单片机产生脉冲波

合集下载

基于单片机的直流斩波电路的设计说明

基于单片机的直流斩波电路的设计说明

基于单片机的直流斩波电路的设计本文介绍了基于单片机的直流斩波电路的基本方法,直流斩波电路的相关知识以及用单片机产生PWM波的基本原理和实现方法。

重点介绍了基于MCS 一51单片机的用软件产生PWM 信号以及信号占空比调节的方法。

对于实现直流斩波提供了一种有效的途径。

本次设计中以直流降压斩波电路为例。

关键词:单片机最小系统; PWM ;直流斩波:直流降压斩波电路的原理斩波电路的典型用途之一是拖动直流电动机,也可带蓄电池负载,两种情况下负载中均会出现反电动势,如图3-1中Em 所示 工作原理,两个阶段t=0时V 导通,E 向负载供电,uo=E ,io 按指数曲线上升t=t1时V 关断,io 经VD 续流,uo 近似为零,io 呈指数曲线下降为使io 连续且脉动小,通常使L 值较大数量关系电流连续时,负载电压平均值E E T t E t t t U on off on on o α==+=a ——导通占空比,简称占空比或导通比Uo 最大为E ,减小a ,Uo 随之减小——降压斩波电路。

也称为Buck 变换器(Buck Converter )。

负载电流平均值R E U I m o o -= (3-2)电流断续时,uo 平均值会被抬高,一般不希望出现斩波电路有三种控制方式:1)保持开关周期T 不变,调节开关导通时间t on ,称为脉冲宽度调制或脉冲调宽型:2)保持导通时间不变,改变开关周期T ,成为频率调制或调频型;3)导通时间和周期T 都可调,是占空比改变,称为混合型。

其原理图为:图3-1降压斩波电路的原理图及波形a)电路图b)电流连续时的波形c)电流断续时的波形驱动电路更加复杂。

设计方案:用单片机为控制核心,以电力电子器件IGBT为主电路关键器件,完成直流斩波器的电路设计,包括控制程序设计、电力电子器件驱动、信号隔离及其它的一些保护部分。

指标要求:输入电压要求:AC220V50Hz输出电压为0——180V输出功率:1KW设计框图本设计总体框图如图所示,系统分为五部分:主电路、控制电路、集中隔离与驱动电路等。

简述stm32f407单片机产生pwm波的原理。

简述stm32f407单片机产生pwm波的原理。

STM32F407单片机产生PWM波的原理是通过利用定时器实现的。

具体来说,PWM(Pulse Width Modulation)脉冲宽度调制是一种利用微处理器的数字输出来对模拟电路进行控制的技术。

在STM32F407单片机中,PWM是通过编程控制输出方波的频率和占空比(高低电平的比例)来实现的。

其中,定时器用于控制PWM的周期,而比较寄存器则用于控制PWM的高低电平比例。

首先,设置定时器的计数周期和预分频器,以确定PWM的周期。

然后,设置比较寄存器的值,以确定PWM的高低电平比例。

当定时器的计数值达到比较寄存器的值时,输出电平会翻转,从而产生PWM波形。

此外,STM32F407单片机还支持多路PWM输出,可以通过配置不同的定时器和比较寄存器来实现。

同时,PWM的输出还可以通过GPIO口输出,以实现与其他电路的交互和通信。

需要注意的是,在使用STM32F407单片机产生PWM波时,需要了解其硬件结构和软件编程方法,以确保正确配置和使用PWM功能。

单片机波形发生器

单片机波形发生器

前言波形发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器。

函数波形发生器具有连续的相位变换、和频率稳定性等优点,不仅可以模拟各种复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通讯,组成自动测试系统,因此被广泛用于自动控制系统、震动激励、通讯和仪器仪表领域。

