2016高考总复习步步高资料学案 (54)

合集下载

2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案61古典概型

2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案61古典概型

教案 61古典概型导学目标 : 1.理解古典概型及其概率计算公式 .2.会计算一些随机事件所含的基本领件数及事件发生的概率.自主梳理1.基本领件有以下特色:(1)任何两个基本领件是 ________的.(2)任何事件 (除不行能事件 )都能够表示成 ______________. 2.一般地,一次试验有下边两个特色(1)有限性.试验中所有可能出现的基本领件只有有限个;(2)等可能性.每个基本领件出现的可能性同样,称这样的概率模型为古典概型.判断一个试验是不是古典概型,在于该试验能否拥有古典概型的两个特色:有限性和等可能性.3.假如一次试验中可能出现的结果有 n 个,并且所有结果出现的可能性都相等,那么每一个基本领件的概率都是 ________;假如某个事件 A 包含的结果有 m 个,那么事件 A 的概率 P(A) = ________.自我检测1.(2011 ·州模拟滨 )若以连续掷两次骰子分别获得的点数m 、 n 作为点 P 的横、纵坐标,则点 P 在直线 x + y = 5 下方的概率为 ( )1 1 1 1A.6B.4C.12 D .9 2.(2011 临·沂高新区期末 )一块各面均涂有油漆的正方体被锯成 1 000 个大小同样的小正方体,若将这些小正方体均匀地搅混在一同,则随意拿出一个, 其两面涂有油漆的概率是 () 1 1 3 12 A.12 B.10 C.25D .1253.(2010 ·宁辽 ) 三张卡片上分别写上字母E , E , B ,将三张卡片随机地排成一行,恰巧排成英文单词 BEE 的概率为 ________.4.有 100 张卡片 (编号从 1 号到 100 号 ),从中任取 1张,取到卡号是 7 的倍数的概率为________.5. (2011 大·理模拟 )在平面直角坐标系中,从五个点: A(0,0) , B(2,0) , C(1,1) , D(0,2) ,E(2,2) 中任取三个,这三点能构成三角形的概率是 ________( 用分数表示 ).研究点一 基本领件的概率例 1 扔掷六个面分别记有1,2,2,3,3,3 的两颗骰子.(1)求所出现的点数均为 2 的概率; (2)求所出现的点数之和为 4 的概率.变式迁徙 1 一只口袋内装有大小同样的 5 只球,此中 3 只白球, 2 只黑球,从中一次摸出两只球.问:(1)共有多少个基本领件?(2)摸出的两只球都是白球的概率是多少?研究点二古典概型的概率计算例 2班级联欢时,主持人拟出了以下一些节目:跳双人舞、独唱、朗读等,指定 3 个男生和 2 个女生来参加,把 5 个人分别编号为1,2,3,4,5,此中 1,2,3 号是男生, 4,5 号是女生,将每一个人的号分别写在 5 张同样的卡片上,并放入一个箱子中充足混淆,每次从中随机地取出一张卡片,拿出谁的编号谁就参加表演节目.(1)为了选出 2 人来表演双人舞,连续抽取 2 张卡片,求拿出的 2 人不所有是男生的概率;(2)为了选出 2 人分别表演独唱和朗读,抽取并察看第一张卡片后,又放回箱子中,充足混淆后再从中抽取第二张卡片,求独唱和朗读由同一个人表演的概率.变式迁徙2同时扔掷两枚骰子,求起码有一个 5 点或 6 点的概率.研究点三古典概型的综合问题例 3 (2009 ·山东 )汽车厂生产 A,B ,C 三类轿车,每类轿车均有舒坦型和标准型两种型号,某月的产量以下表 (单位:辆 ):轿车A轿车B轿车C舒坦型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50 辆,此中有 A 类轿车 10 辆.(1)求 z 的值;(2)用分层抽样的方法在 C 类轿车中抽取一个容量为 5 的样本.将该样本当作一个整体,从中任取 2 辆,求起码有 1 辆舒坦型轿车的概率;(3) 用随机抽样的方法从B类舒坦型轿车中抽取8 辆,经检测它们的得分以下:9.4,8.6,9.2,9.6,8.7,9.3,9.0 ,8.2.把这 8 辆轿车的得分当作一个整体,从中任取一个数,求该数与样本均匀数之差的绝对值不超出0.5 的概率.变式迁徙3为了认识《中华人民共和国道路交通安全法》在学生中的普及状况,检查部门对某校 6 名学生进行问卷检查, 6 人得分状况以下:5,6,7,8,9,10.把这 6 名学生的得分当作一个整体.(1)求该整体的均匀数;(2)用简单随机抽样方法从这 6 名学生中抽取 2 名,他们的得分构成一个样本.求该样本均匀数与整体均匀数之差的绝对值不超出0.5 的概率.分类议论思想的应用例(12 分 )甲、乙二人用 4 张扑克牌 (分别是红桃2、红桃 3、红桃 4、方片 4)玩游戏,他们将扑克牌洗匀后,反面向上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设 (i, j) 分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有状况;(2)若甲抽到红桃3,则乙抽到的牌面数字比 3 大的概率是多少?(3)甲、乙商定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你以为此游戏能否公正,说明你的原因.多角度审题此题属于求较复琐事件的概率,重点是理解题目的实质含义,把实质问题转变为概率模型,联想掷骰子试验,把红桃2、红桃 3、红桃 4 和方片 4 分别用数字2,3,4,4′表示,抽象出基本领件,把复琐事件用基本领件表示,找出整体I 包含的基本领件总数n 及事件 A 包含的基本领件个数 m,用公式 P(A) =m求解. n【答题模板】解(1) 甲、乙二人抽到的牌的所有状况( 方片 4 用 4′表示,其余用相应的数字表示)为 (2,3) ,(2,4), (2,4′), (3,2), (3,4), (3,4′), (4,2), (4,3) , (4,4′),(4′,2), (4′,3), (4′,4),共 12 种不同状况. [6 分 ](2)甲抽到红桃3,乙抽到的牌的牌面数字只好是2,4,4′,所以乙抽到的牌的牌面数字比3大的概率为23.[9 分](3)甲抽到的牌的牌面数字比乙大的状况有(3,2), (4,2), (4,3), (4′,2), (4′,3),共 5 种,55故甲胜的概率P1=12,同理乙胜的概率P2=12.因为 P1= P2,所以此游戏公正.[12分]【打破思想阻碍】(1)对一些较为简单、基本领件个数不是太大的概率问题,计数时只要要用列举法即可计算一些随机事件所含的基本领件数及事件发生的概率,但应特别注意:计算时要严防遗漏,绝不重复.(2)取球模型是古典概型计算中的一个典型问题,很多实质问题都能够归纳到取球模型上去,特别是产品的抽样查验,解题时要分清“ 有放回” 与“ 无放回”,“ 有序” 与“ 无序” 等条件的影响.【易错点分析】1.题目中“红桃 4”与“方片 4”属两个不一样的基本领件,应用不一样的数字或字母标明.2.注意“抽出的牌不放回” 对基本领件数量的影响.1.基本领件的特色主要有两条:①任何两个基本领件都是互斥的;②任何事件都能够表示成基本领件的和.2.古典概型的基本特色是:①试验中所有可能出现的基本领件只有有限个;②每个基本领件出现的可能性相等.3.计算古典概型的基本步骤有:①判断试验结果能否为等可能事件;②求出试验包含的基本领件的个数n,以及所求事件 A 包含的基本领件的个数m;③代入公式P(A) =mn,求概率值.(满分: 75 分)一、选择题 (每题 5 分,共 25分 )1.(2011 浙·江宁波十校联考)将一枚骰子扔掷两次,若先后出现的点数分别为b,c,则方程 x2+ bx+ c= 0 有实根的概率为 ()191517A.36B.2C.9 D .362.(2009 ·建福)已知某运动员每次投篮命中的概率低于40%.