不等式典型练习进步题

合集下载

不等式与不等式组练习进步题

不等式与不等式组练习进步题

不等式与不等式组练习题1.不等式组123x x -≤⎧⎨-<⎩ 的解集是( )A . x ≥ -1B . x <5C . -1≤ x <5D . x ≤ -1或 x <52.若不等式组的解集为-1≤x ≤3,则图中表示正确的是( )A .B .C .D .3.解不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩例:3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务,每个小组原先每天生产多少件产品?分析:“不能完成任务”的意思是:按原先生产速度,10天的产品数量500;“提前完成任务”的意思是提高生产速度后,10天的产量500。

1、一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完,李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)2、某商品的售价是150元,商家售出一件这种商品可获利润是进价的10%—20%,进价的范围是什么?(精确到1元)3、用每分时间可抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果用B 型抽水机,估计20分到22分可以抽完,B型抽水机比A型抽水机每分约多抽多少吨水?1、某市自来水公司按如下标准收取水费,每户每月用水不超过5立方米,则每立方米收费1.5元;若每户每用水超过5立方米,则超出部分每立方米收费2元,小明家某月用水费不少于15元,那么他家这个月的用水量至少是多少?2、有一个两位数,其十位数字比个位数字大2,这个两位数在50和70之间,你能求出这个两位数吗?3、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满。

有多少间宿舍,多少名女生?1、当k_____时,不等式 是一元一次不等式;2、若-a >a ,则a 必为()A.负整数B.正整数C.负数D.正数3.用不等号填空:若,5______5;4______4;_____33a ba b a b a b >----则。