在 70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。

这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形,则电路结构非常复杂。

同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。

在 70 年代后,微处理器的出现,可以利用处理器、A/D/和 D/A,硬件和软件使波形发生器的功能扩大,产生更加复杂的波形。

这时期的波形发生器多以软件为主,实质是采用微处理器对 DAC的程序控制,就可以得到各种简单波形。

90 年代末,出现几种真正高性能、高价格的函数发生器、但是HP公司推出了型号为 HP770S的信号模拟装置系统,它由 HP8770A任意波形数字化和HP1776A波形发生软件组成。

HP8770A实际上也只能产生8 中波形,而且价格昂贵。

不久以后,Analogic公司推出了型号为 Data-2020的多波形合成器,Lecroy 公司生产的型号为9100 的任意波形发生器等。

到了二十一世纪,随着集成电路技术的高速发展,出现了多种工作频率可过GHz 的DDS 芯片,同时也推动了函数波形发生器的发展,2003 年,Agilent的产品 33220A能够产生17种波形,最高频率可达到 20M,2005 年的产品N6030A 能够产生高达 500MHz的频率,采样的频率可达 1.25GHz。

用单片机产生7路舵机控制PWM波的方法

用单片机产生7路舵机控制PWM波的方法

PLC 控制系统抗电磁干扰的重要措施之一O PLC 控制系统安全接地设计及其工程实践一般应注意以下一些问题=a .采用一点接地O 一般情况下接地方式与频率有关9当频率低于1M~Z 时可用一点接地9高于10M~Z 时采用多点接地O PLC 控制系统因信号电缆分布电容和输入装置滤波等的影响9装置之间信号交换频率一般都低于1M~Z 9所以PLC 控制系统采用一点接地O 集中布置的PLC 系统适于并联一点接地方式9各装置的柜体中心接地点以单独的接地线引向接地极O 如果装置间距较大9应采用串联一点接地方式9用1根大截面铜母线(PEB >连接各装置柜体中心接地点9然后将接地母线直接连接接地极Ob .接地线采用大于22mm 2的铜导线9接地母线(PEB >使用截面大于60mm 2的铜排O 在接地末端测量接地电阻应小于2O 9接地极最好埋在距建筑物10~15m 远处9而且PLC 系统接地点必须与强电设备接地点相距10m 以上Oc .信号源和交源电不允许共同使用1根地线9在接线铜排上才能把各个接地点联接在一起;屏蔽地\保护地各自独立地接到接地铜排上9不应当将其和电源地\信号地在其它任意地方扭在一起O 3结束语PLC 控制系统中的干扰是一个十分复杂的问题9在抗干扰设计中应综合考虑各方面的因素9合理有效地抑制抗干扰O 另外9还需要说明的是9由于电磁干扰的复杂性9要根本消除干扰影响是不可能的9因此9在PLC 控制系统的软件设计和组态时9还应在软件方面进行抗干扰处理O 参考文献=1]皮壮行9等.可编程序控制器的系统设计与应用实例 M ].北京=机械工业出版社92000.2]袁任光.可编程序控制器选用手册 M ].北京=机械工业出版社92002.3]郭宗仁9等.可编程序控制器应用系统设计及通信网络技术 M ].北京=人民邮电出版社92000.4]陈宇9等.可编程序控制器基础及编程技巧 M ].广州=华南理工出版社92002.5]王庆斌9等.电磁干扰及电磁兼容技术 M ].北京=机械工业出版社91999.作者介绍=徐滤非(1964->9男9湖北黄石人9黄石高等专科学校自动化系讲师9从事工业自动化的教学及科研工作O用单片机产生7路舵机控制P WM 波的方法刘歌群9卢京潮9闫建国9薛尧舜9(西北工业大学9陕西西安710072)M et hod t o G enerat e 7Pul seW i dt h M odul ati on W aves W it h S i n g l echi p M i cr o p r ocessor t oContr ol Ser vosLI U G e<un 9LU ji n g chao 9YAN jiang uo 9XUE Yao shun (Nort h Wester n Pol y technic Uni versit y 9X i an 7100729Chi na )摘要C提出了一种利用80C196KC 