现采纳随机模拟的方法预计该运动员三次投篮恰有两次命中的概率:先由计算器产生0 到 9 之间取整数值的随机数,指定1,2,3,4 表示命中, 5,6,7,8,9,0 表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模 生了以下 20 随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估 , 运 三次投 恰有两次命中的概率 ()A . 0.35B . 0.25C . 0.20D . 0.153. (2011 西·南名校 考 ) 两次骰子分 获得点数m 、 n , 向量 (m , n)与向量 (- 1,1)的 角 θ>90°的概率是 ( )5 7 1 1A.12B.12C.3 D .2 4. 会合 A = {1,2} , B = {1,2,3} ,分 从会合 A 和 B 中随机取一个数 a 和 b ,确立平面上的一个点 P(a , b), “点 P(a , b)落在直 x +y = n 上” 事件 C n (2≤ n ≤ 5, n ∈ N ),若事 件 C n 的概率最大, n 的所有可能 ( )A . 3B . 4C . 2,5D .3,4 5.在一个袋子中装有分 注数字 1,2,3,4,5 的五个小球, 些小球除 注的数字外完整同样. 从中随机拿出2 个小球, 拿出的小球 注的数字之和 3或 6的概率是 () 1 1 1 3A. 12B. 10C.5D.10二、填空 (每小 4 分,共 12 分 )6.在一次教 会上,到会的女教 比男教 多12 人,从 些教 中随机挑 一人表演 目.若 到男教 的概率9, 参加 会的教 共有________人.20n π7. (2011 上·海十四校 考 )在会合 { x|x = 6 , n = 1,2,3,⋯, 10} 中任取一个元素,所取元素恰巧 足方程 cos x = 1的概率是 ________.28.(2009 · 江 ) 有 5 根竹竿,它 的 度( 位: m)分 2.5,2.6,2.7,2.8,2.9,若从中一 次随机抽取 2 根竹竿, 它 的 度恰巧相差0.3 m 的概率 ________.三、解答 (共 38 分 )9.(12 分 )(2011 北·京旭日区模 )袋子中装有 号a ,b 的 2 个黑球和 号c ,d ,e 的3 个 球,从中随意摸出 2 个球.(1)写出所有不一样的 果; (2)求恰巧摸出 1 个黑球和 1 个 球的概率; (3)求起码摸出 1 个黑球的概率.10. (12 分 )(2010 天·津 海新区五校 考 )某商 行抽 活 ,从装有 号0,1,2,3 四个小球的抽 箱中,每次拿出后放回, 取两次,拿出的两个小球号 相加之和等于 5 中一等 ,等于 4 中二等 ,等于 3 中三等 .(1)求中三等 的概率; (2)求中 的概率.11. (14 分)(2011 广·州模 )已知数 a, b∈ { - 2,- 1,1,2} .(1)求直 y= ax+ b 不第四象限的概率;(2)求直 y= ax+ b 与 x2+ y2= 1 有公共点的概率.教案 61古典概型自主梳理1m1.(1)互斥(2)基本领件的和 3.n n自我141.A 2.D 3.3 4.0.14 5.5堂活区例 1 解引确立古典概型的基本领件有两条:一、每个事件生的可能性相等;二、事件空Ω 中的任一个事件都能够表示些基本领件的和,基本领件确实定有必定的相性,并不是一成不的.解因骰子出1,2,3 的概率不一,所以, 6 个面 1,a,b,x,y,z,此中 a,b 都表示 2, x, y, z 都表示 3,投两骰子,基本领件(1,1), (1, a), (1, b), (1,x),(1,y),(1 ,z),(a,1), (a,a),(a, b),(a,x),(a,y),(a,z),⋯, (z,1),(z,a),(z,b),(z,x), (z, y), (z, z)共 36 种果.(1)两骰子出点数均 2 的基本领件有 (a,a), (a,b), (b, a), (b, b)共 4 种,∴概4 1率 P1=36=9.(2)出点数之和 4,明有两种状况,即 1+ 3 或 2+ 2,基本领件有 (1,x),(1,y),(1,z), (x,1) ,(y,1), (z,1) , (a, a), (a, b), (b, a), (b, b)共 10 种,10 5∴概率 P2=36=18.式迁徙1解(1) 分白球1,2,3 号,黑球 A , B 号,从中摸出 2 只球,有以下基本领件:(1,2), (1,3) , (1,A) , (1, B) , (2,3), (2, A) ,(2,B) , (3, A) , (3, B) , (A , B),所以,共有 10 个基本领件.(2)上述 10 个基本领件生的可能性同样,且只有 3 个基本领件是摸到两只白球 (事3件 A) ,即 (1,2), (1,3), (2,3) ,故 P(A) =10.P(A) =m.由此可知,利用列法算出所有例 2 解引古典概型的概率算公式是n基本领件的个数 n 以及事件 A 包含的基本领件数m 是解关.必需能够采纳画状或列表法助列基本领件.解 (1) 利用树形图我们能够列出连续抽取2 张卡片的所有可能结果 (以下列图所示 ).由上图能够看出,试验的所有可能结果数为20,因为每次都随机抽取,所以这 20 种结果出现的可能性是同样的,试验属于古典概型.用 A 1 表示事件 “连续抽取 2 人一男一女 ”, A 2 表示事件 “ 连续抽取 2 人都是女生 ”,则A 1 与 A 2 互斥,并且 A 1∪A2 表示事件 “连续抽取 2 张卡片,拿出的 2 人不所有是男生 ”,由列出 的所有可能结果能够看出, A 1 的结果有 12 种,A 2 的结果有 2 种,由互斥事件的概率加法公式,可得P(A 1∪A 2)= P(A 1)+P(A 2)= 1220+ 202= 107=0.7,即连续抽取 2 张卡片,拿出的 2 人不所有是男生的概率为 0.7.(2)有放回地连续抽取2 张卡片,需注意同一张卡片可再次被拿出,并且它被拿出的可能性和其余卡片相等,我们用一个有序实数对表示抽取的结果,比如 “ 第一次拿出 2 号,第二次拿出 4 号 ” 就用 (2,4)来表示,所有的可能结果能够用下表列出.第二次抽取12345 第一次抽取1 (1,1) (1,2) (1,3) (1,4) (1,5)2 (2,1) (2,2) (2,3) (2,4) (2,5)3 (3,1) (3,2) (3,3) (3,4) (3,5)4 (4,1) (4,2) (4,3) (4,4) (4,5) 5(5,1) (5,2) (5,3) (5,4)(5,5)试验的所有可能结果数为25,并且这 25 种结果出现的可能性是同样的,试验属于古典概型.用 A 表示事件 “ 独唱和朗读由同一个人表演 ”,由上表能够看出, A 的结果共有 5 种,因此独唱和朗读由同一个人表演的概率P(A) = 5= 0.2.25变式迁徙2解方法一同时扔掷两枚骰子,所有基本领件以下表:1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有 36 个不一样的结果,此中 “起码有一个 5 点或 6 点 ”的基本领件数为 20,所以起码有一个 5 点或 6 点的概率为 P = 20 5 36= 9.方法二 利用对峙事件求概率. “ 起码有一个5 点或6 点”的对峙事件是 “没有 5 点或 6 点 ”,如上表,“ 没有 5 点或 6 点 ”包含 16 个基本领件,没有5 点或6 点的概率为 P =16= 436 9.∴起码有一个 5 点或 6 点的概率 1-4= 59 9. 例 3 解 引 本 主要考 抽 的方法及古典概型概率的求法,考 用概率知 解 决 的能力.解 (1) 厂 个月共生n ,50 10由 意得 n =,所以 n = 2 000.100+ 300z = 2 000-(100+ 300)- (150 +450)- 600=400. (2) 所抽 本中有 a 舒坦型 ,由 意得 1400000= a5,即 a = 2.所以抽取的容量 5 的 本中,有2 舒坦型 ,3 准型 .用 A 1,A 2 表示 2 舒坦型 ,用B 1,B 2,B 3 表示 3 准型 .用E 表示事件 “在本中任取2 ,此中起码有 1 舒坦型 ”,基本领件空 包含的基本领件有:(A 1 ,A 2 1,B 1 1,B 2 1, B 3),(A 2,B 12,B 2 ,(A 2,B 31, B 2),(B 1,),(A ),(A ) ,(A),(A)),(B32,B 3(A 1,A21, B 1),(A1 ,B 21,B 3B ),(B)共 10 个.