2016年浙江省杭州市西湖区中考数学二模试卷带答案解析

合集下载

浙江省杭州市2016届中考数学模拟试卷(解析版)

浙江省杭州市2016届中考数学模拟试卷(解析版)

2016年数学模拟试卷班级_________姓名_________一.仔细选一选(本题有10个小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.关于m的不等式﹣m>1的解为()A.m>0 B.m<0 C.m<﹣1 D.m>﹣12.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定3.如图所示零件的左视图是()A.B.C.D.4.已知点A(1,m)与点(3,n)都在反比例函数y=﹣的图象上,则m与n的大小关系是()A.m<n B.m>n C.m=n D.不能确定5.的平方根()A.4 B.2 C.±4 D.±26.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y27.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F,若AC=4,则OF的长为()A.1 B.C.2 D.48.如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么△DEF与△ABC的周长比为()A.4:1 B.3:1 C.2:1 D.:19.△ABC的一边长为5,另两边分别是方程x2﹣6x+m=0的两根,则m的取值范围是()A.m>B.<m≤9 C.≤m≤9 D.m≤10.在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),连结AD,作∠ADE=∠B=α,DE交AC于点E,且cosα=.有下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE 全等;③当△DCE为直角三角形时,BD=8;④3.6≤AE<10.其中正确的结论是()A.①③B.①④C.①②④D.①②③二.认真填一填(本题有6个小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.从﹣2,﹣8,5中任取两个不同的数作为点的坐标,该点在第三象限的概率为.12.函数y=x2﹣6x+8(0≤x≤4)的最大值与最小值分别为,.13.已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=4,tan∠CBD=,则AB=,sin∠ABE=.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是____________.15.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上,点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P,则点P与Q的坐标分别为.16.已知函数y=k (x+1)(x ﹣),下列说法:①方程k (x+1)(x ﹣)=﹣3必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k >3时,抛物线顶点在第三象限;④若k <0,则当x <﹣1时,y 随着x 的增大而增大,其中正确的序号是 .16.如图,一次函数y=﹣x+b 与反比例函数y=(x >0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点,连结OA ,OB ,过A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m .(1)b= (用含m 的代数式表示);(2)若S △OAF +S 四边形EFBC =4,则m 的值是 .三、解答题(本题共8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.计算:0(3)4sin 451-π+ .解不等式组:253(1)742x x x x +>-⎧⎪⎨+>⎪⎩17.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.18.小明在数学课外小组活动中遇到这样一个“新定义”问题:定义运算“※”为:a※b=,求1※(﹣4)的值.小明是这样解决问题的:由新定义可知a=1,b=﹣4,又b<0,所以1※(﹣4)=。

浙江省杭州市中考数学二模考试试卷

浙江省杭州市中考数学二模考试试卷

浙江省杭州市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·上海) 如果a与3互为倒数,那么a是()A . ﹣3B . 3C . ﹣D .2. (2分)(2017·七里河模拟) 如图,1,2,3,4,T是五个完全相同的正方体,将两部分构成一个新的几何体得到其正视图,则应将几何体T放在()A . 几何体1的上方B . 几何体2的左方C . 几何体3的上方D . 几何体4的上方3. (2分)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为()A . 20.3×104人B . 2.03×105人C . 2.03×104人D . 2.03×103人4. (2分) (2018八下·道里期末) 三角形两边的长是2和5,第三边的长是方程x2﹣12x+35=0的根,则第三边的长为()A . 2B . 5C . 7D . 5或75. (2分)下面的图形中,是中心对称图形的是().A .B .C .D .6. (2分)下列计算正确的是()A . x3•x5=x15B . x4÷x=x3C . 3x2•4x2=12x2D . (x5)2=x77. (2分)(2017·丹江口模拟) 在2017年十堰市初中体育中考中,随意抽取某校5位同学跳远的记录分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A . 平均数为160B . 中位数为158C . 众数为158D . 方差为20.38. (2分)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A . 60°B . 120°C . 60°或120°D . 30°或150°9. (2分)将抛物线y=3x2经过怎样的平移可得到抛物线y=3(x-1)2+2()A . 先向左平移1个单位,再向上平移2个单位B . 先向左平移1个单位,再向下平移2个单位C . 先向右平移1个单位,再向上平移2个单位D . 先向右平移1个单位,再向下平移2个单位10. (2分) (2011八下·新昌竞赛) 如图,在 ABCD中,BC=7厘米,CD=5厘米,∠D=50°,BE平分∠ABC,下列结论中错误的是()A . ∠C=130°B . ∠BED=130°C . AE=5厘米D . ED=2厘米11. (2分)二次函数的图象如图所示.当y>0时,自变量x的取值范围是()A . -1<x<3B . x<-1C . x>3D . x<-1或x>312. (2分)如图,在△ABC中,AB=AC,点D在边AB上,点E在线段CD上,且∠BEC=∠AC B,BE的延长线与边AC相交于点F,则与∠BDC相等的角是()A . ∠DBEB . ∠CBEC . ∠BCED . ∠A二、填空题 (共6题;共6分)13. (1分)(2013·内江) 若m2﹣n2=6,且m﹣n=2,则m+n=________.14. (1分)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.15. (1分)(2018·汕头模拟) 若 +(b+4)2=0,那么点(a,b)关于原点对称点的坐标是________.16. (1分)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为________ .17. (1分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若CD=2EF=4,BC=,则∠C等于________°.18. (1分) (2016九上·庆云期中) 如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为________cm.三、综合题 (共7题;共46分)19. (10分) (2019八上·长春月考) 计算:20. (10分)(2020·兰州模拟) 2018年9月9日兰州市秦王川国家湿地公园在万众瞩目中盛大开园,公园被分为六大板块,分别为:亲水运动公园、西北戴维营、私人农场区、湿地生态培育区、丝路古镇、湿地科普活动区(分别记为A,B,C,D,E,F),为了了解游客“最喜欢板块”的情况,随机对部分游客进行问卷调查,规定每个人从这六个板块中选择一个,并将调查结果绘制成如下两幅不完整的统计图.根据以上信息回答下列问题:(1)这次调查的样本容量是________,a=________;(2)扇形统计图中“C”对应的圆心角为________;(3)补全条形统计图;(4)若2019年预计有100000人进园游玩,请估计最喜欢板块为“B”的游客人数.21. (2分) (2019八下·杜尔伯特期末) 我县“果菜大王”王大炮收货番茄20吨,青椒12吨.现计划租用甲、乙两种货车共8辆将这批果菜全部运往外地销售,已知一辆甲种货车可装番茄4吨和青椒1吨,一辆乙种货车可装番茄和青椒各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将果菜运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王大炮应选择哪种方案,使运输费最少?最少运费是多少?22. (2分)(2020·温岭模拟) 如图,反比例函数y= (k≠0)的图象与一次函数y= x-1图象相交于B,C两点,其中点C坐标为(m,1),BC交y轴于D点,点A在第二象限,∠ABC=90°,AC∥x轴,AC交y轴于E点。

2016年浙江省杭州市中考数学试卷(解析版)

2016年浙江省杭州市中考数学试卷(解析版)