单片机产生7路P WM 波来控制FUTABA 舵机的方法O 利用分时机制产生每一路P WM 波的上升沿和下降沿97路波形从单片机的P1口同时输出9分辨率达到2卜s O 本方法具有成本低\分辨率高\输出路数多等优点9并在某机器人控制器中得到了成功应用O收稿日期=20030529关键词=单片机;P WM 波;软件定时器;运动控制器中图分类号=TP211.4;TN787.2文献标识码=B 文章编号=10012257(2004>02007603Abstract =A m et hod t o g enerat e 7p ul seW i dt hmodul ati on Waves W it h si n g l e chi p m i cr o p r ocessor 80C196KC f or t he contr olli n g of Fut aba ser vos i s p r o p osed .Each P WM Wave i s p r oduced b y m echa-ni s m of ti m eshari n g.A ll7Waves9Whose resol uti on i s2us9are out p utt ed f r o m Port1of CP U si mult a-neousl y.W it h advant a g es of l o W cost9hi g h resol u-ti on and more out p ut nu mber9t he m et hod has been successf ull y a pp li ed i n an r obot co m p ut er contr ol s y st e m.Ke y words C si n g l e chi p m i cr o p r ocessor9p ul se W i dt h modul ati on Wave9sof t Ware ti m er9move-m ent contr oll er0引言在机器人无人驾驶汽车和无人驾驶飞机等运动控制器的设计中9常会遇到多路P WM波的产生问题O机器人的头肩肘腕指等关节9无人飞机的舵面1I9无人驾驶汽车的方向盘和油门等9都需要电机驱动9所以在这一类的控制器中需要多路的P WM信号来完成控制任务O在80C196单片机作为主芯片的控制器中9要产生多路P WM信号存在以下问题Ca.单片机的P WM波发生器是固定周期的9难以完成各种周期的P WM输出要求Ob.专门的P WM波发生器芯片波形周期受限定时精度不高增加系统的体积成本Oc.用单片机的高速输出~SO产生P WM波2I9周期和分辨率可达到要求9但最多只能输出4路O 因此需要一种低成本高分辨率能够产生多路P WM波的方法O FUTABA舵机周期为14590卜s9工作正脉冲宽度为1200~1800卜s9有多种型号9常用于各种运动控制器3I O由于其工作正脉冲宽度不大于周期的1/89所以为利用软件定时器产生8路P WM波提供了可能性O由于中断响应和执行中断服务程序会占用一定的时间9为保证有一定的富余时间9本方法可以产生稳定的7路FUTABA舵机控制用P WM波O1实现7路P WM波输出的机理由于各路P WM波的周期相同9工作正脉冲宽度小于周期的1/89可以在1个周期的时间里分时启动各路P WM波的上升沿9再利用1个软件定时器确定该路P WM波的输出宽度O第1个软件定时器按周期的1/7时间定时9并设置输出通道号9输出号从0开始O第1个软件定时器定时中断响应后9将当前输出通道号对应的引脚输出置高电平9设置该路输出正脉冲宽度9并启动第2个软件定时器9输出通道号指向下一路O第2个软件定时器定时时间到后9将当前输出引脚置低电平9此路P WM在该周期中输出结束9系统等待第1个软件定时器下一个1/7周期的中断到来9再利用第2个软件定时器输出下一路P WM波O7路全部输出完毕之后9输出号设为09重复新一轮输出O 7路P WM波的时间分配如图1所示O总周期为14590卜s91/7周期为2084卜sO图17路P WM波的时间分配图27路P WM波输出的软件设计80C196KC单片机有4个软件定时器4I9选用软件定时器0进行1/7周期定时9选用软件定时器3定时每一路的高电平宽度O定义curr P WMPort 为当前输出通道号9初始值为09对应P1.0口O定义数组p Wm out7I为各路输出脉冲宽度值9数组值初始化为中位值1520卜s O程序一开始对~SO 