通用版数学不等式专项练习有答案解析

通用版数学不等式专项练习有答案解析

不等式专项练习一、单选题1.若函数221y ax ax =++的图像恒在直线2y =−上方,则实数a 的取值范围为( ) A .()0,3B .[)0,3C .()3,+∞D .{}()03,∞⋃+2.已知对于任意实数2,20x kx x k −+>恒成立,则实数k 的取值范围是( ) A .1k > B .11k −<< C .1k <−D .1k >−3.若实数a 、b 满足0a b >>,下列不等式中恒成立的是( )A .a b +>B .a b +<C .22ab +>D .22ab +<4.已知,R a b ∈,则“1a >或1b >”是“2a b +>”的( )条件. A .充分非必要 B .必要非充分 C .充分必要 D .既非充分又非必要5.如果0,0a b <>,那么下列不等式中正确的是( )A .22a b <BC .a b >D .11a b< 6.已知0ax b −>的解集为(,2)−∞,关于x 的不等式2056ax bx x +≥−−的解集为( )A .(,2](1,6)−∞−−B .(,2](6,)−∞−+∞C .[2,1)(1,6)−−−D .[2,1)(6,)−−+∞7.设关于x 的一元二次不等式20ax bx c ++≤与20dx ex f ++≤的解集分别为(][),23,−∞⋃+∞与∅,则不等式()()220ax bx c dx ex f ++++≥的解集为( )A .()2,3B .[]2,3C .RD .∅二、填空题8.若不等式2|2||1|2x x a a −++≥−对任意的R x ∈恒成立,则实数a 的取值范围是___________.x a10.不等式213x x+≤的解集为________. 11.已知0,0x y >>,且211x y+=,则2x y +的最小值是___________.12.不等式()40x −≥的解集是___________. 13.若正实数a 、b 满足431a b+=,则a b +的最小值是______.14.已知集合{}21S x kx kx =+>,若R S =,则实数k 的取值范围是______15.2310x x −−=的两根分别是1x 和2x ,则1211x x +=___________. 16.已知0x y <<,则21x +与21+y 的大小关系为___________.17.设,x y ∈R ,若|||4||||1|5x x y y +−++−≤,则23x y xy −+的取值范围为___________.18.已知a b c ∈R 、、,下列命题中正确的是______(将正确命题的序号填在横线上) ①若a b >,则22;ac bc > ②若0a b >>,则11a b<; ③若0ba>,则0ab >; ④若a b c >>,则||||a b b c +>+.19.已知m 为常数,若关于x 的方程()222(1)310x m x m m −−+−+=有两个实数根12,x x ,且12121−−=x x x x ,则m 的值为_______:20.已知实数a 、b 满足2222a b +=,则()()2211a b ++的最大值为___________.21.不等式组230,340.x x x −>⎧⎨−−>⎩的解集为_________.22.关于x 的不等式220ax bx ++>的解集为3{|}2x x −<<,则b 的值为___.23.已知 0,0a b >>, 且1ab =, 则 21123234a b a b+++ 的最小值为_____.24.若命题“关于x 的不等式2210x cx ++>的解集为R ”是真命题,则实数c 的取值范围是___________25.已知关于x 的不等式()226300x ax a a −+−≥>的解集为[]12,x x ,则12123ax x x x ++的最小值是___________.26.若223x a x x −+≤−++对x ∈R 恒成立,则实数a 的取值范围是__________.27.设二次函数()()22,f x mx x n m n =−+∈R ,若函数()f x 的值域为[)0,∞+,且()12f ≤,则222211m n n m +++的取值范围为___________.28.设实数a ,c 满足:35a −<<,23c −<<,若m a c =−,则m 的取值范围为__________三、解答题29.解关于x 的一元二次不等式()2330x a x a −++>.30.命题“已知,R a b ∈,若0a >且0b >,则11222a b a b+≥+”,判断命题的真假,并证明.31.关于x 的不等式组()222022550x x x k x k ⎧−−>⎪⎨+++<⎪⎩的整数解的集合为A .(1)当3k =吋,求集合A :(2)若集合{}2A =−,求实数k 的取值范围: (3)若集合A 中有2019个元素,求实数k 的取值范围.32.解不等式 (1)2332x x −>− (2)1144x x x≤−−−33.不等式220ax x a −+≥对任意x D ∈恒成立. (1)若R D =,求实数a 的取值范围; (2)若[1,2]D =,求实数a 的最小值.34.设1234,,,a a a a 是四个正数. (1)已知3124a a a a <,比较12a a 与1324a a a a ++的大小;(2)已知()()()()1234111116a a a a ++++<,求证:1234,,,a a a a 中至少有一个小于1.35.记关于x 的不等式1101a x +−<+的解集为P ,不等式23x +<的解集为Q . (1)若3a =,求P ;(2)若P Q Q ⋃=,求实数a 的取值范围.36.已知不等式24216k x k k +≤++(),其中x ,k ∈R . (1)若x =4,解上述关于k 的不等式;(2)若不等式对任意k ∈R 恒成立,求x 的最大值.参考答案:1.B【分析】根据给定条件,借助一元二次不等式恒成立求解作答.【详解】因函数221y ax ax =++的图像恒在直线2y =−上方,则R x ∀∈,2212ax ax ++>−成立,即2230ax ax ++>恒成立, 当0a =时,30>恒成立,则0a =,当0a ≠时,必有0a >且2(2)430a a ∆=−⋅<,解得0<<3a ,综上得03a ≤<, 所以实数a 的取值范围为[)0,3. 故选:B 2.A【分析】讨论0k =、0k ≠,根据不等式恒成立,结合二次函数性质列不等式组求范围. 【详解】当0k =时,20x −>不恒成立; 当0k ≠时,24(1)0k k >⎧⎨∆=−<⎩,所以1k >; 综上,1k >. 故选:A 3.A【分析】利用作差法可判断各选项中不等式的正误.【详解】因为0a b >>,则20a b +−=>,故a b +>A 对B 错;222022a a b b +−=+−≥,即22a b +≥ 当且仅当22ab =时,即当4a b =时,等号成立,CD 都错. 故选:A. 4.B【分析】根据充分必要条件的定义判断.【详解】当1a >或1b >时,如2a =,3b =−,此时1a b +=2<,因此不充分, 若1a ≤且1b ≤,则2a b a b +≤+≤,因此是必要的. 即为必要不充分条件.5.D【分析】对A,B,C ,举反例判定即可,对D ,根据110a b<<判定即可【详解】对A ,若2,1a b =−=,则22a b <<AB 错误; 对C ,若1,2a b =−=,则a b >不成立,故C 错误; 对D ,因为110a b<<,故D 正确; 故选:D 6.A【分析】根据给定解集可得20b a =<,再代入分式不等式求解即得. 【详解】因0ax b −>的解集为(,2)−∞,则0a <,且2ba=,即有2,0b a a =<, 因此,不等式2056ax bx x +≥−−化为:22056ax a x x +≥−−,即22056x x x +≤−−, 于是有:220560x x x +≤⎧⎨−−>⎩或220560x x x +≥⎧⎨−−<⎩,解220560x x x +≤⎧⎨−−>⎩得2x −≤,解220560x x x +≥⎧⎨−−<⎩得16x −<<,所以所求不等式的解集为:(,2](1,6)−∞−−. 故选:A 7.B【分析】根据条件求出20dx ex f ++>和20ax bx c ++≥的解集,进而可得()()220axbx c dx ex f ++++≥的解集.【详解】20dx ex f ++≤的解集为∅, 则20dx ex f ++>的解集为R.20++≤ax bx c 的解集为(][),23,−∞⋃+∞,则20ax bx c ++≥的解集为[]2,3,()()220ax bx c dx ex f ∴++++≥转化为20ax bx c ++≥所以不等式()()220ax bx c dx ex f ++++≥的解集为[]2,3.8.