事件 E 包含的基本领件有:),(A),(A),(A 2, B 1), (A 2, B22, B 3)共 7 个.), (A7 7故 P(E) = 10,即所求概率 10.(3) 本均匀数x = 1× (9.4+ 8.6+ 9.2+ 9.6+ 8.7+ 9.3+ 9.0+8.2)= 9.8D 表示事件 “ 从 本中任取一数, 数与 本均匀数之差的 不超0.5”, 基本领件空 中有 8 个基本领件,事件D 包含的基本领件有:9.4,8.6,9.2,8.7,9.3, 9.0,共 6 个,所以 P(D) = 6 3 38= 4,即所求概率4.1×(5+ 6+ 7+ 8+ 9+ 10)= 7.5.式迁徙 3 解 (1) 体均匀数6(2) A 表示事件 “ 本均匀数与 体均匀数之差的 不超0.5”.从 体中抽取2 个个体所有可能的基本 果有:(5,6), (5,7), (5,8), (5,9), (5,10),(6,7) ,(6,8), (6,9), (6,10) , (7,8) , (7,9), (7,10) , (8,9), (8,10) , (9,10) ,共 15个基本 果.事件 A 包含的基本 果有:(5,9), (5,10) ,(6,8) ,(6,9),(6,10) ,(7,8), (7,9),共有7 个基本 果.7所以所求的概率 P(A) = 15.后 区 1.A2.B [ 由 意知在20 随机数中表示三次投 恰有两次命中的有:191、271、932、812、393,共 5 随机数,故所求概率5 = 1= 0.25.]20 43.A [由 意知, (m , n) ·(-1,1)=- m + n<0 ,∴m>n.基本领件 共有6× 6= 36(个 ),切合要求的有 (2,1) ,(3,1),(3,2),(4,1),(4,2) ,(4,3),(5,1),⋯,(5,4), (6,1), ⋯ , (6,5),共 1+ 2+ 3+ 4+ 5=15( 个).15 5∴P = 36= 12.]124.D[落在直 x +y = 2 上的概率 P(C 2)=6,落在直 x + y = 3 上的概率 P(C 3)= 6;落2 1在直 x + y = 4 上的概率 P(C 4)= 6;落在直 x + y = 5上的概率 P(C 5 )=6,故当 n3 和 4,事件 C n 的概率最大. ]5.D[由袋中随机拿出2 个小球的基本领件 数 10,拿出小球 注数字和3 的事件1,2.拿出小球 注数字和6 的事件 1,5 或 2,4.∴拿出的小球 注的数字之和3或6的概率1+ 2 3P =10= 10.]6.120分析男教 有 n 人, 女教 有 (n + 12)人.由已知从 些教 中 一人, 到男教 的概率P = n = 9,得 n =54,2n + 12 20故参加 会的教 共有 120 人.17.5分析 cosπ5π 13= cos 3 =2,共 2 个.21x 体共有 10 个,所以概率 10= 5. 8.0.2分析 从 5 根竹竿中一次随机抽取 2 根竹竿共有 10( 种 ) 抽取方法,而抽取的两根竹竿度恰巧相差 0.3 m 的状况是 2.5 和 2.8,2.6 和 2.9 两种,∴概率 P = 2= 0.2.10 9.解 (1)ab , ac , ad ,ae , bc , bd , be , cd ,ce , de.共 10 种不一样 果. (2 分 )(2)“ 恰巧摸出 1 个黑球和 1 个 球 ” 事件 A , 事件A 包含的基本领件ac , ad ,6ae , bc , bd , be ,共 6 个基本领件.所以P(A) =10= 0.6.所以恰巧摸出 1 个黑球和 1 个 球的概率 0.6.(7 分)(3)“起码摸出1 个黑球 ” 事件 B , 事件 B 包含的基本领件ab ,ac , ad ,ae , bc ,bd , be ,共 7 个基本领件,7所以 P(B) = 10= 0.7.所以起码摸出 1 个黑球的概率0.7.(12 分 )10. 解“ 中三等 ” 的事件 A ,“ 中 ” 的事件 B ,从四个小球中有放回的取两个共有 (0,0), (0,1),(0,2) ,(0,3) , (1,0) ,(1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3), (3,0) ,(3,1), (3,2), (3,3)16 种不一样的方法. (2 分 )(1)两个小球号 相加之和等于 3 的取法有 4 种:(0,3)、 (1,2) 、 (2,1)、 (3,0).故 P(A) = 4 = 1分 ) 16 4.(6 (2)由 (1)知,两个小球号码相加之和等于 3 的取法有 4 种.两个小球号码相加之和等于4 的取法有 3 种: (1,3), (2,2) , (3,1), (8 分 ) 两个小球号码相加之和等于5 的取法有 2 种: (2,3), (3,2) ,4329P(B) =16 + 16+16=16.(12 分 )11.解因为实数对 (a ,b)的所有取值为: ( -2,- 2), (- 2,- 1),(- 2,1),(- 2,2),(-1,- 2), (- 1,- 1), (- 1,1), (-1,2) ,(1,- 2), (1,- 1), (1,1), (1,2), (2,- 2), (2,-1), (2,1), (2,2),共 16 种. (3 分 )设“ 直线 y = ax + b 不经过第四象限 ” 为事件 A ,“ 直线 y = ax + b 与圆 x 2+ y 2= 1 有公共点”为事件 B.(1)若直线 y = ax + b 不经过第四象限,则一定知足a ≥ 0,即知足条件的实数对(a , b)b ≥ 0,有 (1,1), (1,2), (2,1), (2,2),共 4 种.∴P(A) = 4 116= 4.故直线 y =ax + b 不经过第四象限的概率为1 4.(6 分)(2)若直线 y = ax +b 与圆 x 2+ y 2= 1 有公共点, 则一定知足|b|≤ 1,即 b 2≤ a 2+ 1.(8 分 )a 2+ 1若 a =- 2,则 b =- 2,- 1,1,2 切合要求,此时实数对 (a , b)有 4 种不一样取值;若 a =- 1,则 b =- 1,1 切合要求,此时实数对 (a , b)有 2 种不一样取值;若 a = 1,则 b =- 1,1 切合要求,此时实数对(a , b)有 2 种不一样取值,若 a = 2,则 b =- 2,- 1,1,2 切合要求,此时实数对 (a , b)有 4 种不一样取值.∴知足条件的实数对 (a , b)共有 12 种不一样取值.123∴P(B) = 16= 4.故直线 y =ax + b 与圆 x 2+y 2= 1 有公共点的概率为34.(14 分)。

2016版《步步高》高考数学大二轮总复习

2016版《步步高》高考数学大二轮总复习
显然当a>1或-1<a<0时,满足f(a)>f(-a). 故选C.
方法二 对a分类讨论:

a>0
时,∵log2a>log
1 2
a,∴a>1.

a<0
时,∵log
1 2
(-a)>log2(-a),∴0<-a<1,
∴-1<a<0,故选C.
答案 C
思维升华
(1)指数函数、对数函数、幂函数是高考的必考内容之 一,重点考查图象、性质及其应用,同时考查分类讨 论、等价转化等数学思想方法及其运算能力. (2)比较数式大小问题,往往利用函数图象或者函数的 单调性.
ax+b 跟踪演练 2 (1)(2015·安徽)函数 f(x)=x+c2的图象如图所
示,则下列结论成立的是( ) A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0
解 析 函 数 定 义 域 为 {x|x≠ - c} , 结 合 图 象 知 - c>0 ,
a)≤2f(1),则a的取
值范围是________.
解析 由题意知 a>0,又 log 1 a=log2a-1=-log2a. 2
∵f(x)是R上的偶函数,
∴f(log2a)=f(-log2a)=f(log1 a). 2
