果实数x、y满足条件,那么2x﹣y的最大值为()A.2B.1C.﹣2D.﹣3【答案】B【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大值即可.当直线过点时,最大为1.故选B.【考点】简单线性规划的应用.23.命题“恒成立”则实数的取值范围为 ;【答案】【解析】当时,不等式恒成立;当,不等式恒成立,则,解得;因此实数的取值范围为【考点】恒成立问题;24.设满足约束条件,若目标函数的最大值为1,则的最小值为________.【答案】【解析】画出可行域如下图所示,由得,平移直线,由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.【考点】1、线性规划;2、基本不等式.【方法点晴】题目分成两个部分,每个部分用相应的知识点来解决,第一部分是线性规划,先画出可行域,将目标函数移到取得最大值为,这样就求出了的一个关系式;第二部分是基本不等式,求此类基本不等式的方法是“”的代换,也就是,展开后就可以用基本不等式求解了,最后要注意等号是否成立.25.若关于的不等式有解,则实数的取值范围是 _________.【答案】【解析】由题意得,关于的不等式有解,所以的最小值小于,而表示数轴上的对应点到对应点的距离之和它的最小值为,所以有,可得.【考点】绝对值不是的解法及绝对值的意义.【方法点晴】本题主要考查了绝对值的几何意义、绝对值不等式的解法,函数的恒成立问题的求解,着重考查了转化与化归的思想方法,属于中档试题,本题的解答中,根据关于的不等式有解,转化为的最小值小于,再利用绝对值的几何意义,得到的最小值为,即可列出不等式关系,求解出的范围.26.若不等式组表示的平面区域为三角形,其面积等于,则的值为A.B.C.D.【答案】B【解析】易知直线只有有图中位置,题设不等式组才能表示一个三角形区域,计算得,,,(),直线与轴交点为,由,解得或(舍去),故选B.【考点】二元一次不等式组表示的平面区域.【名师】要作出二元一次不等式组表示平面区域关键是作出二元一次不等式表示的平面区域,在平面直角坐标系中,平面内所有的点被直线Ax+By+C=0分成三类:(1)满足Ax+By+C=0的点;(2)满足Ax+By+C>0的点;(3)满足Ax+By+C<0的点.27.已知,,,则三者的大小关系是()A.B.C.D.【答案】A【解析】【考点】比较大小28.若实数满足条件,则的最大值为________.【答案】4【解析】由图可得当取到:时,最大,为4【考点】线性规划中的最优解问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学基本不等式试题1.下列结论中正确的是A.的最小值为B.的最小值为C.的最小值为D.当时,无最大值【答案】B【解析】使函数有意义,则,当且仅当,即取到等号;对于可能小于0,对于当且仅当,即时取等号,但的最大值为1,错;对于在上为增函数,因此有最大值.【考点】基本不等式的应用.2.下列各式中,最小值是2的是()A.B.C.D.【答案】C【解析】,当且仅当,即,取得最小值,故选择C,不选择A的原因是不满足是正数的条件,不选择B的原因是中的等号不成立,不选择D的原因是该式没有最小值,所以运用均值不等式求最值,一定要注意“一正、二定、三相等”是否都具备,缺一不可.【考点】利用均值不等式求最值.3.若直线始终平分圆的周长,则的最小值为 ( )A.1B.5C.D.【答案】D【解析】由题可知直线进过圆心,即有.为求,可以利用前面的条件换掉,得,但考虑到不好求值,另寻它法.即将“1”.“2”换成,则有,故选D.【考点】巧用“1”和基本不等式证明不等式.4.已知,且,则的最小值是_______.【答案】9【解析】∵a+b=ab,∴,∴,当且仅当时,“=”成立,∴最小值为9.【考点】基本不等式求最值.5.已知,若恒成立,则实数的取值范围【答案】【解析】由题,则,则恒成立即恒成立,则【考点】基本不等式,恒成立问题6.已知x,y,z均为正数.求证:.【答案】不等式的证明可以考虑运用均值不等式法来得到。