[1,3]−【分析】先利用三角不等式求出|2||1|x x −++的最小值为3,然后解不等式232a a ≥−可得答案【详解】因为21213x x x x −++≥−++=,当且仅当(2)(1)0x x −+≥时取等号, 所以|2||1|x x −++的最小值为3,因为不等式2|2||1|2x x a a −++≥−对任意的R x ∈恒成立, 所以232a a ≥−,即2230a a −−≤,解得13a −≤≤, 即实数a 的取值范围是[1,3]−, 故答案为:[1,3]− 9.9【分析】利用参变量分离法可知9a ≥,再利用基本不等式可得出关于a 的等式,即可得解.【详解】由题意可知()2521xxa f x =+≥+对任意的x ∈R 恒成立,即()()5221x xa ≥−+, 另一方面()()()()22522124252299x x x x x −+=−+⋅+=−−+≤,当且仅当22x =时,即当1x =时,等号成立,所以,9a ≥,另一方面,由基本不等式可得()()2111521xx af x =++−≥=+,可得9a =, 当且仅当213x +=时,即当1x =时,等号成立,故9a =. 故答案为:9. 10.()[),01,−∞⋃+∞【分析】移项通分后转化为一元二次不等式后可得所求的解. 【详解】不等式213x x +≤可化为10xx −≤,也就是()100x x x ⎧−≤⎨≠⎩, 故0x <或1≥x ,故答案为:()[),01,−∞⋃+∞. 11.8【分析】根据基本不等式结合()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭求解即可.【详解】()214222248x y x y x y x y y x ⎛⎫+=++=+++≥+= ⎪⎝⎭, 当且仅当4x yy x=,即4,2x y ==时取等号. 故答案为:8.12.[){}{}4,31+∞⋃⋃−【分析】根据不等式特点得到2230x x −−≥且40x −≥,解不等式,求出交集即为答案.0≥,且2230x x −−≥,解得3x ≥或1x ≤−, 当3x =或1x =−时,不等式成立;当3x >或1x <−时,则40x −≥,解得:4x ≥,所以4x ≥; 综上,不等式的解集为[){}{}4,31+∞⋃⋃− 故答案为:[){}{}4,31+∞⋃⋃−13.7+7【分析】利用基本不等式“1”的代换求目标式最小值,注意取值条件.【详解】因为a 、b 均为正实数,且431a b+=,所以()()43437b aa b a b a b a b+=++=++77≥+=+当且仅当26b ==+时取等号,所以a b +的最小值是7+故答案为:7+14.[)0,4【分析】根据题意可得21+>kx kx 在R 上恒成立,根据二次不等式在在R 上恒成立运算求解,注意讨论0k =与0k ≠两种情况.【详解】由题意可得:21+>kx kx 在R 上恒成立,即210kx kx −+> 当0k =时,则10>恒成立,∴0k =时成立当0k ≠时,则()2Δ40k k k >⎧⎪⎨=−−<⎪⎩,解得04k << 综上所述:[)0,4∈k .故答案为:[)0,4. 15.3−【分析】利用根与系数关系得12123,1x x x x +==−,即可求目标式的值. 【详解】因为方程2310x x −−=的两根分别是12,x x , 所以12123,1x x x x +==−,则21121211331x x x x x x ++===−−. 故答案为:3− 16.2211x y +>+【分析】利用不等式性质判断大小关系.【详解】由题设,||||0x y >>,故220x y >>,所以2211x y +>+. 故答案为:2211x y +>+ 17.[3,9]−【分析】利用绝对值三角不等式可得|||4||||1|5x x y y +−++−=,即04x ≤≤,01y ≤≤,利用23m x y xy =−+中(,)x y 与{(,)|04,01}x y x y ≤≤≤≤有公共点,讨论3x =或2y =−、3x ≠研究m 的范围即可.【详解】|||4||||4||4|4x x x x x x +−=+−≥+−=,当04x ≤≤时等号成立,|||1||||1||1|1y y y y y y +−=+−≥+−=,当01y ≤≤时等号成立,所以|||4||||1|5x x y y +−++−≥,而|||4||||1|5x x y y +−++−≤, 故|||4||||1|5x x y y +−++−=,此时04x ≤≤,01y ≤≤,令23m x y xy =−+中(,)x y ,与{(,)|04,01}x y x y ≤≤≤≤所表示的区域有公共点, 当3x =或2y =−时6m =,而3[0,4]x =∈,故6m =满足; 当3x ≠时,由62[0,1]3m y x −=−∈−得:6233m x −≤≤−,而04x ≤≤, 若34x <≤时60m −>,此时23(1)x m x ≤≤−,故69<≤m ; 若03x ≤<时60m −>,此时233x m x ≥≥−,故36m −≤<; 综上,3m −≤≤9. 故答案为:[3,9]−【点睛】关键点点睛:利用绝对值三角不等式得|||4||||1|5x x y y +−++−=确定x 、y 的范围,再将问题转化为23m x y xy =−+中(,)x y 与{(,)|04,01}x y x y ≤≤≤≤有公共点求m 的范围即可. 18.②③【分析】①取0c =检验即可;②和③利用不等式两端同时乘以一个正数,不等式的方向不改变;④取1,0,2a b c ===−检验即可【详解】①若a b >,当0c =时,则22ac bc =,故①错误; ②若0a b >>,不等式两边同时乘以1ab,则110a b <<,故②正确;③若0ba>,不等式两边同时乘以2a ,则0ab >,故③正确; ④若a b c >>,当1,0,2a b c ===−时,则||||a b b c +<+,故④错误; 故答案为:②③ 19.2.【分析】根据一元二次方程的根与系数的关系,结合题意列出方程,即可求得m 的值.【详解】由题意,关于x 的方程()222(1)310x m x m m −−+−+=有两个实数根12,x x ,则满足()22[2(1)]4310m m m −−−+>,解得0m >,又由122122(1),31x x x x m m m +=−=−+,因为12121−−=x x x x ,可得22(3111)m m m −−−=+,即220m m −−=, 解得2m =或1m =−(舍去),即m 的值为2. 故答案为:2. 20.258【分析】利用基本不等式计算可得;【详解】解:因为2222a b +=,所以()()221215a b +++=,所以()()221215a b +++=≥即()()22252114a b ++≤,即()()2225118a b ++≤,当且仅当()22121a b +=+, 即2514b +=,2512a +=时取等号,故()()2211a b ++的最大值为258. 故答案为:25821.()4,+∞【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x −>>⎧⎧⇒⇒>⎨⎨−+>><−⎩⎩或 故答案为:()4,+∞. 22.13【分析】根据题意,可得方程220ax bx ++=的两个根为﹣2和3,由根与系数的关系可得关于a 、b 的方程,再求出a ,b 的值.【详解】根据不等式220ax bx ++>的解集为3{|}2x x −<<, 可得方程220ax bx ++=的两个根为﹣2和3,且0a <, 则2(2)3(2)3a b a ⎧=−⨯⎪⎪⎨⎪−=−+⎪⎩,解得1313a b ⎧=−⎪⎪⎨⎪=⎪⎩. 故答案为:13.23.【分析】利用基本不等式可求最小值. 【详解】2112341234123234634634a b a b a b a b ab a b a b++++=+=++++,而3412634a b a b++≥+34a b +=由341a b ab ⎧+=⎪⎨=⎪⎩a b ⎧=⎪⎪⎨⎪=⎪⎩或a a ⎧=⎪⎪⎨⎪=⎪⎩故3412634a b a b ++≥+3a b ⎧=⎪⎪⎨⎪=⎪⎩3a a ⎧=⎪⎪⎨⎪=⎪⎩ 故21123234ab a b +++的最小值为故答案为: 24.(1,1)−【分析】根据判别式小于0可得.【详解】因为命题“关于x 的不等式2210x cx ++>的解集为R ”是真命题, 所以2440c ∆=−<,解得11c −<<,即(1,1)−. 故答案为:(1,1)−25.【分析】由题知112226,3x x x x a a ==+,进而根据基本不等式求解即可.【详解】解:因为关于x 的不等式()226300x ax a a −+−≥>的解集为[]12,x x ,所以12,x x 是方程()226300x ax a a −+−=>的实数根,所以112226,3x x x x a a ==+,因为0a >,所以1212316a x x a x x a ++=+≥16a a =,即a 所以12123ax x x x ++的最小值是故答案为:26.(−∞,5]【分析】若2()x a f x −+…对x ∈R 恒成立,求出函数的最小值,即可求a 的取值范围. 