2016年浙江省杭州市中考数学试卷参考答案与试题解析一、填空题(每题3分)1.=()A.2 B.3 C.4 D.5【考点】算术平方根.【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解:=3.故选:B.2.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1【考点】平行线分线段成比例.【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵a∥b∥c,∴==.故选B.3.下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.【解答】解:该圆柱体的主视图、俯视图均为矩形,左视图为圆,故选:A.4.如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【考点】众数;条形统计图;中位数.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.5.下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【考点】二次根式的性质与化简;同底数幂的乘法;多项式乘多项式;分式的混合运算.【分析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;故选:B.6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2 B.518﹣x=2×106 C.518﹣x=2 D.518+x=2【考点】由实际问题抽象出一元一次方程.【分析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2,故选C.7.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.【考点】反比例函数的图象.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.8.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB【考点】圆周角定理.【分析】连接EO,只要证明∠D=∠EOD即可解决问题.【解答】解:连接EO.∵OB=OE,∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.9.已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【考点】等腰直角三角形;等腰三角形的性质.【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.10.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③【考点】因式分解的应用;整式的混合运算;二次函数的最值.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.二、填空题(每题4分)11.tan60°=.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.12.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.【考点】概率公式;扇形统计图.【分析】先求出棕色所占的百分比,再根据概率公式列式计算即可得解.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=.故答案为:.13.若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是﹣1(写出一个即可).【考点】因式分解-运用公式法.【分析】令k=﹣1,使其能利用平方差公式分解即可.【解答】解:令k=﹣1,整式为x2﹣y2=(x+y)(x﹣y),故答案为:﹣1.14.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为45°或105°.【考点】菱形的性质;等腰三角形的性质.【分析】如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,故答案为105°或45°.15.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为(﹣5,﹣3).【考点】关于原点对称的点的坐标;平行四边形的判定与性质.【分析】直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.【解答】解:如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).故答案为:(﹣5,﹣3).16.已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是<m<.【考点】分式方程的解;二元一次方程组的解;解一元一次不等式.【分析】先解方程组,求得x和y,再根据y>1和0<n<3,求得x的取值范围,最后根据=m,求得m的取值范围.【解答】解:解方程组,得∵y>1∴2n﹣1>1,即n>1又∵0<n<3∴1<n<3∵n=x﹣2∴1<x﹣2<3,即3<x<5∴<<∴<<又∵=m∴<m<故答案为:<m<三、解答题17.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【考点】有理数的除法.【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【解答】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.18.某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【考点】折线统计图.【分析】(1)根据每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图,可以求得第一季度的汽车销售量为2100辆时,该季的汽车产量;(2)首先判断圆圆的说法错误,然后说明原因即可解答本题.【解答】解:(1)由题意可得,2100÷70%=3000(辆),即该季的汽车产量是3000辆;(2)圆圆的说法不对,因为百分比仅能够表示所要考查的数据在总量中所占的比例,并不能反映总量的大小.19.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【考点】相似三角形的判定与性质.【分析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到=,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.20.把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m 的取值范围.【考点】一元二次方程的应用;二次函数的应用.【分析】(1)将t=3代入解析式可得;(2)根据h=10可得关于t的一元二次方程,解方程即可;(3)由题意可得方程20t﹣t2=m 的两个不相等的实数根,由根的判别式即可得m的范围.【解答】解:(1)当t=3时,h=20t﹣5t2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)∵h=10,∴20t﹣5t2=10,即t2﹣4t+2=0,解得:t=2+或t=2﹣,故经过2+或2﹣时,足球距离地面的高度为10米;(3)∵m≥0,由题意得t1,t2是方程20t﹣5t2=m 的两个不相等的实数根,∴b2﹣4ac=202﹣20m>0,∴m<20,故m的取值范围是0≤m<20.21.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G 在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.【考点】正方形的性质;全等三角形的判定与性质;解直角三角形.【分析】(1)作EM⊥AC于M,根据sin∠EAM=求出EM、AE即可解决问题.(2)先证明△GDC≌△EDA,得∠GCD=∠EAD,推出AH⊥GC,再根据S△AGC=•AG•DC=•GC•AH,即可解决问题.【解答】解:(1)作EM⊥AC于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠EHC=∠EDA=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.22.已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【考点】二次函数综合题.【分析】(1)结合点的坐标利用待定系数法即可得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)①将函数y1的解析式配方,即可找出其顶点坐标,将顶点坐标代入函数y2的解析式中,即可的出a、b的关系,再根据ab≠0,整理变形后即可得出结论;②由①中的结论,用a表示出b,两函数解析式做差,即可得出y1﹣y2=a(x﹣2)(x﹣1),根据x的取值范围可得出(x﹣2)(x﹣1)<0,分a>0或a<0两种情况考虑,即可得出结论.【解答】解:(1)由题意得:,解得:,故a=1,b=1.(2)①证明:∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.23.在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.【考点】四边形综合题.【分析】(1)由角平分线和平行线整体求出∠MAB+∠NBA,从而得到∠APB=90°,最后用等边对等角,即可.(2)先根据条件求出AF,FG,求出∠FAG=60°,最后分两种情况讨论计算.【解答】解:(1)原命题不成立,新结论为:∠APB=90°,AF+BE=2AB(或AF=BE=AB),理由:∵AM∥BN,∴∠MAB+∠NBA=180°,∵AE,BF分别平分∠MAB,NBA,∴∠EAB=∠MAB,∠FBA=∠NBA,∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°,∴∠APB=90°,∵AE平分∠MAB,∴∠MAE=∠BAE,∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理:AF=AB,∴AF=+BE=2AB(或AF=BE=AB);(2)如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32=8×FG,∴FG=4,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=4,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=4﹣3或AQ=4+3.②如图3,当∠FAB=120°时,∠PAB=60°,∠FBG=30°,∴PB=4,∵PB=4>5,∴线段AE上不存在符合条件的点Q,∴当∠FAB=60°时,AQ=4﹣3或4+3.。

2016年浙江省杭州市中考数学试卷附详细答案(原版+解析版)

2016年浙江省杭州市中考数学试卷附详细答案(原版+解析版)

2016年浙江省杭州市中考数学试卷一、填空题(每题3分)1.(3分)(2016•杭州)=()A.2 B.3 C.4 D.52.(3分)(2016•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.13.(3分)(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.4.(3分)(2016•杭州)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃5.(3分)(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+6.(3分)(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)7.(3分)(2016•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C. D.8.(3分)(2016•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB9.(3分)(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0 10.(3分)(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③二、填空题(每题4分)11.(4分)(2016•黔东南州)tan60°=.12.(4分)(2016•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.13.(4分)(2016•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).14.(4分)(2016•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.15.(4分)(2016•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.16.(4分)(2016•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是.三、解答题17.(6分)(2016•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.18.(8分)(2016•杭州)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?19.(8分)(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.20.(10分)(2016•杭州)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m 的取值范围.21.(10分)(2016•杭州)如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE 交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.22.(12分)(2016•杭州)已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.23.(12分)(2016•杭州)在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.2016年浙江省杭州市中考数学试卷参考答案与试题解析一、填空题(每题3分)1.(3分)(2016•杭州)=()A.2 B.3 C.4 D.5【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解:=3.故选:B.【点评】考查了算术平方根,注意非负数a的算术平方根a有双重非负性:①被开方数a 是非负数;②算术平方根a本身是非负数.2.(3分)(2016•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵a∥b∥c,∴==.故选B.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.3.(3分)(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.【解答】解:该圆柱体的主视图、俯视图均为矩形,左视图为圆,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.4.(3分)(2016•杭州)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【分析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质以及同底数幂的乘法运算和分式的混合运算等知识,正确掌握相关运算法则是解题关键.6.(3分)(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)【分析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选C.【点评】考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.(3分)(2016•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C.D.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x 的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.8.(3分)(2016•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB【分析】连接EO,只要证明∠D=∠EOD即可解决问题.【解答】解:连接EO.∵OB=OE,∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.【点评】本题考查圆的有关知识、三角形的外角等知识,解题的关键是添加除以辅助线,利用等腰三角形的判定方法解决问题,属于中考常考题型.9.(3分)(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.10.(3分)(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【点评】本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(每题4分)11.(4分)(2016•黔东南州)tan60°=.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.12.(4分)(2016•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.【分析】先求出棕色所占的百分比,再根据概率公式列式计算即可得解.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=.故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)(2016•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是﹣1(写出一个即可).【分析】令k=﹣1,使其能利用平方差公式分解即可.【解答】解:令k=﹣1,整式为x2﹣y2=(x+y)(x﹣y),故答案为:﹣1.【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.(4分)(2016•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为45°或105°.【分析】如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,故答案为105°或45°.【点评】本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.15.(4分)(2016•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为(﹣5,﹣3).【分析】直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.【解答】解:如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).故答案为:(﹣5,﹣3).【点评】此题主要考查了平行四边形的性质以及关于原点对称点的性质,正确得出D点坐标是解题关键.16.(4分)(2016•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是<m<.【分析】先解方程组,求得x和y,再根据y>1和0<n<3,求得x的取值范围,最后根据=m,求得m的取值范围.【解答】解:解方程组,得∵y>1∴2n﹣1>1,即n>1又∵0<n<3∴1<n<3∵n=x﹣2∴1<x﹣2<3,即3<x<5∴<<∴<<又∵=m∴<m<故答案为:<m<【点评】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.根据x取值范围得到的取值范围是解题的关键.三、解答题17.(6分)(2016•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【解答】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.【点评】此题考查了有理数的除法,用到的知识点是有理数的除法、通分、有理数的加法,关键是掌握运算顺序和结果的符号.18.(8分)(2016•杭州)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【分析】(1)根据每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图,可以求得第一季度的汽车销售量为2100辆时,该季的汽车产量;(2)首先判断圆圆的说法错误,然后说明原因即可解答本题.【解答】解:(1)由题意可得,2100÷70%=3000(辆),即该季的汽车产量是3000辆;(2)圆圆的说法不对,因为百分比仅能够表示所要考查的数据在总量中所占的比例,并不能反映总量的大小.【点评】本题考查折线统计图,解题的关键是明确题意,找出所求问题需要的条件.19.(8分)(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【分析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到=,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.【点评】本题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于基础题中考常考题型.20.(10分)(2016•杭州)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m 的取值范围.【分析】(1)将t=3代入解析式可得;(2)根据h=10可得关于t的一元二次方程,解方程即可;(3)由题意可得方程20t﹣t2=m 的两个不相等的实数根,由根的判别式即可得m的范围.【解答】解:(1)当t=3时,h=20t﹣5t2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)∵h=10,∴20t﹣5t2=10,即t2﹣4t+2=0,解得:t=2+或t=2﹣,故经过2+或2﹣时,足球距离地面的高度为10米;(3)∵m≥0,由题意得t1,t2是方程20t﹣5t2=m 的两个不相等的实数根,∴b2﹣4ac=202﹣20m>0,∴m<20,故m的取值范围是0≤m<20.【点评】本题主要考查二次函数背景下的求值及一元二次方程的应用、根的判别式,根据题意得到相应的方程及将实际问题转化为方程问题是解题的关键.21.(10分)(2016•杭州)如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE 交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.【分析】(1)作EM⊥AC于M,根据sin∠EAM=求出EM、AE即可解决问题.(2)先证明△GDC≌△EDA,得∠GCD=∠EAD,推出AH⊥GC,再根据S△AGC=•AG•DC=•GC•AH,即可解决问题.【解答】解:(1)作EM⊥AC于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠EHC=∠EDA=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识,添加常用辅助线是解决问题的关键,学会用面积法求线段,属于中考常考题型.22.(12分)(2016•杭州)已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【分析】(1)结合点的坐标利用待定系数法即可得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)①将函数y1的解析式配方,即可找出其顶点坐标,将顶点坐标代入函数y2的解析式中,即可的出a、b的关系,再根据ab≠0,整理变形后即可得出结论;②由①中的结论,用a表示出b,两函数解析式做差,即可得出y1﹣y2=a(x﹣2)(x﹣1),根据x的取值范围可得出(x﹣2)(x﹣1)<0,分a>0或a<0两种情况考虑,即可得出结论.【解答】解:(1)由题意得:,解得:,故a=1,b=1.(2)①证明:∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.【点评】本题考查了二次函数的综合应用,解题的关键是:(1)结合点的坐标利用待定系数法求出函数系数;(2)①函数y1的顶点坐标代入y2中,找出a、b间的关系;②分a>0或a<0两种情况考虑.本题属于中档题,难度不大,解决该题时,利用配方法找出函数y1的顶点坐标,再代入y2中找出a、b间的关系是关键.23.(12分)(2016•杭州)在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.【分析】(1)由角平分线和平行线整体求出∠MAB+∠NBA,从而得到∠APB=90°,最后用等边对等角,即可.(2)先根据条件求出AF,FG,求出∠FAG=60°,最后分两种情况讨论计算.【解答】解:(1)原命题不成立,新结论为:∠APB=90°,AF+BE=2AB(或AF=BE=AB),理由:∵AM∥BN,∴∠MAB+∠NBA=180°,∵AE,BF分别平分∠MAB,NBA,∴∠EAB=∠MAB,∠FBA=∠NBA,∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°,∴∠APB=90°,∵AE平分∠MAB,∴∠MAE=∠BAE,∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理:AF=AB,∴AF=+BE=2AB(或AF=BE=AB);(2)如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32=8×FG,∴FG=4,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=4,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=4﹣3或AQ=4+3.②如图3,当∠FAB=120°时,∠PAB=60°,∠FBG=30°,∴PB=4,∵PB=4>5,∴线段AE上不存在符合条件的点Q,∴当∠FAB=60°时,AQ=4﹣3或4+3.【点评】此题是四边形综合题,主要考查了平行线的性质,角平分线的性质,直角三角形的性质,勾股定理,解本题的关键是用勾股定理计算线段.参与本试卷答题和审题的老师有:HJJ;gsls;三界无我;sjzx;sd2011;1987483819;曹先生;弯弯的小河;zgm666;lantin;星期八;sks;szl;星月相随(排名不分先后)菁优网2016年9月8日。