∵f(log2a)+f(log 1 a)≤2f(1), 2
∴2f(log2a)≤2f(1),即f(log2a)≤f(1). 又∵f(x)在[0,+∞)上递增. ∴|log2a|≤1,-1≤log2a≤1, ∴a∈12,2. 答案 [12,2]

2016版《步步高》高考数学大二轮总复习与增分策略(文科)配套课件+配套文档:专题六 解析几何 第3讲

2016版《步步高》高考数学大二轮总复习与增分策略(文科)配套课件+配套文档:专题六 解析几何 第3讲

第3讲 圆锥曲线的综合问题1.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 22.(2015·陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1(2014·北京)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.思维升华 解决范围问题的常用方法:(1)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 已知椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32). (1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值.热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.思维升华 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.跟踪演练2 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.热点三探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.2.反证法与验证法也是求解存在性问题常用的方法.例3如图,抛物线C:y2=2px的焦点为F,抛物线上一定点Q(1,2).(1)求抛物线C的方程及准线l的方程;(2)过焦点F的直线(不经过Q点)与抛物线交于A,B两点,与准线l交于点M,记QA,QB,QM的斜率分别为k1,k2,k3,问是否存在常数λ,使得k1+k2=λk3成立,若存在λ,求出λ的值;若不存在,说明理由.思维升华 解决探索性问题的注意事项:存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 (2015·四川)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1. (1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.提醒:完成作业 专题六 第3讲二轮专题强化练专题六第3讲 圆锥曲线的综合问题A 组 专题通关1.(2015·北京西城区期末)若曲线ax 2+by 2=1为焦点在x 轴上的椭圆,则实数a ,b 满足( )A .a 2>b 2B.1a <1b C .0<a <b D .0<b <a2.已知椭圆x 24+y 2b 2=1(0<b <2)的左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1B.2C.32D. 3 3.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||F A |-|FB ||的值为( )A .42B .8C .82D .164.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能5.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .86.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为_______________________________________________________________.7.已知A (1,2),B (-1,2),动点P 满足AP →⊥BP →.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是________.8.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A 、B ,则直线AB 恒过定点________.9.已知抛物线x 2=2py (p >0),过点M (0,m )的直线l 与抛物线交于A ,B 两点,又过A ,B 两点分别作抛物线的切线,两条切线相交于点P .(1)求证:两条切线的斜率之积为定值;(2)当p =m =4时,求△P AB 面积的最小值.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,过点M (2,0)的直线l 与椭圆C 相交于A ,B 两点,O 为坐标原点.(1)求椭圆C 的方程;(2)若B 点关于x 轴的对称点是N ,证明:直线AN 恒过一定点.B组能力提高11.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为________.12.直线3x-4y+4=0与抛物线x2=4y和圆x2+(y-1)2=1从左到右的交点依次为A、B、C、D,则|AB||CD|的值为________.13.已知P 、Q 、M 、N 四点都在以中心为坐标原点,离心率为22,左焦点为F (-1,0)的椭圆C 上,已知PF →与FQ →共线,MF →与FN →共线,PF →·MF →=0. (1)求椭圆C 的方程;(2)试用直线PQ 的斜率k (k ≠0)表示四边形PMQN 的面积S ,并求S 的最小值.学生用书答案精析第3讲 圆锥曲线的综合问题高考真题体验 1.D[如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0. 令Δ=122-4×9(r 2-46)=0, 解得r 2=50,即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62, 故选D.]2.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2 =2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.热点分类突破例1 解 (1)由题意,得椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2 =⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),且当x 20=4时等号成立, 所以|AB |2≥8.故线段AB 长度的最小值为2 2.跟踪演练1 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b 2=1,又a 2=b 2+c 2,∴a 2=4,b 2=3, ∴椭圆标准方程为x 24+y 23=1.(2)显然直线PQ 不与x 轴重合, 当直线PQ 与x 轴垂直时, |PQ |=3,|F 1F 2|=2, 1PFQ S =3; 当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程,整理,得(3+4k 2)y 2+6ky -9k 2=0, Δ>0,y 1+y 2=-6k 3+4k 2,y 1·y 2=-9k 23+4k 2.1PFQ S =12·|F 1F 2|·|y 1-y 2|=12k 2+k 4(3+4k 2)2,令t =3+4k 2,∴t >3,k 2=t -34,∴1PFQ S =3-3(1t +13)2+43,∵0<1t <13,∴1PFQ S ∈(0,3), ∴当直线PQ 与x 轴垂直时1PFQ S 最大,且最大面积为3. 设△PF 1Q 内切圆半径为r ,则1PFQ S =12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3. 