【详解】由2()x a f x −+…得2()a x f x +…,因为()|(2)(3)|5f x x x −−+=…,当且仅当32x −剟取等号, 所以当32x −剟时,()f x 取得最小值5,又当0x =时,2x 取得最小值0, 所以当0x =时,2()x f x +取得最小值5, 故5a …,取a 的取值范围为(−∞,5]. 故答案为:(−∞,5] 27.[1,13]【分析】根据二次函数的性质和已知条件得到m 与n 的关系,化简222211m n n m +++后利用不等式即可求出其范围.【详解】二次函数f (x )对称轴为1x m=, ∵f (x )值域为[]0,∞+,∴0m >且21121001f m n n mn m m mm ⎛⎫⎛⎫=⇒⋅−+=⇒=⇒= ⎪ ⎪⎝⎭⎝⎭,n >0.()12224f m n m n ≤⇒−+≤⇒+≤,∵()()()()2222224422222222221111111m m n n m n m n m n n m m n m n m n +++++++==+++++++ =()22222222222m n m n m n m n +−++++=()()222222222m n mn m n +++−++=()()222222212m n m n m n +++−++=221m n +−∴221211m n mn +−≥−=,22221()34313m n m n +−=+−≤−=, ∴222211m n n m +++∈[1,13]. 故答案为:[1,13]. 28.(6,7)−【分析】结合已知条件利用不等式性质即可求解. 【详解】因为23c −<<,所以32c −<−<, 又因为35a −<<,所以67a c m −<−=<, 故m 的取值范围为(6,7)−. 故答案为:(6,7)−. 29.详见解析.【分析】原不等式可化为()(3)0x a x −−>,通过对a 与3的大小关系分类讨论即可得出. 【详解】原不等式可化为()(3)0x a x −−>. (1)当3a >时,3x <或x a >, (2)当3a =时,3x ≠, (3)当3a <时,x a <或3x >.综上所述,当3a >时,不等式的解集为{|3x x <或}x a >; 当3a =时,不等式的解集为{|3}x x ≠; 当3a <时,不等式的解集为{|x x a <或3}x >. 30.真,证明见解析【分析】利用基本不等式判断与证明命题的真假.【详解】因为0a >且0b >,所以()111122222b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭, 当且仅当a b =时取等号, 所以11222a b a b+≥+正确,所以该命题为真命题. 31.(1)∅; (2)[)3,2−;(3)[)(]2021,20202021,2022−−⋃.【分析】(1)解一元二次不等式组求解集即可;(2)由不等式组有唯一整数解2x =−,应用数轴法有23k −<−≤,即可得结果. (3)讨论52k −<−、52k −>−,由元素个数确定k 的范围. (1)当3k =时(1)(2)0(25)(3)0x x x x +−>⎧⎨++<⎩,可得532x −<<−,满足条件的整数x 不存在,故A =∅.(2)由220x x −−>得:1x <−或2x >.因为()222022550x x x k x k ⎧−−>⎪⎨+++<⎪⎩有唯一整数解2x =−,又()222550x k x k +++=的两根为k −和52−,则23k −<−≤,所以32k −≤<,综上,所求k 的取值范围为[)3,2−. (3)当52k −<−时,{}3,4,,2021A =−−−,所以20222021k −≤−<−,得20212022k <≤.当52k −>−时,{}2,3,4,,2020A =−,所以20202021k <−≤,得20212020k −≤<−.所以实数k 的取值范围为[)(]2021,20202021,2022−−⋃. 32.(1){}1x x <(2)542x x x ⎧⎫>≤⎨⎬⎩⎭或【分析】(1)分32x ≥和32x <两种情况去绝对值符号,解不等式即可;(2)根据分式不等式的解法解不等式即可. (1)解:由2332x x −>−,得322332x x x ⎧≥⎪⎨⎪−>−⎩或322332x x x ⎧<⎪⎨⎪−+>−⎩,解得x ∈∅或1x <,所以不等式的解集为{}1x x <; (2) 解:由1144xx x≤−−−, 得2504x x −≥−, 则()()254040x x x ⎧−−≥⎨−≠⎩,解得4x >或52x ≤,所以不等式的解集为542x x x ⎧⎫>≤⎨⎬⎩⎭或.33.(1)4a ≥;(2)4.【分析】(1)由一元二次不等式在实数集上恒成立求参数范围即可;(2)讨论0a =、0a <、0a >,结合二次函数的性质求参数范围,即可得最小值. (1)由题设不等式恒成立,则20180a a >⎧⎨∆=−≤⎩,可得4a ≥. (2)当0a =时,0x −≥在[1,2]x ∈上不成立;当0a ≠时,二次函数2()2f x ax x a =−+的对称轴12x a=, 当0a <时,则()f x 开口向下且对称轴102x a=<,()f x 在[1,2]x ∈上递减,则(2)620f a =−≥,得13a ≥,此时无解;当0a >时,则()f x 开口向上且对称轴102x a=>, 若112a≤,12a ≥时,()f x 在[1,2]x ∈上递增,则(1)310f a =−≥得13a ≥,此时12a ≥;若1122a <<,1142a <<时,111()20242f a a a a =−+≥得a ≥142a ≤<;若122a ≥,14a ≤时,()f x 在[1,2]x ∈上递减,则(2)620f a =−≥得13a ≥,此时无解;综上,4a ≥,故a4. 34.(1)131224a a a a a a +<+(2)证明见解析【分析】(1)利用比差法比较12a a 与1324a a a a ++的大小; (2)利用反证法证明. (1)因为1234,,,a a a a 是四个正数,3124a a a a <,所以1423a a a a <, 所以()()131214122314231224224224a a a a a a a a a a a a a a a a a a a a a a a a ++−−−−==+++,因为1423a a a a <,所以14230a a a a −<,因为1234,,,a a a a 是四个正数,所以224()0a a a +>, 所以1312240a a a a a a +−<+ 所以131224a a a a a a +<+ (2)假设1234,,,a a a a 都不小于1,则1(1,2,3,4)n a n ≥=,那么()()()()12341111222216a a a a ++++≥⨯⨯⨯=与已知条件矛盾,所以假设不成立,所以1234,,,a a a a 中至少有一个小于1.35.(1)()1,3− (2)[]5,1−【分析】(1)当3a =时,分式不等式化为301x x −<−,结合分式不等式解法的结论,即可得到解P .(2)由含绝对值不等式的解法,得(5,1)Q =−,并且集合P 是Q 的子集,由此建立不等式关系,即可得到a 的取值范围. (1) 当3a =时,1101a x +−<+,即1140x −<+,化简得301x x −<+,即(3)(1)0x x −+<,所以13x -<<, 所以不等式的解集为(1,3)−,由此可得(1,3)P =−. (2){}{}{}2332351Q x x x x x x =+<=−<+<=−<<,可得(5,1)Q =−, P Q Q ⋃=,得P Q ⊆,再解1101a x +−<+,即()()10−+<x a x ①当1a =−时,()210x +<无解,P =∅,满足P Q ⊆;②当1a >−时,解得1x a −<<,此时(1,)(5,1)a −⊆−,由此可得11a −<≤,即a 的取值范围是(]1,1−.③当1a <−时,解得1a x <<−,此时(,1)(5,1)a −⊆−,由此可得51a −≤<−,即a 的取值范围是[)5,1−−.综上所述,a 的取值范围是[]5,1−36.(1)1{|1x k −≤≤或k ≤k ≥(2)1【分析】(1)将x =4代入不等式化简可得,222)10k k −−≥(() ,利用一元二次不等式的解法求解即可;(2)利用换元法,令211t k =+≥,将问题转化为61x t t ≤+−对任意t ≥1恒成立,利用基本不等式求解61t t+−的最小值,即可得到x 的取值范围,从而得到答案.(1)若x =4,则不等式24216k x k k +≤++()变形为42320k k +≥﹣,即22(2)(1)0k k −≥−, 解得21k ≤或22k ≥,所以11k −≤≤ 或k ≤k ≥,故不等式的解集为1{|1x k −≤≤或k ≤k ≥; (2)令211t k =+≥,则不等式24216k x k k +≤++()对任意k ∈R 恒成立, 等价于4226611k k x t k t ++≤=+−+对任意t ≥1恒成立,因为66111t t t+−>−=,当且仅当6t t=,即t 1≥时取等号,所以x ≤1,故x 的最大值为1.。