进行初始化9选择定时器1为时间基准9使软件定时器中断9按1/7周期时间启动软件定时器0O软件定时器0的中断响应子程序把当前输出通道号对应的P1口引脚置高电平9按p Wm out curr P WM-Port I对应的时间装载并启动软件定时器39并按1/ 7周期时间再次启动软件定时器0O软件定时器3的中断响应子程序把当前输出通道号对应的P1口引脚置低电平O程序原理性伪代码C#defi ne Z W Z1520//中位值1520卜sst ati c I NT8U curr P WMPort9//输出通道号I NT16U p Wm out7I=Z W Z9Z W Z9Z W Z9 Z W Z9Z W Z9Z W Z9Z W Z}9//各路输出脉冲宽度值voi d i nit hsi o(voi d>//初始化~SOcurr P WMPort=09hso co mm and=0x189hso ti m e=ti m er1+0x61b9//2084卜s91/7个时间周期voi d Sof t T i m er0软件定时器0中断响应子程序Whil e i os0&0x80as m dihso co mm and=0x18hso ti m e=ti m er1+2084再次启动软件定时器0Whil e i os0&0x80hso co mm and=0x1bhso ti m e=ti m er1+p Wm out curr P WM-Port启动软件定时器3set bit i o p ort1curr P WMPort上升沿置高电平as m eicurr P WMPort++if curr P WMPort==7curr P WMPort=0指向下一通道voi d Sof t T i m er3软件定时器3中断响应子程序as m diif curr P WMPort==0clr bit i o p ort16el seclr bit i o p ort1curr P WMPort-1下降沿置低电平as m ei80C196KC单片机选用12M~Z晶振1个状态周期为167ns5作为~SO时间基准的定时器1分辨率为8个状态周期故软件定时器的分辨率为8 >167ns=1.336卜s小于2卜s经测试软件定时器0的中断响应子程序执行时间为60卜s左右在~SO时间装载的时候把相应的软件运行时间减掉最后得出的真实定时时间就符合舵机对控制P WM信号的要求为了防止更高优先中断影响准确的定时时间在中断响应子程序中实行了关中断3输出结果利用逻辑分析仪测得的单片机P1口输出波形如图2所示图2P1口输出波形图由图可以看出软件定时比较准确由于中断响应时间等不确定因素会有3卜s的定时误差从使用的角度来说已经满足了舵机控制的要求4结束语通过分时输出高电平利用2个软件定时器在单片机上产生了7路P WM波成功地实现了对某机器人7个FUTABA舵机颈1路肩2路肘2路指2路的控制输出的P WM波定时精度高占用单片机资源少没有增加额外的硬件输出路数多成本低可以应用于需要控制多个FUTABA舵机的场合对于如直流脉宽调制调速6等其他需要产生P WM波的系统设计也有一定的借鉴作用参考文献1刘歌群.小型无人机飞行控制器的硬件设计J.计算机测量与控制200322144-146.2孙涵芳.I NTEL16位单片机M.北京北京航空航天大学出版社1995.3Futaba Cor p orati on EB OL.htt p WWW.f utaba-rc.co m ser vos f ut m0211.ht m l20030320.4程军.I NTEL80C196单片机应用实践与C语言开发M.北京北京航空航天大学出版社2000.5何立民.单片机应用系统设计M.北京北京航空航天大学出版社1990.6吕平宝谢剑英.基于80C196KC的直流电机P WM调速控制器的设计与应用J.测控技术200221830-32.作者简介刘歌群1974-男陕西西安人西北工业大学自动化学院博士研究生研究方向为计算机控制与智能控制飞行控制过程控制系统的应用与研究薛尧舜1979-男回族江苏扬州人西北工业大学自动化学院硕士研究方向为计算机控制与智能控制用单片机产生7路舵机控制PWM波的方法作者:刘歌群, 卢京潮, 闫建国, 薛尧舜作者单位:西北工业大学,陕西,西安,710072刊名:机械与电子英文刊名:MACHINERY & ELECTRONICS年,卷(期):2004(2)被引用次数:25次1.刘歌群小型无人机飞行控制器的硬件设计[期刊论文]-计算机测量与控制 2003(02)2.