即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大,∴PF 2→=F 2Q →,∴λ=1.例2 解 (1)设椭圆方程为x 2a 2+y 2b 2=1 (a >b >0),由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2, 则椭圆方程变为x 24c 2+y 23c 2=1.又由题意知(2+c )2+12=10, 解得c 2=1, 故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0.则⎩⎨⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k 2.①又y 1y 2=(kx 1+m )(kx 2+m ) =k 2x 1x 2+mk (x 1+x 2)+m 2 =3(m 2-4k 2)3+4k 2.∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1 =-2k ,m 2=-2k 7,由①,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾. 当m 2=-2k7时,l 的方程为y =k ⎝⎛⎭⎫x -27,直线过定点⎝⎛⎭⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝⎛⎭⎫27,0. 跟踪演练2 (1)解 设椭圆的半焦距为c , 圆心O 到直线l 的距离d =61+1=3, ∴b =5-3= 2. 由题意得⎩⎪⎨⎪⎧c a =33,a 2=b 2+c 2,b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k (x -x 0)+y 0,y 23+x 22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0,整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2,则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1.例3 解 (1)把Q (1,2)代入y 2=2px ,得2p =4, 所以抛物线方程为y 2=4x ,准线l 的方程为x =-1. (2)由条件可设直线AB 的方程为y =k (x -1),k ≠0. 由抛物线准线l :x =-1, 可知M (-1,-2k ).又Q (1,2),所以k 3=2+2k1+1=k +1,即k 3=k +1.把直线AB 的方程y =k (x -1),代入抛物线方程y 2=4x ,并整理,可得k 2x 2-2(k 2+2)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,知x 1+x 2=2k 2+4k 2,x 1x 2=1.又Q (1,2),则k 1=2-y 11-x 1,k 2=2-y 21-x 2.因为A ,F ,B 共线,所以k AF =k BF =k , 即y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=2-y 11-x 1+2-y 21-x 2=y 1x 1-1+y 2x 2-1-2(x 1+x 2-2)x 1x 2-(x 1+x 2)+1=2k -2(2k 2+4k 2-2)1-2k 2+4k 2+1=2k +2,即k 1+k 2=2k +2.又k 3=k +1,可得k 1+k 2=2k 3.即存在常数λ=2,使得k 1+k 2=λk 3成立.跟踪演练3 解 (1)由已知,点C 、D 的坐标分别为(0,-b ),(0,b ), 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0,其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1,从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2.所以当λ=1时,-λ-12k 2+1-λ-2=-3,此时OA →·OB →+λP A →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD , 此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3. 高考押题精练解 (1)因为C 1,C 2的焦点重合, 所以a 2-3=a2,所以a 2=4. 又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=4x . (2)假设存在直线l 使得|PN ||MQ |=2,则可设直线l 的方程为y =k (x -1),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0, 则x 1+x 4=2k 2+4k 2,x 1x 4=1,所以|PN |=1+k 2· (x 1+x 4)2-4x 1x 4=4(1+k 2)k 2.由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0, 则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2,所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k 2.若|PN ||MQ |=2, 则4(1+k 2)k 2=2×12(1+k 2)3+4k 2,解得k =±62.故存在斜率为k =±62的直线l ,使得|PN ||MQ |=2.二轮专题强化练答案精析第3讲 圆锥曲线的综合问题1.C [由ax 2+by 2=1,得x 21a +y 21b=1,因为焦点在x 轴上,所以1a >1b >0,所以0<a <b .]2.D [由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b = 3.]3.C [依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程⎩⎪⎨⎪⎧y =x -2,y 2=8x消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=12,x 1x 2=4,则||AF |-|BF ||=|(x 1+2)-(x 2+2)|=|x 1-x 2| =(x 1+x 2)2-4x 1x 2=144-16=8 2.] 4.A [∵x 1+x 2=-b a ,x 1x 2=-ca.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=b 2a 2+2c a =b 2+2ac a2. ∵e =c a =12,∴c =12a ,∴b 2=a 2-c 2=a 2-⎝⎛⎭⎫12a 2=34a 2. ∴x 21+x 22=34a 2+2a ×12a a 2=74<2. ∴P (x 1,x 2)在圆x 2+y 2=2内.] 5.C [设P (x 0,y 0),则x 204+y 203=1,即y 20=3-3x 204,又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3=14(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →∈[2,6], 所以(OP →·FP →)max =6.] 6.-2解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则P A 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即P A 1→·PF 2→取最小值,最小值为-2. 7.(1,2)解析 设P (x ,y ),由题设条件,得动点P 的轨迹为(x -1)(x +1)+(y -2)·(y -2)=0, 即x 2+(y -2)2=1,它是以(0,2)为圆心,1为半径的圆.