八年级数学不等式强化训练100题

八年级数学不等式强化训练100题

不等式强化训练100题1、若函数y=2x-6. (1)当函数值y为正数时,求x的范围;(2)当自变量x取正数时,求函数值y 的范围.2、计算:(1)计算:;(2)解不等式组:.3、解不等式:,并把解集表示在数轴上.4、当时,点P(3m-2,m-1)在A、第一象限B、第二象限C、第三象限D、第四象限8、某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部) 4000 2500售价(元/部) 4300 3000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价-进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.9、一列慢车以时速60km的速度从甲地驶往乙地,2h后,一列快车以时速为100km的速度也从甲地驶往乙地.分别列出慢车和快车行驶的路程ykm与时间xh之间的函数关系式,并画出图象,根据图象回答下列问题:(1)何时慢车在快车前面?(2)何时快车在慢车前面?(3)谁行驶的路程先达到240km?谁行驶的路程先达到360km?11、已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集.12、解不等式组14、已知关于x,y的方程组的解满足x>y,求a的取值范围.15、北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是400元/台、800元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台.求:(1)若要求总运费不超过8200元,共有几种调运方案?(2)当老板的您,请设计出总运费最低的调运方案吧!并求出最低总运费是多少元?16、已知x=1是不等式组的解,求a的取值范围.18、2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.19、我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3m/s的时间共约160天,其中日平均风速不小于6m/s的时间约占60天.为了充分利用“风能”这种“绿色能源”,该地拟建一个小型风力发电厂,决定选用A、B两种型号的风力发电机.根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:根据上面的数据回答:(1)若这个发电厂购x台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为多少千瓦时;(2)已知A型风力发电机每台0.3万元,B型风力发电机每台0.2万元.该发电厂拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电厂每年的发电总量不少于102000kW*h,请你提供符合条件的购机方案.20、阅读材料:(1)对于任意两个数a、b的大小比较,有下面的方法:当a-b>0时,一定有a>b;当a-b=0时,一定有a=b;当a-b<0时,一定有a<b.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:∵=(a+b)(a-b),a+b>0∴与(a-b)的符号相同当时,a-b>0,得a>b当时,a-b=0,得a=b当时,a-b<0,得a<b解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为,李明同学的用纸总面积为.回答下列问题:①=_______________(用x、y的式子表示),=_______________(用x、y的式子表示)②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度=AP+BP.①在方案一中,=_________km(用含x的式子表示);②在方案二中,=_______________km(用含x的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.21、已知3(5x+2)+5<4x-6(x+1),化简|x+1|-|1-x|.23、国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.24、如图所示,小李决定星期日登A、B、C、D中的某山,打算上午9点由P地出发,尽可能去最远的山,登上山顶后休息1h,到下午3点以前回到P地.如果去时步行的平均速度为3km/h,返回时步行的平均速度为4km/h.试问小李能登上哪个山顶?(图中数字表示由P地到能登山顶的里程)25、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒x个.①根据题意,完成以下表格:②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则a的值是__________.(写出一个即可)27、“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款_______元,后捐款_______元.(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围.(3)该经销商两次至少共捐助多少元?28、已知方程组的解是负数,试化简|a+3|-|5a-3|.二、计算题31、(1)计算:;(2)解不等式组:32、解不等式组:33、解不等式组:34、求不等式组的正整数解.35、解不等式组:.36、解不等式组:37、解不等式:.38、解不等式:,并把解集表示在数轴上.39、解下列不等式组:40、解不等式组:41、求自变量x的取值范围:.42、解不等式:4x-7<3x-1.43、解不等式组:44、解不等式组:45、解不等式组:46、解不等式组:47、解不等式3(x+1)>4x+2.48、解下列不等式2(x-3)-3(x+1)>0.49、解下列不等式:2x-5≤250、解不等式组:51、解不等式组52、解不等式组53、解不等式:3x≥x+2.54、解不等式组并把解集在数轴上表示出来.55、(1)计算;(2)解不等式组56、已知x,y满足,求.57、解不等式:.58、化简:().59、解不等式组并将其解集在数轴上表示出来.60、求不等式的解集.61、定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2(2-5)+1=2(-3)+1=-6+1=-5.(1)求(-2)⊕3的值.(2)若3⊕x的值小于13,求x的取值范围,并在下图所示的数轴上表示出来.62、计算:(1)化简:;(2)解不等式:.63、解不等式组:64、解不等式组65、(1)计算:(2)解不等式组:.66、解一元一次不等式组,并把解在数轴上表示出来.67、某个体小服装准备在夏季来临前,购进甲、乙两种T恤,在夏季到来时进行销售.两种T 恤的相关信息如下表:品牌甲乙进价(元/件)35 70售价(元/件)65 110根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种t恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T 恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.68、解不等式组.69、解不等式组:70、解不等式组并将解集在数轴上表示出来.71、解不等式:2[x-(x-1)+2]<1-x.72、解不等式组并把解集在数轴上表示出来.73、解不等式组:74、解不等式.75、解不等式.76、计算:(1);(2)解不等式77、解不等式组:78、解不等式组.79、解不等式组,并把它的解集在数轴上表示出来.80、化简:,其中0<a<1.81、解不等式:82、求不等式组的正整数解.83、解不等式,并把它的解集在数轴上表示出来:2(x+1)-3(x+2)<0.84、解不等式组85、解不等式:.86、(1)计算:. (2)解不等式组:.87、解不等式.88、解不等式组89、解不等式.90、解不等式,并把它的解集在数轴上表示出来:.91、解不等式,并把它的解集在数轴上表示出来:2[x-3(x-1)]≥5x.92、解不等式组:94、商场出售A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价比A 型冰箱高出10%,但每日耗电量为0.55度,现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算.(按使用期为10年,每年365天,每度电0.40元计算)96、化简:.98、解不等式.100、计算:解不等式:.。

不等式的练习题及解答

不等式的练习题及解答

不等式的练习题及解答一、简单的不等式求解1. 求解不等式5x + 7 < 22。

解答:首先将不等式转化为5x < 22 - 7,即5x < 15。

然后将不等式两边同时除以5,得到x < 3。

所以不等式的解集为{x | x < 3}。

2. 求解不等式2 - 3x > 7。

解答:首先将不等式转化为-3x > 7 - 2,即-3x > 5。

然后将不等式两边同时除以-3,并注意此处要改变不等式的方向,得到x < -5/3。

所以不等式的解集为{x | x < -5/3}。

二、复杂的不等式求解3. 求解不等式2x + 5 > 3x - 4。

解答:首先将不等式转化为2x - 3x > -4 - 5,即-x > -9。

然后将不等式两边同时乘以-1,并注意此处要改变不等式的方向,得到x < 9。

所以不等式的解集为{x | x < 9}。

4. 求解不等式3(x - 1) ≤ 2x + 5。

解答:首先将不等式展开得到3x - 3 ≤ 2x + 5。

然后将不等式化简,得到x ≤ 8。

所以不等式的解集为{x | x ≤ 8}。

三、不等式的图像表示5. 绘制不等式2x + 3 > 0在数轴上的表示。

解答:首先求解不等式2x + 3 > 0,得到x > -3/2。

然后在数轴上标记出-3/2这个点,并使用一个空心圆圈表示。

最后在这个点的右侧画上一个箭头,表示x的取值范围在-3/2的右侧。

因此,不等式2x + 3 > 0在数轴上的表示为(-3/2, +∞)。

6. 绘制不等式x - 4 ≤ 6在数轴上的表示。

解答:首先求解不等式x - 4 ≤ 6,得到x ≤ 10。

然后在数轴上标记出10这个点,并使用一个实心圆圈表示。

最后在这个点的左侧画上一个箭头,表示x的取值范围在10的左侧。

因此,不等式x - 4 ≤ 6在数轴上的表示为(-∞, 10]。

初一数学不等式组提高练习

初一数学不等式组提高练习

一元一次不等式组提高练习1、解不等式252133x -+-≤+≤-2、 求下列不等式组的整数解2(2)83373(2)82x x x x x x +<+⎧⎪-≥-⎨⎪-+>⎩3、解不等式:(1) 0)2)(1(<+-x x (2)0121>+-x x4、对于1x ≥的一切有理数,不等式()12x a a -≥都成立,求a 的取值范围。

5、已知1x =是不等式组()()352,23425x x a x a x -⎧≤-⎪⎨⎪-<+-⎩的解,求a 的取值范围.6、如果35x a =-是不等式()11233x x -<-的解,求a 的取值范围。

7、若不等式组841,x x x m +<-⎧⎨>⎩的解集为3x >,求m 的取值范围。

8、如果不等式组237,635x a b b x a-<⎧⎨-<⎩的解集为522x <<,求a 和b 的值。

9、不等式组⎪⎩⎪⎨⎧<-<-622131m x m x 的解集是36+<m x ,求m 的取值范围。

10、已知关于x 的不等式()12a x ->的解在2x <-的范围内,求a 的取值范围。

11、已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,求a 的取值范围。

12、已知关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,求a 的取值范围。

13、若关于x 的不等式组2145,x x x a ->+⎧⎨>⎩无解,求a 的取值范围。

14、设关于x 的不等式组22321x m x m ->⎧⎨-<-⎩无解,求m 的取值范围15、若不等式组⎩⎨⎧<->a x a x 无解,那么不等式⎩⎨⎧<+>-11a x a x 有没有解若有解,请求出不等式组的解集;若没有请说明理由16、若不等式组372,x x a a -≤⎧⎨-≥⎩有解,求a 的取值范围。