孙涵芳Intel 16位单片机 19953.Futaba Corporation 20034.程军Intel80C196单片机应用实践与C语言开发 20005.何立民单片机应用系统设计 19906.吕平宝;谢剑英基于80C196KC的直流电机PWM调速控制器的设计与应用[期刊论文]-测控技术 2002(08)1.方庆山.林春方.FANG Qing-shan.LIN Chun-fang一种基于AT89C2051的多路舵机控制方案设计[期刊论文]-微特电机2009,37(7)2.梁锋.王志良.解仑.徐文学.LIANG FENG.WANG ZHILIANG.XIE LUN.XU WENXUE多舵机控制在类人机器人上的应用[期刊论文]-微计算机信息2008,24(2)3.冯晓伟.王雷阳.李正生.FENG Xiao-wei.WANG Lei-yang.LI Zheng-sheng多路舵机控制PWM发生器的设计与Proteus仿真[期刊论文]-现代电子技术2011,34(11)4.时玮利用单片机PWM信号进行舵机控制[期刊论文]-今日电子2005(10)5.付丽.刘卫国.伊强.FU Li.LIU Wei-guo.YI Qiang单片机控制的多路舵机用PWM波产生方法[期刊论文]-微特电机2006,34(2)6.张龙.孟偲.刘颖.王田苗.ZHANG Long.MENG Cai.LIU Ying.WANG Tian-miao仿壁虎机器人多路舵机控制器设计[期刊论文]-微特电机2010,38(9)1.李素娟.蒋维安基于51单片机多通道直流电机调速设计[期刊论文]-机电工程技术 2010(6)2.李一波.高永霞系留飞艇地面监测系统艇载控制模块设计[期刊论文]-电子技术应用 2010(11)3.秦萍舵机在机器人技术中的应用及编程方法[期刊论文]-价值工程 2013(32)4.宫俊.俞志伟.戴振东基于LPC2103的四足机器人控制系统设计[期刊论文]-中国科技博览 2011(12)5.曲娜.周鹏.程凤芹.于秋红基于步进电机控制的平面切割模型的研究[期刊论文]-赤峰学院学报(自然科学版)2013(17)6.曹杰.戴敏小型多自由度机器人舵机群控制系统设计[期刊论文]-微计算机信息 2011(7)7.曹杰.戴敏小型多自由度机器人舵机群控制系统设计[期刊论文]-微计算机信息 2011(3)8.黄雪梅.徐谋锋.张新义.魏修亭基于DSP产生24路PWM波形的研究[期刊论文]-计算机测量与控制 2010(10)10.高同跃.龚振邦.罗均.冯伟一种超小型无人机舵机控制系统的设计[期刊论文]-计算机测量与控制 2007(8)11.时玮利用单片机PWM信号进行舵机控制[期刊论文]-今日电子 2005(10)12.蒋辰飞.刘子龙.胡少凯.韩光鲜基于AVR单片机的多舵机控制精度的研究[期刊论文]-信息技术 2014(3)13.霍丽霞.罗卫兵.迟晓鹏多通道舵机控制器设计[期刊论文]-现代电子技术 2010(21)14.祁乐.闫继宏.朱延河.赵杰小型双足步行机器人的研制[期刊论文]-机械工程师 2006(11)15.付丽.刘卫国.伊强单片机控制的多路舵机用PWM波产生方法[期刊论文]-微特电机 2006(2)16.赵杰.郭亮.臧希喆.姜健.蔡鹤皋应用于六足机器人平台的舵机控制器设计[期刊论文]-机械与电子 2005(9)17.黄雪梅.范强.魏修亭舵机控制用PWM信号的研究与实现[期刊论文]-微计算机信息 2010(5)18.胡相利.宋爱国跳跑式微型弹跳机器人的设计与实现[期刊论文]-测控技术 2009(8)19.柴稳.徐娅萍.黄伟峰.支立纯基于单片机的多路舵机平稳驱动方法的设计和实现[期刊论文]-微特电机2008(12)20.伍文平.王小兵基于多单片机的模型直升机机载测控系统设计[期刊论文]-电子测量技术 2009(5)21.彭永强.李祖枢.薛方正基于舵机云台的人型机器人单目视觉测距[期刊论文]-计算机测量与控制 2009(11)22.张红涛.赵书尚.韩建海基于CMOS传感器的智能小车设计[期刊论文]-河南科技大学学报(自然科学版) 2009(1)23.曾漫.熊小丽.丁文革.范亚龙一种典型数字无刷电动舵机的设计[期刊论文]-中北大学学报(自然科学版)2011(6)24.郭亮六足仿生机器人的研制[学位论文]硕士 200525.韩松3-URU型并联机器人的研制及其运动学特性分析[学位论文]硕士 200526.陈青松基于DSP & CPLD的超小型无人直升机飞控系统研究与设计[学位论文]硕士 2006本文链接:/Periodical_jxydz200402025.aspx。