浙江省杭州市2016年中考数学模拟试卷及答案

浙江省杭州市2016年中考数学模拟试卷及答案

浙江省杭州市2016年中考数学模拟试卷一.仔细选一选(本题有10个小题,每小题3分,共30分)1.我们知道是个无理数,﹣1在哪两个整数之间()A.1与2 B.2与3 C.3与4 D.4与52.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是43.为了建设绿色校园,学校去年年底的绿化面积为2000平方米,预计到明年年底增加到4200平方米,求这两年绿化面积的年平均增长率.下面所列方程正确的是()A.2000(1﹣a%)2=4200 B.2000(1+a%)2=4200C.2000(1﹣2a%)=4200 D.2000(1﹣a2%)2=42004.下列图形中,一定是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.六边形D.圆5.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(,﹣k)C.经过一、三象限或二、四象限D.y随着x增大而减小6.用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.7.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC 等于()A.B.C.D.8.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.B.C.D.9.已知P(x,y)是平面直角坐标系上的一个点,且它的横、纵坐标是一次方程组(a为任意实数)的解,则当a变化时,点P一定不会经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,已知二次函数的解析式为y=x2﹣1,其图象上有一个动点P,连接OP(O为坐标原点),并以OP为半径作圆,则该圆的最小面积是()A.π B.π C.π D.π二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,直线a∥b∥c,点A、B、C分别在直线a、b、c上,若∠1=70°,∠2=50°,则∠ABC=.12.一次函数y=(m﹣3)x+m2﹣6m+9过点(1,0),则m=.13.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD成为平行四边形的概率是.14.某班有40个同学,同时参加一场数学考试,已知该次考试的平均分为80分,则不及格(小于60分)的学生最多有个.(注意:所有的分数都是整数)15.已知x=2t﹣8,y=10﹣t,S=,则S有最值,这个值是.16.如图所示,⊙D 的半径为3,A是圆D外一点且AD=5,AB,AC分别与⊙D相切于点B,C.G 是劣弧BC上任意一点,过G作⊙D的切线,交AB于点E,交AC于点F.(1)△AEF的周长是;当G为线段AD与⊙D的交点时,连结CD,则五边形DBEFC的面积是.三.全面答一答(本题有8个小题,共66分)17.化简代数式:﹣,并求出当字母a为不等式组整数解时的值.18.如图,Rt△ABC的斜边AB=1,∠B=α,CD⊥AB,垂足为D点.(1)用含α三角函数表示线段BD、CD、AD的长度;通过你的计算的结果或者运算过程,你发现了哪些有关于三角函数的性质或者三角函数的等式?请举一例即可.19.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.20.如图,已知线段a和线段b,(1)用尺规作出等腰△ABC,使得AB=AC=a,BC=b;若a=5,b=8,记△ABC得重心为G,内心为O,求出点G到点O的距离.21.已知反比例函数y=的图象经过点A(﹣,1).(1)试确定此反比例函数的表达式;已知点P(m,m+6)也在此反比例函数的图象上(其中m<0),过点P作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是.设点Q的纵坐标为n,求n2﹣2n+2015的值.22.如图,已知正方形ABCD的边长为1,对角线AC上有一点E,使得AE=AC.连结DE,过线段DE上的一个动点F分别向AC和AD作垂线段,垂足分别为G、H.(1)证明:△FGE∽△FHD;设线段FG的长度为x,线段FH的长度为y,求出y关于x的函数表达式,并写出自变量的取值范围;(3)连结GH,求出△GHF面积的最大值.23.如图,二次函数y=x2+(+1)x+m(其中m<4)的图象与x轴相交于A、B两点,且点A在点B的左侧.(1)求A、B两点的坐标;(可用含字母m的代数式表示)如果这个二次函数的图象与反比例函数的图象相交于点C,且∠BAC的正弦值为,求解这个二次函数的表达式;(3)在上一小题的条件下,E是x轴上的一个动点,若以点B为圆心,BE为半径的圆与直线AC 相切,求点E的坐标.浙江省杭州市2015年中考数学模拟试卷参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)1.我们知道是个无理数,﹣1在哪两个整数之间()A.1与2 B.2与3 C.3与4 D.4与5考点:估算无理数的大小.分析:先求出的范围,再两边都减去1,即可得出选项.解答:解:∵4<<5,∴3<﹣1<4,即﹣1在3与4之间,故选C.点评:本题考查了估算无理数的大小的应用,解此题的关键是求出的范围,难度不是很大.2.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是4考点:简单组合体的三视图.专题:几何图形问题.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.解答:解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.点评:本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.3.为了建设绿色校园,学校去年年底的绿化面积为2000平方米,预计到明年年底增加到4200平方米,求这两年绿化面积的年平均增长率.下面所列方程正确的是()A.2000(1﹣a%)2=4200 B.2000(1+a%)2=4200C.2000(1﹣2a%)=4200 D.2000(1﹣a2%)2=4200考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:设这两年的年平均增长率为a%,根据题意列出方程即可得到结果.解答:解:设这两年的年平均增长率为a%,根据题意得:2000(1+a%)2=4200.故选:B.点评:此题考查从实际问题中抽象出一元二次方程,属于增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.4.下列图形中,一定是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.六边形D.圆考点:中心对称图形;轴对称图形.分析:根据各图形的性质和轴对称图形与中心对称图形的定义解答.解答:解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、无法确定是图形形状,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:本题主要考查了中心对称图形与轴对称图形的定义,理解定义是关键.5.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(,﹣k)C.经过一、三象限或二、四象限D.y随着x增大而减小考点:正比例函数的性质.分析:先判断出函数y=﹣k2x(k是常数,k≠0)图象的形状,再根据函数图象的性质进行分析解答.解答:解:∵k≠0∴﹣k2>0∴﹣k2<0∴函数y=﹣k2x(k是常数,k≠0)符合正比例函数的形式.∴此函数图象经过二四象限,y随x的增大而减小,∴C错误.故选C.点评:本题考查了正比例函数的性质,解题的关键是了解正比例函数的图象及其性质.6.用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.考点:翻折变换(折叠问题).专题:几何图形问题.分析:根据图形翻折变换的性质及角平分线的定义对各选项进行逐一判断.解答:解:A.当长方形如A所示对折时,其重叠部分两角的和中,一个顶点处小于90°,另一顶点处大于90°,故A错误;B.当如B所示折叠时,其重叠部分两角的和小于90°,故B错误;C.当如C所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故C错误;D.当如D所示折叠时,两角的和是90°,由折叠的性质可知其折痕必是其角的平分线,故D正确.故选:D.点评:本题考查的是角平分线的定义及图形折叠的性质,熟知图形折叠的性质是解答此题的关键.7.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A.B.C.D.考点:三角形中位线定理;勾股定理的逆定理;锐角三角函数的定义.分析:连接BD,根据中位线的性质得出EF∥BD,且EF=BD,进而利用勾股定理的逆定理得出△BDC是直角三角形,求解即可.解答:解:连接BD,∵E、F分别是AB、AD的中点,∴EF∥BD,且EF=BD,∵EF=4,∴BD=8,∵BD=8,BC=10,CD=6,∴82+62=102,即BD2+CD2=BC2,∴△BDC是直角三角形,且∠BDC=90°,∴tanC===,故选:A.点评:此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.8.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.B.C.D.考点:扇形面积的计算;正方形的性质.专题:压轴题.分析:连接AM、BM.根据图形的轴对称性和等底等高的三角形的面积相等,易知阴影部分的面积即为扇形OAB的面积,再根据正方形的四个顶点是圆的四等分点,即可求解.解答:解:连接AM、BM.∵MN∥AD∥BC,OM=ON,∴四边形AOBN的面积=四边形AOBM的面积.再根据图形的轴对称性,得阴影部分的面积=扇形OAB的面积=圆面积.故选B.点评:此题注意能够把不规则图形的面积进行转换.涉及的知识点:两条平行线间的距离处处相等;等底等高的三角形的面积相等;正方形的每一条边所对的圆心角是90°.9.已知P(x,y)是平面直角坐标系上的一个点,且它的横、纵坐标是一次方程组(a为任意实数)的解,则当a变化时,点P一定不会经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数与二元一次方程(组).分析:首先用含有a的代数式表示出x、y的值,然后分析x、y不能同时为负数得到其不会经过第三象限.解答:解:解方程组得:,∵当x=3a+2<0时,解得:a<﹣,∴此时y=﹣2a+4>0,∴当x<0时y>0,∴点P一定不会经过第三象限,故选C.点评:本题考查了一次函数与二元一次方程的知识,解题的关键是首先用含有a的代数式表示出x、y的值.10.如图,已知二次函数的解析式为y=x2﹣1,其图象上有一个动点P,连接OP(O为坐标原点),并以OP为半径作圆,则该圆的最小面积是()A.π B.π C.π D.π考点:二次函数的性质;二次函数图象上点的坐标特征.分析:设OP=r,则圆O的方程为x2+y2=r2,当r取最小值时,该圆的面积最小,此时y有唯一解.将x2=r2﹣y2代入y=x2﹣1,得到关于y的一元二次方程,由△=0求出r2的值,进而求解即可.解答:解:设OP=r,则圆O的方程为x2+y2=r2,当r取最小值时,该圆的面积最小,此时y有唯一解.∵x2+y2=r2,∴x2=r2﹣y2,将x2=r2﹣y2代入y=x2﹣1,得y=r2﹣y2﹣1,整理得y2+y+1﹣r2=0,∵△=12﹣4(1﹣r2)=0,解得r2=,∴该圆的最小面积是πr2=π,故选B.点评:本题考查了二次函数的性质,二次函数与一元二次方程的关系,二次函数图象上点的坐标特征,有一定难度.理解圆O的方程x2+y2=r2中,当r取最小值时y有唯一解是解题的关键.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,直线a∥b∥c,点A、B、C分别在直线a、b、c上,若∠1=70°,∠2=50°,则∠ABC=120.考点:平行线的性质.分析:由平行线的性质可求得∠3、∠4,则可求得∠ABC.解答:解:如图,∵a∥b∥c,∴∠3=∠1=70°,∠4=∠2=50°,∴∠ABC=∠3+∠4=70°+50°=120°,故答案为:120°.点评:本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.12.