又双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,即bx ±ay =0,由题意,可得2a a 2+b 2>1,即2ac >1,所以e =ca <2,又e >1,故1<e <2.8.(0,2)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A处的切线方程为y -y 1=12x 1(x -x 1),化简得,y =12x 1x -y 1,同理,在点B 处的切线方程为y=12x 2x -y 2.又点Q (t ,-2)的坐标满足这两个方程,代入得:-2=12x 1t -y 1,-2=12x 2t -y 2,则说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB恒过定点(0,2).9.(1)证明 依题意,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2=2py ,得x 2-2pkx -2pm =0, 则由根与系数的关系,得x 1+x 2=2pk ,x 1x 2=-2pm .对抛物线y =x 22p 求导,得y ′=x p, 设两条切线的斜率分别为k 1,k 2,则k 1=x 1p ,k 2=x 2p, 所以k 1k 2=x 1p ·x 2p =-2pm p 2=-2m p, 即两条切线的斜率之积为定值-2m p. (2)解 因为p =m =4,所以抛物线方程为x 2=8y ,y ′=x 4,x 1+x 2=8k ,x 1x 2=-32, 则直线P A 的方程为y -x 218=x 14(x -x 1), PB 的方程为y -x 228=x 24(x -x 2). 将两方程联立,得P 点的坐标为(x 1+x 22,x 1x 28),所以P (4k ,-4). 于是|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=81+k 2·k 2+2,又点P 到直线AB 的距离d =4(k 2+2)1+k 2, 所以S △P AB =16k 2+2·(k 2+2).当k 2=0,即k =0时,所求面积最小为32 2. 10.(1)解 由题意知b =1,e =c a =22, 得a 2=2c 2=2a 2-2b 2,故a 2=2.故所求椭圆C 的方程为x 22+y 2=1. (2)证明 设直线l 的方程为y =k (x -2),则由⎩⎪⎨⎪⎧y =k (x -2),x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 21+2k 2, x 1x 2=8k 2-21+2k 2. 由对称性可知N (x 2,-y 2),定点在x 轴上,直线AN :y -y 1=y 1+y 2x 1-x 2(x -x 1).令y =0得:x =x 1-y 1(x 1-x 2)y 1+y 2=x 1y 2+x 2y 1y 1+y 2=2kx 1x 2-2k (x 1+x 2)k (x 1+x 2-4)=2x 1x 2-2(x 1+x 2)x 1+x 2-4=16k 2-41+2k 2-16k 21+2k 28k 21+2k 2-4=1, 故直线AN 恒过定点(1,0).11.[1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2,x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1. 12.116解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y 得x 2-3x -4=0,∴x A =-1,x D =4,∴y A =14,y D =4. 直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5, ∴|AB ||CD |=|AF |-1|DF |-1=116. 13.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则a 2=b 2+c 2,又依题意,知c =1,c a =22,所以a =2,b =1.所以椭圆C 的方程为x 22+y 2=1. (2)依题意,易知PQ 与MN 垂直于点F .设PQ 的方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,消y , 得(1+2k 2)x 2+4k 2x +2k 2-2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2, 所以|PQ |=(1+k 2)(x 1-x 2)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2]=22(1+k 2)1+2k 2. 同理,可得|MN |=22(1+1k 2)1+2k 2=22(1+k 2)2+k 2, 所以四边形PMQN 的面积为S =12|PQ |·|MN |=4(1+k 2)2(1+2k 2)(k 2+2)=2-2k 22k 4+5k 2+2=2-22k 2+2k2+5≥169. 当且仅当k 2=1时,取等号.所以四边形PMQN 的面积S 的最小值为169.。

2016高考总复习步步高资料学案 (40)

2016高考总复习步步高资料学案 (40)

学案44空间的垂直关系导学目标:1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.自主梳理1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:一条直线和一个平面内的两条______直线都垂直,则该直线与此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也______这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内______直线.②垂直于同一个平面的两条直线______.③垂直于同一直线的两个平面________.2.直线与平面所成的角平面的一条斜线和它在平面内的________所成的锐角,叫做这条直线和这个平面所成的角.一直线垂直于平面,说它们所成角为________;直线l∥α或l⊂α,则它们成________角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:一个平面过另一个平面的__________,则这两个平面垂直.(2)平面与平面垂直的性质两个平面垂直,则一个平面内垂直于________的直线与另一个平面垂直.4.二面角的平面角以二面角棱上的任一点为端点,在两个半平面内分别作与棱________的射线,则两射线所成的角叫做二面角的平面角.自我检测1.平面α⊥平面β的一个充分条件是()A.存在一条直线l,l⊥α,l⊥βB.存在一个平面γ,γ∥α,γ∥βC.存在一个平面γ,γ⊥α,γ⊥βD.存在一条直线l,l⊥α,l∥β2.(2010·浙江)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是() A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m3.(2011·长沙模拟)对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都垂直于γ;②存在平面γ,使得α,β都平行于γ;③存在直线l⊂α,直线m⊂β,使得l∥m;④存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β.其中,可以判定α与β平行的条件有()A.1个B.2个C.3个D.4个4.(2011·十堰月考)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n5.(2011·大纲全国)已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值为________.