压电式脉冲超声波发生器激励电源的设计

压电式脉冲超声波发生器激励电源的设计

压电式脉冲超声波发生器激励电源的设计发表时间:2017-12-28T15:10:41.147Z 来源:《建筑学研究前沿》2017年第20期作者:王钊利[导读] 在本文中,对系统总体设计、超声电源主电路设计dsPIC30F4011单片机主控部分设计分别进行了探究。

杭州应用声学研究所浙江杭州 310023 摘要:将压电式超声换能器作为对象,对超声电源进行了有效设计,此超声电源有着比较大的优势,其性能比较优越。

在此中,对dsPIC30F4011单片机进行了充分应用,将其作为控制核心。

同时,对PWM技术进行了有效应用,为超声电源输出功率等的可调性提供了有效保障。

在本文中,对系统总体设计、超声电源主电路设计dsPIC30F4011单片机主控部分设计分别进行了探究。

关键词:压电式;脉冲超声波发生器;激励电源;设计近年来,我国科学技术迅猛发展,在多种领域中都对超声波进行了充分应用,对人们的生活和生产等产生了非常重要的影响。

在超声换能器中,超声电源占据着至关重要的位置,能够为其提供电能,对压电超声换能器进行有效激励,使其发生相应转换,实现超声电源产生的电能向机械能的转换。

当下,对于超声电源来说,均是将换能器作为重要依据,完成高度定制化设计[1]。

一、系统总体设计从本质上讲,超声电源是一个功率信号发生器,从中产生一个同脉冲信号相同的正弦,然后对其进行功率放大处理,通过此操作之后,在网络匹配单元中通过阻抗匹配,使输出的最终阻抗成为纯阻性,同时,对大功率电信号激励探头产生相应作用,使其产生机械振动,由此,产生超声波。

在系统中,主要包括两个方面的内容,分别是dsPIC30F4011单片机主控部分和超声电源主电路。

对 dsPIC30F4011单片机进行有效应用,使其作用得到充分发挥,产生PWM调制信号,然后,使其经过两路AD,完成对PWM频率和占空比的调节,与此同时,对1602液晶进行相应应用,主要将两部分内容显示在上面,分别是超声电源的频率和功率等级。

单片机pwm控制原理

单片机pwm控制原理

单片机pwm控制原理
单片机的PWM控制原理是通过改变信号的占空比来控制电压、电流或功率等的大小。

PWM(Pulse Width Modulation,脉宽
调制)是一种调制技术,其原理是通过不断变化的脉冲信号的占空比来控制输出信号的特性。

单片机中的PWM模块通常由一个计数器和一个比较器组成。

计数器会按照一个固定的频率进行计数,并将计数值与事先设置的比较值进行比较。

当计数器的值小于比较值时,输出信号为高电平;当计数器的值大于等于比较值时,输出信号为低电平。

通过不断改变比较值和计数器中的值,就可以实现不同占空比的PWM信号。

通过设置不同的比较值,可以实现不同占空比的脉冲信号。

当比较值接近计数器的最大值时,输出信号的占空比接近100%,输出信号持续保持高电平;当比较值接近0时,输出信号的占空比接近0%,输出信号持续保持低电平;当比较值接近计数
器最大值的一半时,输出信号的占空比为50%,即输出信号
高电平和低电平时间相等。