一次函数y=(m﹣3)x+m2﹣6m+9过点(1,0),则m=2.考点:一次函数图象上点的坐标特征;一次函数的定义.分析:把点(1,0)代入函数解析式,列出关于系数m的方程,通过解方程求得m的值,解方程即可求得m的值.解答:解:∵一次函数y=(m﹣3)x+m2﹣6m+9过点(1,0),∴0=m﹣3+m2﹣6m+9,即m2﹣5m+6=0且m﹣3≠0,整理,得(m﹣2)(m﹣3)=0,且m﹣3≠0,∴m﹣2=0即m=2.故答案是:2.点评:本题考查了一次函数图象上点的坐标特征和一次函数的定义.此题属于易错题,学生们解题时往往忽略了一次函数y=kx+b中的k≠0这一条件.13.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD成为平行四边形的概率是.考点:列表法与树状图法;平行四边形的判定.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能使四边形ABCD成为平行四边形的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,能使四边形ABCD成为平行四边形的有8种情况,∴从中任选两个条件,能使四边形ABCD成为平行四边形的概率是:.故答案为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.某班有40个同学,同时参加一场数学考试,已知该次考试的平均分为80分,则不及格(小于60分)的学生最多有19个.(注意:所有的分数都是整数)考点:一元一次不等式的应用.分析:设不及格(小于60分)的学生最多有x人,则及格的人数为(40﹣x)人,根据及格人数的总分+不及格人数的总分≥40人的总分,建立不等式求出其解即可.解答:解:设不及格(小于60分)的学生最多有x人,则及格的人数为(40﹣x)人,由题意,得100(40﹣x)+59x≥40×80,解得:x≤.∵x为整数,∴x最大为19.故答案为:19.点评:本题考查了列一元一次不等式解实际问题的运用,一元一次不等式的解法的运用,解答时解答时根据及格人数的总分+不及格人数的总分≥40人的总分建立不等式是关键.15.已知x=2t﹣8,y=10﹣t,S=,则S有最大值,这个值是3.考点:二次函数的最值.分析:根据题意和已知,计算出表示xy的值的多项式,根据二次函数的性质求出xy的有最大值,得到S的最大值.解答:解:xy=(10﹣t)=﹣2t2+28t﹣80=﹣2(t﹣7)2+18﹣2<0,∴函数xy有最大值18,则S有最大值3故答案为:大;3.点评:本题考查的是二次函数的最值问题,根据题意列出关于x的函数关系式是解题的关键,解答时,根据二次函数的性质,确定有最大或小值,并用配方法或公式法求出最值.16.如图所示,⊙D 的半径为3,A是圆D外一点且AD=5,AB,AC分别与⊙D相切于点B,C.G 是劣弧BC上任意一点,过G作⊙D的切线,交AB于点E,交AC于点F.(1)△AEF的周长是8;当G为线段AD与⊙D的交点时,连结CD,则五边形DBEFC的面积是9.考点:切线长定理.分析:(1)根据切线长定理就可证明BE=EG,FG=FC,则△AEF的周长是:AE+EG+FG+AF=AB+AC,据此即可求解;当G为线段AD与⊙D的交点时,EF于AD垂直,根据△AEG∽△ADB求得EF的长,根据S五边形DBEFC=S四边形ABDC﹣S△AEF求解.解答:解:(1)如图1所示:连接ED,DG,FD,CD,∵AB,AC分别与⊙D相切于点B,C,∴AB=AC,∠ABD=∠ACD=90°,∵⊙D 的半径为3,A是圆D外一点且AD=5,∴AB==4,∵过G作⊙D的切线,交AB于点E,交AC于点F,∴BE=EG,FG=FC,则△AEF的周长是:AE+EG+FG+AF=AB+AC=8.故答案为:8;如图2,AG=AD﹣DG=5﹣3=2.∵在△AEG和△ADB中,∠ABD=∠AGD=90°,∠BAD=∠EAG,∴△AEG∽△ADB,∴=,即=,∴EG=,∴EF=2EG=3,∴S△AEF=EF•AG=×3×2=3.又∵S四边形ABDC=2S△ABD=AB•BD=3×4=12,∴S五边形DBEFC=12﹣3=9.故答案是:9.点评:本题考查了切线长定理,以及相似三角形的判定与性质、切线的性质定理,理解当G为线段AD与⊙D的交点时,EF于AD垂直,求得EF的长是关键.三.全面答一答(本题有8个小题,共66分)17.化简代数式:﹣,并求出当字母a为不等式组整数解时的值.考点:分式的化简求值;一元一次不等式组的整数解.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算,求出不等式组的解集,确定出x的值,代入计算即可求出值.解答:解:原式==,不等式组,解得:﹣≤a<2,∴当a=0时,原式等于0.点评:此题考查了分式的化简求值,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.18.如图,Rt△ABC的斜边AB=1,∠B=α,CD⊥AB,垂足为D点.(1)用含α三角函数表示线段BD、CD、AD的长度;通过你的计算的结果或者运算过程,你发现了哪些有关于三角函数的性质或者三角函数的等式?请举一例即可.考点:解直角三角形.分析:(1)在Rt△ABC中,根据三角函数的定义得出BC=AB•cosα=cosα,AC=AB•sinα=sinα.在Rt△BCD中,根据三角函数的定义得出BD=BC•cosα=cos2α;CD=BC•sinα=sinαcosα;由同角的余角相等得出∠ACD=∠B=90°﹣∠BCD=α,在Rt△ACD中,根据三角函数的定义得出AD=AC•sin∠ACD=sin2α;由AD+BD=AB得出sin2α+cos2α=1;由tan∠B=得出tanα=.解答:解:(1)∵Rt△ABC的斜边AB=1,∠B=α,∴BC=AB•cosα=cosα,AC=AB•sinα=sinα.在Rt△BCD中,∵∠BDC=90°,∴BD=BC•cosα=cosα•cosα=cos2α;CD=BC•sinα=sinαcosα;在Rt△ACD中,∵∠ADC=90°,∠ACD=∠B=90°﹣∠BCD=α,∴AD=AC•sin∠ACD=sinα•sinα=sin2α;∵AD+BD=AB,∴sin2α+cos2α=1;∵在Rt△ABC中,tan∠B=,∴tanα=.点评:本题考查了解直角三角形,熟练掌握锐角三角函数的定义是解题的关键.也考查了同角的余角相等的性质.19.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.考点:条形统计图;折线统计图.分析:(1)根据图①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;由图可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.解答:解:(1)410﹣(100+90+65+80)=410﹣335=75;如图:商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.点评:本题是统计题,考查了条形统计图和折线统计图,是基础知识要熟练掌握.20.如图,已知线段a和线段b,(1)用尺规作出等腰△ABC,使得AB=AC=a,BC=b;若a=5,b=8,记△ABC得重心为G,内心为O,求出点G到点O的距离.考点:作图—复杂作图;三角形的重心;三角形的内切圆与内心.分析:(1)利用三边作三角形的方法得出即可;利用三角形内心以及重心的定义得出点G到点O的距离.解答:解:(1)如图所示:;过点A作BC边上的高AD,且AD=3,由等腰三角形的三线合一得到O、G都在AD上,由重心的性质得到:GD=1,∵r(a+b+c)=S△ABC=AD×BC,∴r=OD=,故OG=﹣1=.点评:此题主要考查了复杂作图以及三角形内心与重心的定义,得出其内切圆半径是解题关键.21.已知反比例函数y=的图象经过点A(﹣,1).(1)试确定此反比例函数的表达式;已知点P(m,m+6)也在此反比例函数的图象上(其中m<0),过点P作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是.设点Q的纵坐标为n,求n2﹣2n+2015的值.考点:反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.分析:(1)把A坐标代入反比例函数解析式求出k的值,确定出反比例解析式;由P在反比例函数图象上,把P坐标代入反比例解析式得到关于m的关系式,由PQ垂直于x轴,设出Q(m,n),根据三角形OQM面积为,利用三角形面积公式得到得到mn=﹣1,得出m=﹣,把m=﹣代入m2+2m+1=0求出n2﹣2n的值,即可确定出所求式子的值.解答:解:(1)把A(﹣,1)代入反比例解析式得:1=,解得k=﹣,可得反比例函数的解析式为y=﹣;由y=﹣,得xy=﹣,∵点P(m,m+6)在反比例函数y=﹣的图象上,其中m<0,∴m(m+6)=﹣,∴m2+2m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n),∵△OQM的面积是,∴OM•QM=,∵m<0,∴mn=﹣1,∴m=﹣,把m=﹣代入m2+2m+1=0得,﹣+1=0,化简得,n2﹣2n+1=0,∴n2﹣2n=﹣1,∴.点评:此题属于反比例函数综合题,涉及的知识有:待定系数法求反比例函数解析式,坐标与图形性质,以及代数式求值,熟练掌握待定系数法是解本题的关键.22.如图,已知正方形ABCD的边长为1,对角线AC上有一点E,使得AE=AC.连结DE,过线段DE上的一个动点F分别向AC和AD作垂线段,垂足分别为G、H.(1)证明:△FGE∽△FHD;设线段FG的长度为x,线段FH的长度为y,求出y关于x的函数表达式,并写出自变量的取值范围;(3)连结GH,求出△GHF面积的最大值.考点:相似形综合题.分析:(1)首先利用勾股定理求得AC的长度,然后可求得AE=AD=1,从而可得到:∠AED=∠ADE,因为∠FGE=∠FHD=90°,故此可证明△FGE∽△FHD;首先证明△AEK∽△ACD,从而可知,可求得EK=,然后根据△AED的面积=△AEF的面积+△ADF的面积可求得:FG+HF=,从而可求得y与x的函数关系式;(3)首先在四边形AGFH中,求得∠GFH=135°,从而得到∠MFG=45°,然后利用特殊锐角三角形函数值可求得GM=,从而可得到△GFH的面积与x的函数关系,最后利用配方法求得△GHF 面积的最大值为.解答:解:(1)如图1:证明:在Rt△ABC中,AC=,∴AE==1.∵AE=AD=1,∴∠AED=∠ADE.又∵∠FGE=∠FHD=90°∴△FGE∽△FHD如图2:连接AF,过点E作Ek⊥AD,垂足为k.∵EK⊥AD,DC⊥AD,∴EK∥DC.∴△AEK∽△ACD.∴即:.∴EK=.∴△AED的面积==∵△AED的面积=△AEF的面积+△ADF的面积===.∴=.∴FG+HF=∴;(3)如图3:过点G作GM⊥HF,垂足为M.在四边形AGFH中,∠GFH=360°﹣∠GAH﹣∠FGA﹣∠FHA=360°﹣45°﹣90°﹣90°=135°∴∠MFG=45°.∴在Rt△GMF中,,即,∴GM=∴S△GFH=.∴△GHF面积的最大值为.点评:本题主要考查的是相似三角形的性质和判定和函数知识的综合应用,面积法和配方法求二次函数最值的应用是解题的关键.23.如图,二次函数y=x2+(+1)x+m(其中m<4)的图象与x轴相交于A、B两点,且点A在点B的左侧.(1)求A、B两点的坐标;(可用含字母m的代数式表示)如果这个二次函数的图象与反比例函数的图象相交于点C,且∠BAC的正弦值为,求解这个二次函数的表达式;(3)在上一小题的条件下,E是x轴上的一个动点,若以点B为圆心,BE为半径的圆与直线AC 相切,求点E的坐标.考点:二次函数综合题.专题:综合题.分析:(1)求出方程x2+(+1)x+m=0的解,可得A、B两点的坐标;过点C作CD⊥x轴,垂足为D,并设点C的坐标为(x,),根据∠BAC的正弦值为,可得关于x的方程,解出即可;(3)由相切可知BE的长度即为点B到AC的距离,根据sin∠BAC,可得半径r,即BE的长度,根据点B坐标可得点E坐标.解答:解:(1)令x2+(+1)x+m=0,解得:x1=﹣4,x2=﹣m,则可得A(﹣4,0)、B(﹣m,0).过点C作CD⊥x轴,垂足为D,并设点C的坐标为(x,),∵sin∠BAC=,∴,即,解得:x=2,∴C点的坐标是,将点C坐标代入解析式,得到m=1,∴函数表达式为:y=x2+x+1,(3)过点B作BF⊥AC于点F,由上题得到AB=3,由相切可知BE的长度即为点B到AC的距离,∵sin∠BAC=,∴=,解得:BF=,即半径r=BE=,∴点E的坐标为(﹣,0)或者(,0).点评:本题考查了二次函数的综合,涉及了一元二次方程的解、三角函数及切线的性质,综合性较强,关键点在于sin∠BAC的值的应用,难度一般.。