【解析】证明:∵x,y,z都是为正数,∴. 4分同理,可得,. 6分将上述三个不等式两边分别相加,并除以2,得. 8分【考点】均值不等式点评:主要是考查了均值不等式的求证不等式的运用,属于中档题。
7.已知,,,则的最小值为.【答案】【解析】因为,,,,所以,=,当且仅当且时,的最小值为。
【考点】均值定理的应用点评:简单题,应用均值定理,要注意“一正,二定,三相等”,缺一不可。
8.已知函数在时取得最小值,则__________.【答案】36【解析】根据题意,由于函数在时取得,即时取得最小值故可知36,故答案为36.【考点】函数的最值点评:主要是考查了函数的最值的求解,属于基础题。
9.设均为正数,且,则的最小值为 .【答案】【解析】根据题意,由于均为正数,且,则可知,那么利用均值不等式可知,的最小值为,故答案为。
【考点】均值不等式点评:主要是考查了均值不等式的求解最值的运用,属于基础题。
10.已知实数满足,,则c的最大值为______.【答案】【解析】因为,所以。
将化为,再化为。
所以,解得,所以c的最大值为。
【考点】基本不等式点评:本题主要是应用基本不等式:,这个式子在求最值方面有很大作用。
11.交通管理部门为了优化某路段的交通状况,经过对该路段的长期观测发现:在交通繁忙的时段内,该路段内汽车的车流量(千辆/时)与汽车的平均速度(千米/时)之间的函数关系为①求在该路段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(精确到千辆/时)②若要求在该时段内车流量超过千辆/时,则汽车的平均速度应限定在什么范围内?【答案】①时,(千辆/时)②【解析】解:①依题意,得=当且仅当,即时,上式等号成立,所以(千辆/时)②由条件得,整理,得即,解得答:当千米/时时,车流量最大,最大车流量约为千辆/时,如果要求在在该时段内车流量超过千辆/时,则汽车的平均速度应大于千米/时且小于千米/时。
【考点】基本不等式;解一元二次不等式点评:求式子的最值,方法可以结合二次函数、函数的导数、基本不等式和三角函数等。
本题就是结合基本不等式。
12.设,则有()A.B.C.D.【答案】B【解析】根据题意,由于,那么根据均值不等式性质可知,,故可知成立,而对于,当a=1,b=3不成立,排除A,当a=b=1, 选项C错误,选项D错误,故选B.【考点】均值不等式点评:不等式的性质13.设,则函数的最大值是__________【答案】【解析】根据题设,则函数,故可知等号成立的条件是,故答案为。
【考点】均值不等式点评:解决该试题的关键是根据已知的变量为正数,利用均值不等式的思想求解最值,属于基础题。
14.已知正数、满足,则的最小值是【答案】【解析】解:∵x>0,y>0,∴xy≤( )2,又x+y=xy,∴x+y≤()2,∴(x+y)2≥4(x+y),∴x+y≥4.故答案为:4【考点】基本不等式点评:本题考查基本不等式,利用基本不等式将已知条件转化为关于x+y的二次不等式是关键,属于基础题.15.若且则的最小值为()A.B.C.D.【答案】C【解析】∵,∴选C【考点】本题考查了基本不等式的运用点评:“1”的代换是解决此类问题的常用方法16.函数y=x++5(x>1)的最小值为()A.5B.6C.7D.8【答案】D【解析】当且仅当即时等号成立,取得最小值8【考点】均值不等式求最值点评:均值不等式求最值注意验证等号成立条件是否满足17.若,则的最小值是()A.B.C.2D.3【答案】D【解析】因为,则,当且仅当取得等号,故表达式的最小值为3,选D.【考点】本题主要考查均值不等式的求解最值的运用。
点评:解决该试题的关键是能根据题目中a的范围,构造一正二定三相等的特点来得到函数表达式的最值,也可以运用函数单调性来得到结论。