单调性解不等式练习题

单调性解不等式练习题

单调性解不等式练习题一、基础题1. 已知函数f(x) = 2x + 3,判断其单调性,并解不等式f(x) > 5。

2. 已知函数g(x) = 3x + 4,判断其单调性,并解不等式g(x) < 2。

3. 已知函数h(x) = x^2 2x,判断其单调性,并解不等式h(x) ≥ 0。

4. 已知函数p(x) = x^2 + 4x,判断其单调性,并解不等式p(x) ≤ 3。

5. 已知函数q(x) = 1/2x + 2,判断其单调性,并解不等式q(x) > 1。

二、进阶题1. 已知函数f(x) = 3x^2 4x + 1,判断其单调性,并解不等式f(x) > 0。

2. 已知函数g(x) = 2x^2 + 5x 3,判断其单调性,并解不等式g(x) < 0。

3. 已知函数h(x) = x^3 3x,判断其单调性,并解不等式h(x) ≥ 0。

4. 已知函数p(x) = x^3 + 4x^2,判断其单调性,并解不等式p(x) ≤ 1。

5. 已知函数q(x) = 2x^3 5x^2 + 3x,判断其单调性,并解不等式q(x) > 2。

三、综合题1. 已知函数f(x) = x^2 2x + 1,判断其单调性,并解不等式f(x) ≤ 0。

2. 已知函数g(x) = x^2 + 4x 3,判断其单调性,并解不等式g(x) > 0。

3. 已知函数h(x) = x^3 3x^2 + 2x,判断其单调性,并解不等式h(x) < 0。

4. 已知函数p(x) = x^3 + 4x^2 3x,判断其单调性,并解不等式p(x) ≥ 1。

5. 已知函数q(x) = 2x^3 5x^2 + 3x 1,判断其单调性,并解不等式q(x) ≤ 2。

四、应用题1. 某企业的成本函数为C(x) = 3x^2 + 2x + 10,其中x为生产的产品数量。

判断成本函数的单调性,并确定生产数量x的范围,使得成本不超过1000元。

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。

3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。

4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。

5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。

6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。

7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。

9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。

10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。

11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。

12.删除此段。

13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。

14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。

15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。

不等式经典题型专题练习含答案

不等式经典题型专题练习(含答案)姓名: ___________ 班级: _________________________________一、解答题1 -3x 2x 11 {2 5 1.解不等式组: 2x3 _^x,并在数轴上表示不等式组的解集. 3.已知关于x , y 的方程组 的解为非负数,求整数 m 的值. x 2y =14•由方程组 x-2y=a 得到的%、y 的值都不大于1,求a 的取值范围.2 •若不等式组2x - a :: 1 {x-2b 3的解集为-1<x<1,求(a+1)(b-1)的值.5 •解不等式组: 并写出它的所有的整数解.5x 2y = 11a 18x 、y 的方程组.2x -3y =12a -8的解满足x >0, y > 0,求实数a 的取x -20 卜 +1 3x-3 6 .求不等式组 2的最小整数解. 7 .求适合不等式-11 v- 2a - 5<3的a 的整数解.8 .已知关于x 的不等式组x-a > 03-2x>-1的整数解共有5个,求a 的取值范围.6 .已知关于值范围.x -2y = k { °—9•若二元一次方程组 x • 2y =4的解x y ,求k 的取值范围10 •解不等式组 并求它的整数解的和.2x 5 乞 3(x 2)不等式组的非负整数集2x y =m 214 .若方程组x - y = 2m - 5的解是一对正数,则:(1) 求m 的取值范围11.已知x , y 均为负数且满足: 2x y = m- 3 ①x-y =2m ② 求m 的取值范围.2x - 1 3x ::112 .解不等式组 ,把不等式组的解集在数轴上表示出来,并写出(2)化简:1m -4 -|m 2|15 •我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房•如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?16 •某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人•如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?17 • 3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。

最新不等式提高题专项练习

精品文档一元一次不等式(组)常见试题分类练习一、解法常见考题:2x?y?1?3m,?①的解满足1、已知方程组x+y<0,求m的取值范围.?x?2y?1?m②?x?2y?4k,?2、已知中的x,y满足0<y-x<1,求k的取值范围.?2x?y?2k?1?x?15??x?3,??2的不等式组只有4个整数解,求、若关于xa的取值范围.3?2x?2??x?a?3?x?a?0,?4、关于x的不等式组的整数解共有5个,求a的取值范围.?3?2x??1?3x?4?a,?的解集是的不等式组x>2,求a的取值范围.5、已知a是自然数,关于x?x?2?0?6、若不等式组 X+8<4x-1 的解集是x>3,则m的取值范围是。

x>mx?9?5x?1,?的解集是x>27、不等式组,则m的取值范围是( ).?x?m?1?(B)m≥2(C)m≤1(D)m(A)m≤2≥1x?a?0,?xa的取值范围. 58、关于个,求的不等式组的整数解共有?3?2x??1?1-+8<4xx?? ________.m的解集为x>3,则的取值范围是9、若不等式组?x>m??1x+x?>0+32?恰有两个整数解.、试确定实数a的取值范围,使不等式组1045a+4?a?+>?x+1+x333x?4?a,?的解集是x>2的不等式组,求a的值.x11、已知a是自然数,关于?x?2?0?x?15??x?3,??2ax的取值范围.个整数解,求、若关于 4的不等式组只有12?2x?2??x?a?3?二、最后一间房问题:1、若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?精品文档.精品文档2、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。

3、把若干颗花生分给若干只猴子。

高中数学不等式经典题型专题训练试题(含答案)