通过改变PWM信号的占空比,可以控制接在输出引脚上的外
部器件的电压、电流或功率等。

例如,可以通过改变一个驱动器的PWM信号的占空比来控制电机的转速。

当PWM信号的
占空比较大时,电机的转速较快;当PWM信号的占空比较小时,电机的转速较慢。

这种方式可以实现对电机的精确控制。

PWM控制技术广泛应用于电子电路、自动化控制系统、电力
电子等领域。

通过使用单片机中的PWM模块,可以实现简单、高精度的脉冲信号生成和对外部器件的精确控制。

干货10个单片机MCU常用的基础知识

干货10个单片机MCU常用的基础知识

干货10个单片机MCU常用的基础知识在单片机(MCU)的学习和应用中,掌握一些基础知识是非常重要的。

本文将为您介绍10个常用的单片机MCU基础知识,希望能够给您带来干货。

1. 什么是单片机(MCU)单片机(Microcontroller Unit)是一种集成了中央处理器(CPU)、存储器(ROM和RAM)、输入/输出接口(IO)以及外设接口等功能于一体的微型计算机系统。

它可以完成逻辑控制、数据处理和通信等功能。

2. 单片机与微处理器的区别单片机与微处理器(Microprocessor)相比,最大的区别在于单片机集成了更多的外设接口,使其具备了更强的实时控制能力。

而微处理器则更适用于需要大量计算和处理的场景。

3. 单片机的工作原理单片机的工作原理可以简单描述为:接收输入信号,经过处理后,产生输出结果。

它通过运行存储在ROM中的程序指令来完成这一过程。

4. 单片机的主要用途单片机广泛应用于各个领域,如家电控制、工业自动化、医疗设备、车载电子等。

由于其低功耗、成本低廉、体积小等优势,使其成为许多嵌入式系统的首选控制器。

5. 常见的单片机开发平台目前市场上有许多单片机开发平台,如Arduino、Raspberry Pi等。

这些开发平台提供了丰富的开发资源和友好的开发环境,方便初学者上手。

6. 单片机的编程语言单片机常用的编程语言有汇编语言和C语言。

汇编语言直接操作单片机的底层寄存器和指令,控制精度高。

C语言较为高级,易读易写,适合进行复杂的控制和计算。

7. 单片机的输入输出单片机通过IO口实现与外部设备的数据交换。

一般情况下,输入是通过传感器或按钮等设备获取外部信号,输出是通过驱动电机、LED等设备实现对外部环境的控制。

8. 单片机的定时器与计数器单片机的定时器与计数器是实现计时和计数功能的重要模块。

它可以用来生成精确的时间延时、产生PWM波形、计算脉冲个数等操作。

9. 单片机的中断系统中断是单片机应对外部事件的一种重要机制。

单片机正负pwm波 -回复

单片机正负pwm波 -回复

单片机正负pwm波-回复单片机正负PWM波介绍与应用探究引言:在单片机的应用领域中,正负PWM波是一种常见而重要的电信号类型。

它既可以用于控制电机的转速,也可以用于LED的亮度调节等场景下。

本文将一步一步地介绍单片机正负PWM波的原理、产生方法及其应用领域。

第一部分:正负PWM波的原理1. 正负PWM波是什么?正负PWM波是指具有正占空比和负占空比的脉冲宽度调制(PWM)波形。

正占空比和负占空比分别表示高电平时间和低电平时间相对于一个周期的比例。

正负PWM波一般用于控制电平为正的电压和电平为负的电压。

2. 正负PWM波的产生原理正负PWM波的产生主要依赖于单片机的定时器/计数器模块以及输出比较模块。

通过设置定时器的计数周期和比较值,并根据比较结果产生高电平和低电平,从而产生正负PWM波。

第二部分:正负PWM波的产生方法1. 单片机定时器的设置首先,选择一个合适的定时器(如PWM定时器)以及相关的时钟源。

然后,通过设置定时器的计数模式、计数周期和预分频值,确定正负PWM 波的周期和频率。

2. 单片机输出比较模块的设置在正负PWM波的产生中,常常需要通过单片机的输出比较模块来比较定时器的计数值与比较值,以决定输出高电平还是低电平。