杭州二模数学试题及答案

杭州二模数学试题及答案

2016学年第二学期杭州市高三年级教学质量检测数学试题卷选择题部分(共40分)一、选择题:(本大题共10小题,每小题4分,共40分)1.设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则U C A =( )A .{0,1,2}B .{1,1,2}-C .{1,0,2}-D .{1,0,1}- 2.设1iz i=-(i 为虚数单位),则1||z =( )A .2 B C .12D .2 3.设α,β是两个不同的平面,m 是一条直线,给出下列命题:①若m α⊥,m β⊂,则αβ⊥;②若//m α,αβ⊥,则m β⊥.则( ) A .①②都是假命题 B .①是真命题,②是假命题 C .①是假命题,②是真命题 D .①②都是真命题 4.设1k ,2k 分别是两条直线1l ,2l 的斜率,则“12//l l ”是“12k k =”的( )A .充分不必要条件B .必要不充分条件 C.充分必要条件 D .既不充分也不必要条件 5.设方程ln()x ax -(0a ≠,e 为自然对数的底数),则( ) A .当0a <时,方程没有实数根B. 当0a e <<时,方程有一个实数根C. 当a e =时,方程有三个实数根D. 当a e >时,方程有两个实数根6.若实数a ,b ,c ,满足对任意实数x ,y 有345x y ax by c +-≤++≤345x y ++,则( ) A. a b c +-的最小值为2 B. a b c -+的最小值为-4 C. a b c +-的最大值为4D. a b c -+的最大值为67.设倾斜角为α的直线l 经过抛物线2:2(0)C y px p =>的焦点F ,与抛物线C 交于A ,B 两点,设点A 在x 轴上方,点B 在x 轴下方.若||||AF m BF =,则cos α的值为( )A .11m m -+ B .1m m + C.1m m- D .1m +8.设{}n a 是等差数列,n S 为其前n 项和.若正整数i ,j ,k ,l 满足()i l j k i j k l +=+≤≤≤,则( ) A .i l j k a a a a ≤ B .i l j k a a a a ≥ C.i l j k S S S S ≤ D .i l j k S S S S ≥9.设函数2()f x x ax b =++(,)a b R ∈的两个零点为1x ,2x ,若12||||2x x +≤,则( ) A .||1a ≥ B .||1b ≤ C. |2|2a b +≥ D .|2|2a b +≤10.在等腰直角ABC ∆中,AB AC ⊥,2BC =,M 为BC 中点,N 为AC 中点,D 为BC 边上一个动点,ABD ∆沿AD 翻折使BD DC ⊥,点A 在面BCD 上的投影为点O ,当点D 在BC 上运动时,以下说法错误的是( )A. 线段NO 为定长 B.||CO ∈ C. 180AMO ADB ∠+∠>︒ D .点O 的轨迹是圆弧非选择题部分(共110分)二、填空题:(本大题共7小题,第11-14题,每小题6分,15-17每小题4分,共36分)11.双曲线2212y x -=的渐近线方程为 ;离心率等于 . 12.若21(2)nx x-的展开式中所有二项式系数和为64,则n = ;展开式中的常数项是 . 13.已知随机变量ξ的概率分布列为:则E ξ= ,D ξ= . 14.若某几何体的三视图(单位:cm )如图所示,的体积是 3cm ,表面积是则此几何体2cm .15.设P 为ABC ∆所在平面上一点,且满足34PA PC mAB +=(0)m >.若ABP ∆的面积为8,则ABC ∆的面积为 .16.设a ,b ,c 分别为ABC ∆三内角A ,B ,C 的对边,面积212S c =.若ab =222a b c ++的最大值是 .17.设函数22cos ,||1,()21,||1x x f x x x π⎧≤⎪=⎨⎪->⎩,若)()(2)()(l x f x f l x f x f +-+-++2(0)l ≥>对任意实数x 都成立,则l 的最小值为 .三、解答题 :(本大题共5小题,共74分)18.设函数()2cos (cos )f x x x =+()x R ∈. (1)求函数()y f x =的周期和单调递增区间; (2)当[0,]2x π∈时,求函数()f x 的最大值.19.如图,已知ABCD 是矩形,M ,N 分别为边AD ,BC 的中点,MN 与AC 交于点O ,沿MN 将矩形MNCD 折起,设2AB =,4BC =,二面角B MN C --的大小为θ.(1)当90θ=︒时,求cos AOC ∠的值;(2)点60θ=︒时,点P 是线段MD 上一点,直线AP 与平面AOC 所成角为α.若sin α=,求线段MP 的长.20.设函数()f x =. (1)求函数()f x 的值域;(2)当实数[0,1]x ∈,证明:21()24f x x ≤-. 21. 如图,设点A ,1F ,2F 分别为椭圆22143x y +=的左顶点和左,右焦点,过点A 作斜率为k 的直线交椭圆于另一点B ,连接2BF 并延长交椭圆于点C . (1)求点B 的坐标(用k 表示); (2)若1F C AB ⊥,求k 的值.21. 已知数列{}n a 的各项均为非负数,其前n 项和为n S ,且对任意的*n N ∈,都有212n n n a a a +++≤. (1)若11a =,5052017a =,求6a 的最大值;(2)若对任意*n N ∈,都有1n S ≤,求证:+120(1)n n a a n n ≤-≤+.MNN Ax2016学年第二学期杭州市高三年级教学质量检测数学试题参考答案及评分标准一、选择题:(本大题共10小题,每小题4分,共40分)1-5:BBBCD 6-10:AAABC二、填空题(本大题共7小题,第11-14题,每小题6分,15-17每小题4分,共36分)11.y = 12.6;240 13.1,1214.4015.1416.417.三、解答题18.解:(1)因为()2cos (cos )f x x x x =+=2sin(2)16x π++.2226k x πππ-≤+≤22k ππ+,36k x k ππππ∴-≤≤+,∴函数()y f x =的单调递增区间为:(,)36k k ππππ-+()k Z ∈; (2)[0,]3x π∈,72[,]666x πππ∴+∈,1sin(2)[,1]62x π∴+∈-,()2sin(2)16f x x π∴=++的最大值是3.19.解:如图,设E 为AB 的中点,建立如图所示的空间直角坐标系. (1)当90θ=︒时,(2,1,0)A -,(0,1,2)C ,(2,1,0)OA ∴=-,(0,1,2)OC =,1cos 5||||OA OC AOC OA OC ⋅∴∠==-⋅.(2)由60θ=︒得C ,(1,D -,(0,1,0)M -,MD ∴=,设(01)MP MD λλ=≤≤,则(,)OP OM MP λ=+=-,()AP OP OA λ∴=-=-,设平面AOC 的法向量为(,,)n x y z =,0n OA ⋅=,0n OC ⋅=,20x y x y -=⎧⎪∴⎨++=⎪⎩,取(1,2,n =-, 由题意,得14||7||||AP n AP n ⋅=⋅,即231030λλ-+=, 13λ∴=或3λ=(舍去), ∴在线段MD 上存在点P ,且1233MP MD ==.20.解:(1)函数()f x 的定义域是[1,1]-,'()f x =,当'()0f x ≥时,解得0x≤,()f x ∴在(0,1)上单调递增,在(1,0)-上单调递减,min ()(1)(1)f x f f ∴==-=max ()(0)2f x f ==,∴函数()f x的值域为2].(2)设21()24h x x =-,[0,1]x ∈,(0)0h =, 1122111'()(1)(1)222h x x x x --=--+++,1[12x=,=2≤,'()0h x ∴≤.()h x ∴在(0,1)上单调递减,又(0)0h =,21()24f x x ∴≤-.21.解:(1)设点(,)B B B x y ,直线AB 的方程为(2)y k x =+,联立22143x y +=得, 2222(34)1616120k x k x k +++-=,221612234B k x k -∴-=+,即228634B k x k-+=+,212(2)34B B ky k x k ∴=+=+,即2228612(,)3434k k B k k -+++. (2)易知2(1,0)F ,22414BF k k k =-,11BF k k=-, 所以直线2BF ,1CF 方程分别为24(1)14k y x k =--,1(1)y x k=-+,由21(1)4(1)14y x k k y x k ⎧=-+⎪⎪⎨⎪=-⎪-⎩,解得2(81,8)C k k --,代入22143x y +=, 得4219220890k k +-=,即22(241)(89)0k k -+=,得2124k =,所以k =22.解:(1)由题意知121n n n n a a a a +++-≤-,设1i i i d a a +=-(1,2,,504)i =,则123504d d d d ≤≤≤≤,且1235042016d d d d ++++=,1255d d d +++≤67504409d d d +++=1252016()409d d d -+++,所以12520d d d +++≤,61125()21a a d d d ∴=++++≤.(2)若存在*k N ∈,使得1k k a a +<,则由212n n n a a a +++≤, 得112k k k k a a a a +++≤-≤,因此,从n a 项开始,数列{}n a 严格递增, 故12n a a a +++≥1k k n a a a ++++≥(1)k n k a -+,对于固定的k ,当n 足够大时,必有121n a a a +++≥,与题设矛盾,所以{}n a 不可能递增,即只能10n n a a +-≥.令1k k k b a a +=-,*()k N ∈,由112k k k k a a a a +++-≥-,得1k k b b +≥,0k b >, 故121n a a a ≥+++=122()n b a a a ++++=12332()n b b a a a +++++,122n n b b nb na ==++++(1)(12)2n n n n n b b +≥+++=, 所以2(1)n b n n ≤+,综上,对一切*n N ∈,都有120(1)n n a a n n +≤-≤+.。