18.下列命题中,①的最小值是2;②的最小值是2;③的最小值是2;④的最小值2,正确的有()A.1个B.2个C.3个D.4 个【答案】A【解析】①错.因为x<0时不成立;②.正确;③错;④,错;故正确的命题只有一个19.已知,函数的最小值是()A.5B.4C.8D.6【答案】B【解析】因为,函数,选B20.将8分为两数之和,使其立方之和最小,则分法为( )A.2和6B.4和4C.3和5D.以上都不对【答案】B【解析】解:因为将8分为两数之和,8=x+y,使其立方之和x3+y3最小时,利用均值不等式和立方和公式得到分法为4和4.选B21.已知为不相等的正实数,则三个数的大小顺序是【答案】A【解析】解:由基本不等式可得,,所以。
22.,求证:【答案】见解析【解析】本试题主要是考查了均值不等式的运用,来证明不等式。
可以运用作差法也可以晕过分析法,也可以运用综合法得到。
或者向量法都可以法一:(作差比较),当且仅当时等号成立法二:(作商比较)①时,显然成立②,,当且仅当时等号成立法三:,当且仅当时等号成立法四:(反证法)假设与矛盾,故假设不成立,即原不等式成立。
法五:(不等式)设,当且仅当时等号成立23.(1)若,,求证:;(2)已知,且, 求证:与中至少有一个小于2.【答案】见解析【解析】第一问利用均值不等式,可知第二问中,证明:(1)(2)24.函数()的最大值是()A.0B.C.4D.16【解析】解:因为25.若方程的任意一组解都满足不等式,则的取值范围是()A.B.C.D.【答案】A【解析】解:由题意,方程(x-2cosθ)2+(y-2sinθ)2=1(0≤θ≤2π)表示的曲线在x=y的左上方(包括相切),则26.若,且.当时,c的最大值是()A.B.C.D.【答案】A【解析】,所以,所以的最大值是,故选A27.不等式组表示的平面区域的面积是___________【答案】【解析】略28.已知,且,则的最大值为()A.B.C.D.【答案】C【解析】,当且仅当时,即,是等号成立,所以的最大值为。
29.若,则的最小值为【答案】30.若实数a、b满足a+b=2,是的最小值是()A.18B.6C.2D.2【答案】B【解析】当且仅当时,等号成立;故选B31.若,则的最小值是( )A.B.C.D.不存在【答案】B【解析】【考点】基本不等式.专题:计算题.分析:先将函数解析式变形为2x+2x+ ,凑出乘积为定值,然后利用基本不等式求出函数的最小值.解答:解:因为x>0,又=2x+2x+≥3=3,当且仅当2x=时取等号,所以4x+的最小值是3,故选B.点评:本题考查利用基本不等式求函数最值,注意利用基本不等式使用的条件是:一正、二定、三相等,属于基础题.32.若,则的最小值是( )A.B.C.D.不存在【答案】B【解析】【考点】基本不等式.分析:先将函数解析式变形为2x+2x+ ,凑出乘积为定值,然后利用基本不等式求出函数的最小值.解答:解:因为x>0,又4x+=2x+2x+≥3=3,当且仅当2x=时取等号,所以4x+的最小值是3,故选B.点评:本题考查利用基本不等式求函数最值,注意利用基本不等式使用的条件是:一正、二定、三相等,属于基础题.33.已知,则的最小值是.【答案】4【解析】本题考查均值定理由指数运算的性质有,则;因为,所以其中等号当且仅当即时成立即当时,的最小值是34.设,试求x+2y+2z的最大值【答案】15【解析】略35.(本小题满分12分)已知,求证:.【答案】证明:要证成立4分只需证成立 4分只需证 6分只需证只需证 8分只需证只需证………10分而显然成立,则原不等式得证.…………12分【解析】略36.12分)已知,,求的范围。
【答案】【解析】略37.设则有最小值()A.4B.8C.10D.12【答案】B【解析】略38.正数满足,则的取值范围是.【答案】【解析】由得ab=a+b+3.【考点】均值不等式的应用39.已知,,若不等式恒成立,则的最大值为()A.10B.9C.8D.7【答案】B【解析】由已知可得,所以,所以即,答案选B.【考点】基本不等式的应用40.函数的图象恒过定点,若点在直线上,则的最小值为()A.3B.4C.5D.6【答案】B【解析】令,得,即;在直线,;则(当且仅当,即时,取等号).【考点】1.函数过定点;2.基本不等式.。