高中数学不等式经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间120分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共10小题,每题2分,共20分)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值63.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<28.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.二.填空题(共10小题,每题2分,共20分)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.12.已知a,b∈R+,且2a+b=1则的最大值是______.13.已知向量,若⊥,则16x+4y的最小值为______.14.若x>0,y>0,且+=1,则x+y的最小值是______.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.17.若实数a+b=2,a>0,b>0,则的最小值为______.18.若x,y满足约束条件,则z=3x-y的最小值是______.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.20.已知f(x)=,不等式f(x)≥-1的解集是______.三.简答题(共10小题,共60分)21.(6分)已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.22.(6分)设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.23.(6分)已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥24.(6分)设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.25.(6分)已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•.(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.26.(6分)27.(4分)已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.28.(4分)若a,b,c∈R+,且++=1,求a+2b+3c的最小值.29.(10分)某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)30.(6分)已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.参考答案一.单选题(共__小题)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b答案:D解析:解:由题意知,a=sin14°+cos14°==,同理可得,b=sin16°+cos16°=,=,∵y=sinx在(0,90°)是增函数,∴sin59°<sin60°<sin61°,∴a<c<b,故选D.2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值6答案:D解析:解:画出不等式组表示的平面区域如图中阴影部分所示.当目标函数z=2x-y过直线x=3与直线y=0的交点(3,0),目标函数取得最大值6;当目标函数z=2x-y过直线x=0与直线x-y+2=0的交点(0,2)时,目标函数取得最小值-2.故选D.3.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.答案:D解析:解:y=sinx+cosx+sinxcosx=sinx(1+cosx)+1+cosx-1=(1+sinx)(1+cosx)-1≤[(1+sinx)2+((1+cosx)2]-1(当且仅当1+sinx=1+cosx时成立,此时sinx=cosx=)即y(max)=+故选D4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}答案:A解析:解:原不等式化为|x|2-|x|-2<0因式分解得(|x|-2)(|x|+1)<0因为|x|+1>0,所以|x|-2<0即|x|<2解得:-2<x<2.故选A5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.答案:B解析:解:∵不等式f(x)=ax2-x-c>0的解集为(-2,1),∴a<0,且-2,1是对应方程ax2-x-c=0的两个根,∴(-2,0),(1,0)是对应函数f(x)=ax2-x-c与x轴的两个交点,∴对应函数y=f(x)的图象为B.故选B.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a答案:A解析:解:∵函数y=0.2x是减函数,0.3>0.2,故有a=0.20.3<0.20.2=1,又a=0.20.3>0,可得b>a >0.由于函数y=log2x在(0,+∞)上是增函数,故c=log20.4<log21=0,即c<0.综上可得,b>a>c,故选A.7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<2答案:D解析:解:采用特殊值法,取a=,b=.则a2=,b2=,ab=,故知A,C错;对于B,由于函数y=是定义域上的减函数,∴,故B错;对于D,由于函数y=2x是定义域上的增函数,∴2b<2a<2,故D对.故选D.8.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ答案:D解析:解:对于AB中的α,β可以分别令为30°,60°则知道A,B均不成立对于C中的α,β可以令他们都等于15°,则知道C不成立cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ故选D9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n 答案:C解析:解:观察B,D两个选项,由于底数2>1,故相关的函数是增函数,由0<m<n,∴2m<2n,log2m<log2n,所以B,D不对.又观察A,C两个选项,两式底数满足0<<1,故相关的函数是一个减函数,由0<m<n,∴,所以A不对,C对.故答案为C.10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.答案:D解析:解:∵a<b<0,∴,A正确,-a>-b>0,,B正确,|a|>|b|=-b,C正确;,故D不正确.故选D.二.填空题(共__小题)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.12.已知a,b∈R+,且2a+b=1则的最大值是______.答案:解析:解:∵2a+b=1,∴4a2+b2=1-4ab,∴S==4ab+2-1,令=t>0,则S=4-,∵2a+b=1,∴1≥2⇒0<t≤故当t=时,S有最大值为:故答案为:.13.已知向量,若⊥,则16x+4y的最小值为______.答案:8解析:解:∵∴4(x-1)+2y=0即4x+2y=4∵=当且仅当24x=22y即4x=2y=2取等号故答案为814.若x>0,y>0,且+=1,则x+y的最小值是______.答案:25解析:解:∵x>0,y>0,且+=1,∴x+y=(x+y)(+)=17++≥17+2=25当且仅当=,即x=5,y=20时取等号,∴x+y的最小值是25,故答案为:25.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).答案:20解析:解:设矩形高为y,由三角形相似得:=,且x>0,y>0,x<40,y<40,⇒40=x+y≥2,仅当x=y=20m时,矩形的面积s=xy取最大值400m2.故答案为:20.16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.17.若实数a+b=2,a>0,b>0,则的最小值为______.答案:解析:解:∵实数a+b=2,a>0,b>0,则=+=++≥+2=+,当且仅当b=a=4-2时取等号.故答案为:.18.若x,y满足约束条件,则z=3x-y的最小值是______.答案:-4解析:解:由约束条件作出可行域如图,化目标函数z=3x-y为y=3x-z,由图可知,当直线y=3x-z过点C(0,4)时直线在y轴上的截距最大,z有最小值为-4.故答案为:-4.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.答案:[2,]解析:解:∵a,b∈R,且4≤a2+b2≤9;∴设a=rcosθ,b=rsinθ,且2≤r≤3,∴s=a2-ab+b2=r2cos2θ-r2sinθcosθ+r2sin2θ=r2(1-sinθcosθ)=r2(1-sin2θ),由三角函数的图象与性质,得;当sin2θ取最大值1且r取最小值2时,s取得最小值2,当sin2θ取最小值-1且r取最大值3时,s取得最大值;综上,a2-ab+b2的范围是[2,].故答案为:.20.已知f(x)=,不等式f(x)≥-1的解集是______.答案:{x|-4≤x≤2}解析:解:∵已知f(x)=,故由不等式f(x)≥-1可得①,或②.解①可得-4<x≤0,解②可得0<x≤2.综上可得,不等式的解集为{x|-4≤x≤2},故答案为{x|-4≤x≤2}.三.简答题(共__小题)21.已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.答案:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.解析:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.22.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.答案:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.解析:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.23.已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥.答案:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.解析:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.24.设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.答案:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)解析:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)25.已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.答案:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.解析:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.26、解:由柯西不等式:(1+3+5)²≤(a+b+c)()因为:a+b+c=12所以(1+3+5)²≤12*()81≤12*()≤当且仅当==时取等号即:最小值为27.已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.答案:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.解析:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.28.若a,b,c∈R+,且,求a+2b+3c的最小值.答案:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.解析:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.29.某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)答案:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.解析:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.30.已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.答案:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.解析:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释) 1.下列各式中,最小值等于2的是( ) A .xy y x + B .41422+++x x C .θθtan 1tan +D .x x -+22 2.下列说法中,正确的是 ( )A .当x >0且x ≠1时,1lg 2lg x x+≥ B .当x >02C .当x ≥2时,x+1x 的最小值为2D .当0<x ≤2时,x-1x 无最大值3.下列说法中,正确的是( )A .当x >0且x ≠1时,1lg 2lg x x +≥ B .当x >02 C .当x ≥2时,x+1x 的最小值为2 D .当0<x ≤2时,x-1x 无最大值 4.已知,,且,则的最大值是( ) x y +∈R 115x y +++=x y +A .3B .3.5C .4D .4.55.下列不等式正确的是(A )212x x +≥- (B4(0)x ≥>(C )12x x +≥ (D )1sin 2()sin x x k x π+≥≠6.已知2a b +=,则33a b +的最小值是 ( )A .B .6C .2D .7.若1()2f x x x =+-(2)x >在x n =处取得最小值,则n =( ) A. 52 B.3 C. 72 D. 48.已知正数x 、y 满足811x y +=,则2x y +的最小值是 () A.18 B.16 C .8 D .109.设x 、y 为正数,则()⎪⎪⎭⎫⎝⎛++y x y x 41 的最小值为( )A. 6B. 9C. 12D. 1510.若则的最小值是 ( )A .2B .C .3D .11.设x >0,y >0,x +y +xy =2,则x +y 的最小值是( )(A )32 (B )1 + (C )2 (D )212.已知正实数,a b ,且1=+b a ,则b a 42+的最小值为 ( ) A.246+ B .224- C.326+ D.513.已知0a >,0b >,2a b +=,则14y a b =+的最小值是A .72 B .4 C .92 D .514.若正数,a b 满足315a b +=,则34a b +的最小值是( )2824,1a >1a 1a -+a 1a a2-第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释) 15.若正实数,x y 满足26xy x y =++,则xy 的最小值是 ___ ___.16.已知x >0,则的最大值为________________________.三、解答题(题型注释) 17.解不等式:|x +1|>3.18.解不等式:x +|2x -1|<3.19.(1)解不等式(2)求函数)21,0(,2192∈-+=x x x y 的最小值 20.已知不等式ax 2-3x +6>4的解集为{x|x <1,或x >b}.(1)求a ,b ;(2)解不等式ax 2-(ac +b)x +bc <0(c ∈R).21.已知数列的前项和为,且2n n S n +=2. (1)求数列}{n a 的通项公式;(2)若*)(,1211N n a a a b n n n n ∈-+=+求数列}{n b 的前n 项和n S . 22.已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项.(1)求数列}{n a 的通项公式;411x x ≤--{}n a n n S(2)求数列{}n na 的前n 项和n T .23.在数列{}n a 中,1=1a ,且满足-1-=n n a a n 1n ()>. (Ⅰ)求23a a ,及数列{}n a 的通项公式; (Ⅱ)设1,n nb a =求数列{}n b 的前n 项和n S .参考答案1.D【解析】试题分析:对于A ,yx 可正可负,所以当0y x >时,2x y y x +≥,当0y x<时,2x y y x +≤-,所以x y y x +没有最小值;对于B ,设t =,则2t ≥=,所以由1y t t=+在[2,)+∞单调递增可知,2t =时取得最小值52;对于C ,与选项A 类似,11|tan ||tan |2tan |tan |θθθθ+=+≥,所以1tan 2tan θθ+≥或1tan 2tan θθ+≤-,所以1tan tan θθ+没有最小值;对于D ,222x x -+≥=,当且仅当22x x -=即0x =时取得等号;综上可知,D 选项正确.考点:基本不等式的应用.2.B【解析】试题分析:当01x <<时,lg 0x <,所以1lg lg 0x x +<,故A 不正确;当x >02=,=即1x =时取""=。