【初中数学】浙江省杭州市2016年中考数学模拟试卷2 浙教版

【初中数学】浙江省杭州市2016年中考数学模拟试卷2 浙教版

浙江省杭州市2016年中考数学模拟试卷2考生须知:1、本试卷分试题卷和答题卷两部分. 满分120分, 考试时间100分钟.2、答题时, 不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号.3、所有答案都做在答题卡标定的位置上, 请务必注意试题序号和答题序号相对应.一、选择题(共10小题,每小题3分,满分30分.)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1. 【原创】 杭州2016年G20峰会志愿者招募,经过二轮面试确定4500名志愿者名单,并开展集中式培训等工作。

将这个志愿者人数用科学计数法表示为( )人。

A .0.45×410 B .450×10 C .4.5 ×310 D .45×210 【考点及设计意图】本题考查科学记数法的表示,属容易题,预计难度系数0.952、【原创】以下“绿色食品、回收、节能、节水”标志中,是轴对称图形的是( ▲ )A .B .C .D . 【考点及设计意图】考查轴对称的定义,属容易题,预计难度系数0.923. 【原创】下列计算正确的是( )A .422()a a a --÷=-B .()()22232323a b a b a b +-=-C .21211()24xy xy xy -⎛⎫= ⎪⎝⎭ D .321ab ab -=【考点及设计意图】考查整式的有关运算,属容易题,预计难度系数0.94. 【原创】不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是 ( )【考点及设计意图】考查解不等式组及解的表示,属容易题,预计难度系数0.852A .B .2C .2D .25. 【原创】下列命题中是真命题的是( )A.有一组邻边相等的四边形是菱形.B.对角线互相平分的平行四边形是正方形.C.有一个角是直角的平行四边形是矩形.D.一组对边相等的四边形是平行四边形. 【考点及设计意图】考查命题的判断,灵活掌握菱形、正方形、矩形、平行四边形的判定方法。

【最新】2016浙江省杭州市数学中考模拟试卷及答案

【最新】2016浙江省杭州市数学中考模拟试卷及答案

x
2
A. a = b + 2k
B. a = b - 2k
C. k < b < 0
D. a < k < 0
8. 以下是某手机店 1~ 4 月份的统计图, 对 3、4 月份三星手机的销售情况四个同学得出的以下四
个结论,其中正确的为(