探究点一线面垂直的判定与性质例1Rt△ABC所在平面外一点S,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC.求证:BD⊥平面SAC.变式迁移1在四棱锥V—ABCD中,底面ABCD是正方形,侧面V AD是正三角形,平面V AD⊥底面ABCD.证明:AB⊥VD.探究点二面面垂直的判定与性质例2(2011·邯郸月考)如图所示,已知四棱柱ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC⊥平面ABCD.变式迁移2(2011·江苏)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB =AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.探究点三直线与平面,平面与平面所成的角例3(2009·湖北)如图,四棱锥S—ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2a,点E是SD上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE;(2)设二面角C—AE—D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθtanφ=1,求λ的值.变式迁移3(2009·北京)如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC =60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC.(2)当D为PB的中点时,求AD与平面PAC所成角的正弦值.(3)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.转化与化归思想综合应用例(12分)已知四棱锥P—ABCD,底面ABCD是∠A=60°的菱形,又PD⊥底面ABCD,点M、N分别是棱AD、PC的中点.(1)证明:DN∥平面PMB;(2)证明:平面PMB⊥平面PAD.多角度审题(1)在平面PMB内找到(或构造)一条直线与DN平行即可;(2)要证面PMB⊥面PAD,只需证明MB⊥面PAD即可.【答题模板】证明(1)取PB中点Q,连接MQ、NQ,因为M、N分别是棱AD、PC的中点,所以QN∥BC∥MD,且QN =MD ,故四边形QNDM 是平行四边形,于是DN ∥MQ.又∵MQ ⊂平面PMB ,DN ⊄平面PMB ∴DN ∥平面PMB.[6分](2)∵PD ⊥平面ABCD ,MB ⊂平面ABCD ,∴PD ⊥MB. 又因为底面ABCD 是∠A =60°的菱形,且M 为AD 中点, 所以MB ⊥AD.又AD ∩PD =D ,所以MB ⊥平面PAD. 又∵MB ⊂平面PMB ,∴平面PMB ⊥平面PAD.[12分] 【突破思维障碍】立体几何的证明问题充分体现线面关系的转化思想,其思路为:1.证明线面垂直的方法:(1)线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α;(2)判定定理1:⎭⎪⎬⎪⎫m 、n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α;(3)判定定理2:a ∥b ,a ⊥α⇒b ⊥α;(4)面面平行的性质:α∥β,a ⊥α⇒a ⊥β;(5)面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 2.证明线线垂直的方法:(1)定义:两条直线的夹角为90°;(2)平面几何中证明线线垂直的方法;(3)线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ;(4)线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b.3.证明面面垂直的方法:(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:a ⊂α,a ⊥β⇒α⊥β.(满分:75分)一、选择题(每小题5分,共25分) 1.(2011·滨州月考)已知直线a ,b 和平面α,β,且a ⊥α,b ⊥β,那么α⊥β是a ⊥b 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件2.已知两个不同的平面α、β和两条不重合的直线m 、n ,有下列四个命题:①若m ∥n ,m ⊥α,则n ⊥α;②若m ⊥α,m ⊥β,则α∥β;③若m ⊥α,m ∥n ,n ⊂β,则α⊥β;④若m ∥α,α∩β=n ,则m ∥n.其中正确命题的个数是( ) A .0 B .1 C .2 D .33.设α,β,γ是三个不重合的平面,l 是直线,给出下列四个命题: ①若α⊥β,l ⊥β,则l ∥α;②若l ⊥α,l ∥β,则α⊥β;③若l 上有两点到α的距离相等,则l ∥α;④若α⊥β,α∥γ,则γ⊥β. 其中正确命题的序号是( ) A .①② B .①④ C .②④ D .③④ 4.(2011·浙江)下列命题中错误的是( )A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β5.平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹是()A.一条直线B.一个圆C.一个椭圆D.双曲线的一支二、填空题(每小题4分,共12分)6.如图所示,四棱锥P—ABCD的底面ABCD是边长为a的正方形,侧棱PA=a,PB =PD=2a,则它的5个面中,互相垂直的面有________对.7.(2011·金华模拟)如图所示,正方体ABCD—A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,垂足为点H,有下列三个命题:①点H是△A1BD的中心;②AH垂直于平面CB1D1;③AC1与B1C所成的角是90°.其中正确命题的序号是____________.8.正四棱锥S-ABCD底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为________.三、解答题(共38分)9.(12分)(2010·山东)在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.(1)求证:平面EFG⊥平面PDC;(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.10.(12分)(2009·天津)如图,在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2 2.(1)证明:PA∥平面BDE;(2)证明:AC⊥平面PBD;(3)求直线BC与平面PBD所成的角的正切值.11.(14分)(2011·杭州调研)如图所示,已知正方体ABCD-A1B1C1D1中,E为AB的中点.(1)求直线B1C与DE所成角的余弦值;(2)求证:平面EB1D⊥平面B1CD;(3)求二面角E-B1C-D的余弦值.学案44空间的垂直关系自主梳理1.(1)②相交③垂直(2)①任意②平行③平行2.射影直角0° 3.(1)②一条垂线(2)交线 4.垂直自我检测1.D 2.B 3.B 4.D 5.2 3课堂活动区例1解题导引线面垂直的判断方法是:证明直线垂直平面内的两条相交直线.即从“线线垂直”到“线面垂直”.证明(1)取AB中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,故DE∥BC,且DE⊥AB,∵SA=SB,∴△SAB为等腰三角形,∴SE⊥AB.∵SE⊥AB,DE⊥AB,SE∩DE=E,∴AB⊥面SDE.而SD⊂面SDE,∴AB⊥SD.在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.∵SD⊥AC,SD⊥AB,AC∩AB=A,∴SD⊥平面ABC.(2)若AB=BC,则BD⊥AC,由(1)可知,SD⊥面ABC,而BD⊂面ABC,∴SD⊥BD.