故B 正确;当x ≥2时,12x x +≥=,当且仅当1x x=即1x =±时取""=,但因[)12,x =±∉+∞,所以C 不正确;因为()f x x =在(]0,2上单调递增,1()g x x =-在(]0,2上单调递增,所以函数1()h x x x=-在(]0,2上单调递增,所以max 13()(2)222h x h ==-=。

故D 不正确。

考点:1基本不等式;2函数单调性求最值。

3.B【解析】试题分析:当01x <<时,lg 0x <,所以1lg lg 0x x +<,故A 不正确;当x >012=,=即1x =时取""=。

故B 正确;当x ≥2时,12x x +≥=,当且仅当1x x=即1x =±时取""=,但因[)12,x =±∉+∞,所以C 不正确;因为()f x x =在(]0,2上单调递增,1()g x x =-在(]0,2上单调递增,所以函数1()h x x x =-在(]0,2上单调递增,所以max 13()(2)222h x h ==-=。

故D 不正确。

考点:1基本不等式;2函数单调性求最值。

4.C【解析】;试题分析:由已知511=+++y x y x 得到:()4,52y x xy xy y x y x +≤=+++Θ()y x xy y x y x xy +≥++≥∴4,41254≤+++∴yx y x 设t y x =+,即54≤+t t ,得到0452≤+-t t ,解得41≤≤t ,所以y x +的最大值是4. 考点:利用基本不等式求最值5.A【解析】试题分析:∵2212(1)0x x x ++=+≥,∴A≥=B 错误;6.B【解析】试题分析:因为2a b +=,故336a b +≥===.考点:基本不等式的运用,考查学生的基本运算能力.7.B【解析】 试题分析:由11()(2)2422f x x x x x =+=-++≥--,当且仅当 1202x x -=>-即3x =时,取得等号,故选B.考点:均值不等式8.A【解析】试题分析:根据题意 ,由于正数x 、y 满足811x y +=,且可知2x y +=(2x y +)(81x y +)=17+16y 1018x x y +≥+=,当x=4y 时取得等号,故可知2x y +的最小值是18, 考点:均值不等式点评:主要是考查了均值不等式的求解最值的运用,属于基础题。

9.B【解析】试题分析:()⎪⎪⎭⎫ ⎝⎛++y x y x 414559y x x y =++≥+=,当且仅当4y xx y =即2y x =时等号成立,所以最小值为9点评:利用均值不等式a b +≥求最值时要注意其成立的条件:,a b 都是正数,当和为定值时,乘积取最值,当乘积为定值时,和取最值,最后验证等号成立的条件a b =是否满足10.C【解析】试题分析:根据题意,由于则可以变形为1a-1+112131a +≥=+=- ,故可知当a=2时等号成立故选C. 考点:基本不等式点评:本题考查基本不等式的性质与运用,正确运用公式要求“一正、二定、三相等”,解题时要注意把握和或积为定值这一条件11.C【解析】试题分析:因为x >0,y >0,所以22()()2x y xy x y +=-+≤,解不等式可得x +y 的最小值是2.考点:本小题主要考查基本不等式的变形应用和二次不等式的求解.点评:应用基本不等式及其变形公式时,要注意一正二定三相等三个条件缺一不可.12.A【解析】试题分析:因为,正实数,a b ,且1=+b a , 所以,ba 42+=≥+++=++b a a b b a b a 4242)42)((246+,故选A 。

考点:均值定理的应用。

,1a >1a 1a -+点评:简单题,应用均值定理,要注意“一正,二定,三相等”,缺一不可。

13.C【解析】试题分析:根据题意,由于0a >,0b >,2a b +=,则141141419()()(5)(52222b a y a b a b a b a b =+=++=++≥+=,当且仅当a=2b 时取得最小值,故可知答案为C.考点:均值不等式点评:主要是考查了均值不等式的求解最值,属于基础题。

14.D【解析】试题分析:因为,正数,a b 满足315a b+=,所以,34a b +=131112311()(34)(13)(132555555b a a b a b a b ++=++≥+=⨯=,34a b +的最小值是5,故选D 。

考点:本题主要考查均值定理的应用。

点评:简单题,应用均值定理,应注意“一正,二定,三相等”,缺一不可,并注意创造应用定理的条件。

15.18【解析】试题分析:因为,x y 是正实数,所民由基本不等式得,266xy x y =++≥,设0t =>,则260t --≥,即(0t t +-≥,所以t ≥,所以218xy t =≥,所以xy 的最小值是18.考点:基本不等式、一元二次不等式.16.2【解析】试题分析:根据题意,由于x >0,则24x 4=22x+x x ≤+x=2时取得等号,故可知函数的最大值为2。

考点:均值不等式点评:主要是考查了基本不等式求解最值的运用,属于中档题。

17.(-∞,-4)∪(2,+∞).【解析】由|x +1|>3得x +1<-3或x +1>3,解得x <-4或x >2.所以解集为(-∞,-4)∪(2,+∞).18.{x |-2<x <43} 【解析】原不等式可化为210(21)3x x x ≥⎧⎨⎩-,+-<或210(21) 3.x x x ⎧⎨⎩-<,--< 解得12≤x <43或-2<x <12. 所以不等式的解集是{x |-2<x <43}. 19.(1){}113|<≤-≥x x x 或(2)25【解析】试题分析:(1)解:11310)3)(1)(1(01)1)(3(01)1(41142<≤-≥⇔⎩⎨⎧≠≥--+⇔≥-+-⇔≤---⇔-≤-x x x x x x x x x x x x x 或此不等式的解集为{}113|<≤-≥x x x 或(2)252)21(4212913)212)(21924(21924≥-⨯+-⨯+=-+-+=-+=xx x x x x x x x x y , 当且仅当51=x 等号成立。

相关文档
最新文档