A. 4 月份三星手机销售额为 65 万元
B. 4 月份三星手机销售额比 3 月份有所上升 C. 4 月份三星手机销售额比 3 月份有所下降
2016
年中考模拟试卷数学卷
考试时间: 120 分钟 满分: 120 分
一 . 选择题 ( 本题有 10 小题,每小题 3 分,共 30 分.请选出各题中一个符合题意的正确选项,不 选、多选、错选,均不给分 )
1. (原创) 2015 年 11 月 22 日, “球冠杯”萧山戴村山地越野赛在戴村举行。此次越野赛以徒
D. 5 cos20
(第 4 题图 )
6. (改编) 设 a 5 3, b 2 2, c 6 2 ,则 a,b,c的大小关系式( )
A. a >b> c
B. c> b> a
C. c> a> b
D. b >c> a
7. (改编) 反比例函数 y = k 的图象经过二次函数 y = ax2 + bx 图象的顶点 (- 1 , m)( m > 0) ,则
A. a >b> c
B. c> b> a
C. c> a> b
D. b >c> a
7. (改编) 反比例函数 y = k 的图象经过二次函数 y = ax2 + bx 图象的顶点 (- 1 , m)( m > 0) ,则
x
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年浙江省杭州市西湖区中考数学二模试卷一、仔细选一选,本题有10个小题,每题3分,共30分1.(3分)在实数π、、、tan60°中,无理数的个数为()A.1 B.2 C.3 D.42.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点3.(3分)五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为()A.19和20 B.20和19 C.20和20 D.20和214.(3分)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为()A.﹣1 B.0 C.1 D.5.(3分)已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°6.(3分)不等式组的整数解共有()个.A.4 B.3 C.2 D.17.(3分)在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a,则直线a对应的函数表达式为()A.y=x B.y=x﹣1 C.y=x+1 D.y=﹣x+18.(3分)小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=9.(3分)以下说法:①若直角三角形的两边长为3与4,则第三次边长是5;②两边及其第三边上的中线对应相等的两个三角形全等;③长度等于半径的弦所对的圆周角为30°④反比例函数y=﹣,当>0时y随x的增大而增大,正确的有()A.①②B.②③C.②④D.③④10.(3分)如图1,点E为矩形ABCD边AD上一点,点P点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分).则下列结论:①AE=6cm;②当0<t≤10时,y=t2;③直线NH的解析式为y=﹣5t+110;④若△ABE与△QBP相似,则t=秒,其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(共6小题,每小题4分,满分24分)11.(4分)若式子在实数范围内有意义,则x的取值范围是.12.(4分)分解因式:ax2﹣4ax+4a=.13.(4分)已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为cm.14.(4分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是.15.(4分)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为.16.(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(27,9)阴影三角形部分的面积从左向右依次为S1、S2、S3…S n,则第4个正方形的边长是S n的值为三、全面答一答,本题有7个小题,共66分17.(6分)计算(1)2sin45°﹣++||(2)(2a+3b)(3a﹣2b)18.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB 于点D,交AC于点E.(1)若BC=3,AC=4,求CD的长;(2)求证:∠1=∠2.19.(8分)某校举行春季运动会,需要在初三年级选取1或2名同学作为志愿者,初三(5)班的小熊、小乐和初三(6)班的小矛、小管4名同学报名参加.(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是初三(5)班同学的概率是;(2)若从这4名同学中随机选取2名志愿者,请用列举法(画树状图或列表)求这2名同学恰好都是初三(6)班同学的概率.20.(10分)如图,在以点O为原点的直角坐标系中,一次函数y=﹣x+1的图象与x轴交于A,与y轴交于点B,求:(1)△AOB面积=;(2)△AOB内切圆半径=;(3)点C在第二象限内且为直线AB上一点,OC=,反比例函数y=的图象经过点C,求k的值.21.(10分)如图,平面直角坐标系中,矩形OABC的一边OA在x轴上,点B 的坐标为(4,3),双曲线y=(x>0)交线段BC于点P(不与端点B、C重合),交线段AB于点Q(1)若P为边BC的中点,求双曲线的函数表达式及点Q的坐标;(2)求k的取值范围;(3)连接PQ,AC,判断:PQ∥AC是否总成立?并说明理由.22.(12分)如图,在平面直角坐标系xOy中,点m在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C,D两点,且C为弧AE的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8,(1)求证:AE=CD;(2)求点C坐标和⊙M直径AB的长;(3)求OG的长.23.(12分)在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.(1)当抛物线C经过点A(﹣5,6)时,求抛物线的表达式及顶点坐标;(2)若抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间(不包括﹣1和0),结合函数的图象,求m的取值范围;(3)参考(2)小问思考问题的方法解决以下问题:关于x的方程x﹣4=在0<x<4范围内有两个解,求a的取值范围.2016年浙江省杭州市西湖区中考数学二模试卷参考答案与试题解析一、仔细选一选,本题有10个小题,每题3分,共30分1.(3分)在实数π、、、tan60°中,无理数的个数为()A.1 B.2 C.3 D.4【解答】解:∵tan60°=,∴在实数π、、、tan60°中,无理数有:π,,tan60°.故选:C.2.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点【解答】解:A、y=(x﹣1)2+2,∵a=1>0,∴图象的开口向上,此选项错误;B、y=(x﹣1)2+2顶点坐标是(1,2),此选项正确;C、对称轴是直线x=1,此选项错误;D、(x﹣1)2+2=0,(x﹣1)2=﹣2,此方程无解,与x轴没有交点,故本选项错误.3.(3分)五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为()A.19和20 B.20和19 C.20和20 D.20和21【解答】解:根据平均数定义可知:平均数=(18+20+21+22+19)=20;根据中位数的概念可知,排序后第3个数为中位数,即20.故选C.4.(3分)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为()A.﹣1 B.0 C.1 D.【解答】解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故选C.5.(3分)已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°【解答】解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故选:C.6.(3分)不等式组的整数解共有()个.A.4 B.3 C.2 D.1【解答】解:解得,﹣1≤x<,故不等式组的整数解是x=﹣1或x=0或x=1,即不等式组的整数解有3个,故选B.7.(3分)在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a,则直线a对应的函数表达式为()A.y=x B.y=x﹣1 C.y=x+1 D.y=﹣x+1【解答】解:∵直线x=0与x轴的夹角是90°,∴将直线x=0绕原点顺时针旋转45°后的直线与x轴的夹角为45°,∴此时的直线方程为y=x.∴再向上平移1个单位得到直线a的解析式为:y=x+1.故选C.8.(3分)小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.9.(3分)以下说法:①若直角三角形的两边长为3与4,则第三次边长是5;②两边及其第三边上的中线对应相等的两个三角形全等;③长度等于半径的弦所对的圆周角为30°④反比例函数y=﹣,当>0时y随x的增大而增大,正确的有()A.①②B.②③C.②④D.③④【解答】解:①若直角三角形的两边长为3与4,则第三次边长是5或,故错误;②两边及其第三边上的中线对应相等的两个三角形全等,正确;③长度等于半径的弦所对的圆周角为30°或150°,故错误;④反比例函数y=﹣,当>0时y随x的增大而增大,正确,故选C.10.