通过设置比较值,可以实现正负PWM波的占空比调节。

3. 编写程序实现PWM波产生在单片机的程序中,根据具体的芯片型号和开发环境,编写相应的PWM波产生程序。

通常需要设置计时器和比较器的相关寄存器来实现PWM波的周期和占空比的调节。

第三部分:正负PWM波的应用领域1. 电机控制正负PWM波可以实现对电机的转速控制。

通过调节PWM波的占空比,可以改变电机供电电压的大小,从而控制电机转动的速度和方向。

2. LED亮度调节正负PWM波可以用于LED的亮度调节。

通过调节PWM波的占空比,可以改变LED灯的亮度,实现灯光的调节和效果控制。

3. 音频处理正负PWM波也可以应用于音频领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶振12M任意占空比方波输出
信号发生器又称波形发生器,是一种常用的信号源,被广泛地应用于无线电通信、自动测量和自动控制等系统中。

传统的信号发生器绝大部分是由模拟电路构成,借助电阻电容,电感电容、谐振腔、同轴线作为振荡回路产生正弦或其它函数波形。

频率的变动由机械驱动可变元件完成,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵。

在今天,随着大规模集成电路和信号发生器技术的发展,许多新型信号发生器应运而生。

用信号发生器并配置适当接口芯片产生程控正弦信号,则可替代传统的正弦信号发生器,从而有利于测试系统的集成化、程控化和智能仪表的多功能化。

而信号发生器的最大特点是面向控制,由于它集成度高、运算速度快、体积小、运行可靠、价格低,因此在数据采集、智能化仪器等技术中得到广泛的应用,从而使得信号发生器的应用成为工程技术多学科知识汇集的一个专门研究领域,其应用产生了极高的经济效益和社会效益。

如果是占空比任意,现在考虑12M晶振,所以机器周期Tcy为1 μs。

定时器工作方式1最长定时为65536×1×10-6=65.536ms
如果要输出周期为1s的任意占空比的方波。

那可以把1s分为100份,每份中断一次。

然后在中断里面计数(比如全局变量num)加一。

加到100之后,表示一个周期结束。

这样就可以控制每一份的电平的高低了。

如果,占空比为30%,那么也就是num小于等于100×30%=30的时候,输出高电平,其余输出低电平就可以了。

如果占空比为a(百分号的形式),那么也就是num小于等于100×a的时候输出高电平,其余输出低电平就可以了。

现在考虑定时器的初值如何设定,由于定时器需要在1s/100也就是10ms的时候进入一次中断进行判断。

如果采用方式1,那么因为(216 −X) ⨯ 1 ⨯ 10−6 = 10 ⨯ 10−3,
所以定时器的初值为X=65536 – 1000.
#include<reg52.h> //头文件
sbit output=P1^1; //输出端
unsigned char num=1; //辅助计时
unsigned int a = 0.3;占空比a可以任意设定
void Init(void) //初始化函数
{
//对于定时器一般初始化需要六步
TMOD=0x01;
TH0=(65536-1000)/256; //(65536-1000)为定时器初值,定时10ms
TL0=(65536-1000)%256;
EA=1;
ET0=1;
TR0=1;
}
main()
{
Init();
while(1)
{
if(num<=100*a)output=1; //使占空比为a
else output=0;
}
}
void Timer_0(void) interrupt 1 //中断函数{
TH0=(65536-1000)/256; //
TL0=(65536-1000)%256;
num++;
if(num>100) num=1;
}。

相关文档
最新文档