(3分)如图1,点E为矩形ABCD边AD上一点,点P点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分).则下列结论:①AE=6cm;②当0<t≤10时,y=t2;③直线NH的解析式为y=﹣5t+110;④若△ABE与△QBP相似,则t=秒,其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个【解答】解:①观察图2可知:当t=10时,点P、E重合,点Q、C重合;当t=14时,点P、D重合.∴BE=BC=10,DE=14﹣10=4,∴AE=AD﹣DE=BC﹣DE=6,∴①正确;②设抛物线OM的函数解析式为y=ax2,将点(10,40)代入y=ax2中,得:40=100a,解得:a=,∴当0<t≤10时,y=t2,②成立;③在Rt△ABE中,∠BAE=90°,BE=10,AE=6,∴AB==8,∴点H的坐标为(14+8,0),即(22,0),设直线NH的解析式为y=kt+b,∴,解得:,∴直线NH的解析式为y=﹣5t+110,③成立;④当0<t≤10时,△QBP为等腰三角形,△ABE为边长比为6:8:10的直角三角形,∴当t=秒时,△ABE与△QBP不相似,④不正确.综上可知:正确的结论有3个.故选C.二、填空题(共6小题,每小题4分,满分24分)11.(4分)若式子在实数范围内有意义,则x的取值范围是x≥﹣1.【解答】解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.12.(4分)分解因式:ax2﹣4ax+4a=a(x﹣2)2.【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.13.(4分)已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为4 cm.【解答】解:∵圆锥的母线长是5cm,侧面积是20πcm2,∴圆锥的侧面展开扇形的弧长为:l===8π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===4cm.故答案为4.14.(4分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是.【解答】解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故答案是:.15.(4分)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为.【解答】解:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴SinA==.故答案为:.16.(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(27,9)阴影三角形部分的面积从左向右依次为S1、S2、S3…S n,则第4个正方形的边长是S n的值为【解答】解:如图,设正方形ABCD的边长为a,正方形DEFG的边长为B,=S△ACD+S梯形ADEF﹣S△CEF∴S△ACF=a2+(a+b)×b﹣(a+b)×b=a2∵正比例函数y=x的图象与x轴交角的正切值为,已知A的坐标为(27,9),∴∴第3个正方形的边长是9=9×()0∴第4个正方形的边长是=9×同理可得第五个正方形的边长为=9×()2第六个正方形的边长=9×()3…第2n﹣1个正方形的边长9×()2n﹣4第2n个正方形的边长9×()2n﹣3根据前面得到的规律,Sn=×[9×()2n﹣4]2=故答案为,.三、全面答一答,本题有7个小题,共66分17.(6分)计算(1)2sin45°﹣++||(2)(2a+3b)(3a﹣2b)【解答】解:(1)2sin45°﹣++||=2×﹣1+2+﹣1=2;(2)(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b218.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB 于点D,交AC于点E.(1)若BC=3,AC=4,求CD的长;(2)求证:∠1=∠2.【解答】(1)解:∵∠ACB=90°,BC=3,AC=4,∴AB==5,∵CD是AB边上的中线,∴CD=AB=2.5;(2)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵DE⊥AB,∴∠A+∠1=90°,∴∠B=∠1,∵CD是AB边上的中线,∴BD=CD,∴∠B=∠2,∴∠1=∠2.19.(8分)某校举行春季运动会,需要在初三年级选取1或2名同学作为志愿者,初三(5)班的小熊、小乐和初三(6)班的小矛、小管4名同学报名参加.(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是初三(5)班同学的概率是;(2)若从这4名同学中随机选取2名志愿者,请用列举法(画树状图或列表)求这2名同学恰好都是初三(6)班同学的概率.【解答】解:(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是初三(5)班同学的概率是;故答案为:;(2)列表如下:(小熊记作A,小乐记作B,小矛记作C,小管记作D),所有等可能的情况数有12种,其中这2名同学恰好都是初三(6)班同学的情况有2种,则P==.20.(10分)如图,在以点O为原点的直角坐标系中,一次函数y=﹣x+1的图象与x轴交于A,与y轴交于点B,求:(1)△AOB面积=1;(2)△AOB内切圆半径=;(3)点C在第二象限内且为直线AB上一点,OC=,反比例函数y=的图象经过点C,求k的值.【解答】解:(1)令x=0代入y=﹣a+1∴y=1,∴OB=1,令y=0代入y=﹣x+1,∴x=2,∴OA=2,S=OA•OB=1;(2)设△AOB内切圆的圆心为M,⊙M与OA、OB、AB分别切于E、F、G,连接OE、OF,如图1,∵∠OEM=∠MFO=∠FOE=90°,∴四边形MFOE是矩形,∵ME=MF,∴矩形MFOE是正方形,设⊙M的半径为r,∴MF=ME=r,由切线长定理可知:BF=BG=1﹣r,AE=AG=2﹣r,由勾股定理可求得:AB==,∴AG+BG=AB,2﹣r+1﹣r=,∴r=;(3)过点C作CD⊥x轴于点D,如图2,∵OC=AB,∴OC=,∵点C在直线AB上,∴设C(a,﹣a+1)(a<0),∴OD=a,CD=﹣a+1,由勾股定理可知:CD2+OD2=OC2,∴a2+(﹣a+1)2=,∴a=﹣或a=1(舍去)∴C的坐标为(﹣,),把C(﹣,)代入y=,∴k=﹣.21.(10分)如图,平面直角坐标系中,矩形OABC的一边OA在x轴上,点B 的坐标为(4,3),双曲线y=(x>0)交线段BC于点P(不与端点B、C重合),交线段AB于点Q(1)若P为边BC的中点,求双曲线的函数表达式及点Q的坐标;(2)求k的取值范围;(3)连接PQ,AC,判断:PQ∥AC是否总成立?并说明理由.【解答】解:(1)∵四边形OABC是矩形,∴BC∥OA,∵点B坐标(4,3),∴BC=4,AB=3,∵PC=PB,∴点P坐标(2,3),∴反比例函数解析式y=,∵点Q的横坐标为4,∴点Q的坐标为(4,).(2)设点P坐标(x,3),则0<x<4,把点P(x,3)代入y=得到,x=,∴0<<4,∴0<k<12.(3)结论:PQ∥AC总成立.理由:设P(m,3),Q(4,n),则3m=4n=k,∴===,===,∴=,∵∠B=∠B,∴△BPQ∽△BCA,∴∠BPQ=∠BCA,∴PQ∥AC.22.(12分)如图,在平面直角坐标系xOy中,点m在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C,D两点,且C为弧AE的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8,(1)求证:AE=CD;(2)求点C坐标和⊙M直径AB的长;(3)求OG的长.【解答】解:(1)∵点C是的中点,∴,∵AB⊥CD,∴由垂径定理可知:=,∴,∴,∴AE=CD;(2)连接AC、BC,由(1)可知:CD=AE=8,∴由垂径定理可知:OC=CD=4,∴C的坐标为(0,4),由勾股定理可求得:CA2=22+42=20,∵AB是⊙M的直径,∴∠ACB=90°,∵∠CAB=∠CAB,∴△CAO∽△BAC,∴,∴CA2=AO•AB,∴AB==10;(3)由(1)可知:,∴∠ACD=∠CAE,∴AG=CG,设AG=x,∴CG=x,OG=OC﹣CG=4﹣x,∴由勾股定理可求得:AO2+OG2=AG2,∴22+(4﹣x)2=x2,∴x=,∴OG=4﹣x=23.(12分)在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.(1)当抛物线C经过点A(﹣5,6)时,求抛物线的表达式及顶点坐标;(2)若抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间(不包括﹣1和0),结合函数的图象,求m的取值范围;(3)参考(2)小问思考问题的方法解决以下问题:关于x的方程x﹣4=在0<x<4范围内有两个解,求a的取值范围.【解答】解:(1)∵抛物线C:y=mx2+4x+1经过点A(﹣5,6),∴6=25m﹣20+1,解得m=1,∴抛物线的表达式为y=x2+4x+1=(x+2)2﹣3,∴抛物线的顶点坐标为(﹣2,﹣3);(2)∵抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间,∴当x=﹣1时,y>0,且△≥0,即,解得:3<m≤4;(3)方程x﹣4=的解即为方程x2﹣4x﹣a+3=0的解,而方程x2﹣4x﹣a+3=0的解即抛物线y=x2﹣4x﹣a+3与x轴交点的横坐标,∵方程在0<x<4范围内有两个解,∴当x=0时y>0,x=4时y>0,且△>0,即,解得:﹣1<a<3.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

相关文档
最新文档