∵SD⊥BD,BD⊥AC,SD∩AC=D,∴BD⊥平面SAC.变式迁移1证明∵平面VAD⊥平面ABCD,AB⊥AD,AB⊂平面ABCD,AD=平面VAD∩平面ABCD,∴AB⊥平面VAD.∵VD⊂平面VAD,∴AB⊥VD.例2解题导引证明面面垂直,可先证线面垂直,即设法先找到其中一个平面的一条垂线,再证明这条垂线在另一个平面内或与另一个平面内的一条直线平行.证明如图所示,连接AC,BD,A1C1,则O为AC,BD的交点,O1为A1C1,B1D1的交点.由棱柱的性质知:A1O1∥OC,且A1O1=OC,∴四边形A1OCO1为平行四边形,∴A1O∥O1C,又A1O⊥平面ABCD,∴O1C⊥平面ABCD,又O1C⊂平面O1DC,∴平面O1DC⊥平面ABCD.变式迁移2证明(1)如图,在△P AD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF⊄平面PCD,PD⊂平面PCD,所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F 是AD 的中点,所以BF ⊥AD .因为平面P AD ⊥平面ABCD ,BF ⊂平面ABCD , 平面P AD ∩平面ABCD =AD ,所以BF ⊥平面P AD . 又因为BF ⊂平面BEF ,所以平面BEF ⊥平面P AD .例3 解题导引 高考中对直线与平面所成的角及二面角的考查是热点之一.有时在客观题中考查,更多的是在解答题中考查.求这两种空间角的步骤:(几何法).根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)→认(指)→求.(1)证明 如图所示,连接BD ,由底面ABCD 是正方形可得AC ⊥BD . ∵SD ⊥平面ABCD ,∴BD 是BE 在平面ABCD 上的射影,∴AC ⊥BE .(2)解 如图所示,由SD ⊥平面ABCD ,CD ⊂平面ABCD , ∴SD ⊥CD .又底面ABCD 是正方形, ∴CD ⊥AD .又SD ∩AD =D , ∴CD ⊥平面SAD .过点D 在平面SAD 内作DF ⊥AE 于F ,连接CF ,则CF ⊥AE ,故∠CFD 是二面角C —AE —D 的平面角,即∠CFD =θ.在Rt △BDE 中,∵BD =2a ,DE =λa ,∴tan φ=DE BD =λ2.在Rt △ADE 中,∵AD =2a =CD ,DE =λa , ∴AE =a λ2+2,从而DF =AD ·DE AE =2λaλ2+2.在Rt △CDF 中,tan θ=CDDF =λ2+2λ,由tan θ·tan φ=1,得 λ2+2λ·λ2=1⇒λ2+2=2⇒λ2=2. 由λ∈(0,2],解得λ=2,即为所求.变式迁移3 (1)证明 ∵P A ⊥底面ABC ,∴P A ⊥BC . 又∠BCA =90°,∴AC ⊥BC .又AC ∩P A =A , ∴BC ⊥平面P AC .(2)解 ∵D 为PB 的中点,DE ∥BC ,∴DE =12BC .又由(1)知,BC ⊥平面P AC , ∴DE ⊥平面P AC ,垂足为点E .∴∠DAE 是AD 与平面P AC 所成的角. ∵P A ⊥底面ABC ,∴P A ⊥AB .又P A =AB ,∴△ABP 为等腰直角三角形.∴AD =22AB .在Rt △ABC 中,∠ABC =60°,∴BC =12AB .∴在Rt △ADE 中,sin ∠DAE =DE AD =BC 2AD =24.∴AD 与平面P AC 所成的角的正弦值为24.(3)解 ∵DE ∥BC ,又由(1)知,BC ⊥平面P AC , ∴DE ⊥平面P AC .又∵AE ⊂平面P AC ,PE ⊂平面P AC , ∴DE ⊥AE ,DE ⊥PE .∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC . 这时,∠AEP =90°,故存在点E 使得二面角A —DE —P 是直二面角. 课后练习区1.C 2.D 3.C4.D [两个平面α,β垂直时,设交线为l ,则在平面α内与l 平行的直线都平行于平面β,故A 正确;如果平面α内存在直线垂直于平面β,那么由面面垂直的判定定理知α⊥β,故B 正确;两个平面都与第三个平面垂直时,易证交线与第三个平面垂直,故C 正确;两个平面α,β垂直时,平面α内与交线平行的直线与β平行,故D 错误.]5.A 6.5解析 面P AB ⊥面P AD ,面P AB ⊥面ABCD ,面P AB ⊥面PBC , 面P AD ⊥面ABCD ,面P AD ⊥面PCD . 7.①②③解析 由于ABCD —A 1B 1C 1D 1是正方体,所以A —A 1BD 是一个正三棱锥,因此A 点在平面A 1BD 上的射影H 是三角形A 1BD 的中心,故①正确;又因为平面CB 1D 1与平面A 1BD 平行,所以AH ⊥平面CB 1D 1,故②正确;从而可得AC 1⊥平面CB 1D 1,即AC 1与B 1C 垂直,所成的角等于90°.8.6+ 2解析 如图取CD 的中点F ,SC 的中点G ,连接EF ,GF ,GE . 则AC ⊥平面GEF ,故动点P 的轨迹是△EFG 的三边.又EF =12DB =2,GE =GF =12SB =62,∴EF +FG +GE =6+ 2.9.(1)证明 因为MA ⊥平面ABCD , PD ∥MA ,所以PD ⊥平面ABCD .又BC ⊂平面ABCD ,所以PD ⊥BC .(2分) 因为四边形ABCD 为正方形, 所以BC ⊥DC .又PD ∩DC =D ,所以BC ⊥平面PDC .(4分)在△PBC 中,因为G 、F 分别为PB 、PC 的中点,所以GF ∥BC ,所以GF ⊥平面PDC .又GF ⊂平面EFG , 所以平面EFG ⊥平面PDC .(6分)(2)解 因为PD ⊥平面ABCD ,四边形ABCD 为正方形,不妨设MA =1,则PD =AD =2,所以V P -ABCD =13S 正方形ABCD ·PD =83.(8分) 由题意可知,DA ⊥平面MAB ,且PD ∥MA ,所以DA 即为点P 到平面MAB 的距离,所以V P -MAB =13×12×1×2×2=23.(10分) 所以V P -MAB ∶V P -ABCD =1∶4.(12分)10.(1)证明设AC ∩BD =H ,连接EH .在△ADC 中,因为AD =CD ,且DB 平分∠ADC ,所以H 为AC 的中点,又由题设,知E 为PC 的中点,故EH ∥P A .又EH ⊂平面BDE ,且P A ⊄平面BDE ,所以P A ∥平面BDE .(4分)(2)证明 因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC .由(Ⅰ)可得,DB ⊥AC .又PD ∩DB =D ,故AC ⊥平面PBD .(8分)(3)解 由AC ⊥平面PBD 可知,BH 为BC 在平面PBD 内的射影,所以∠CBH 为直线BC 与平面PBD 所成的角.由AD ⊥CD ,AD =CD =1,DB =22,可得DH =CH =22,BH =322. 在Rt △BHC 中,tan ∠CBH =CH BH =13. 所以直线BC 与平面PBD 所成的角的正切值为13. (12分)11.(1)解 连接A 1D ,则由A 1D ∥B 1C 知,B 1C 与DE 所成角即为A 1D 与DE 所成角.(2分)连接A 1E ,可设正方体ABCD -A 1B 1C 1D 1的棱长为a ,则A 1D =2a ,A 1E =DE =52a , ∴cos ∠A 1DE = A 1D 2+DE 2-A 1E 22·A 1D ·DE =105. ∴直线B 1C 与DE 所成角的余弦值是105.(6分) (2)证明 取B 1C 的中点F ,B 1D 的中点G ,连接BF ,EG ,GF .∵CD ⊥平面BCC 1B 1,且BF ⊂平面BCC 1B 1,∴CD ⊥BF .又∵BF ⊥B 1C ,CD ∩B 1C =C ,∴BF ⊥平面B 1CD .(8分)又∵GF 綊12CD ,BE 綊12CD , ∴GF 綊BE ,∴四边形BFGE 是平行四边形, ∴BF ∥GE ,∴GE ⊥平面B 1CD .∵GE ⊂平面EB 1D ,∴平面EB 1D ⊥B 1CD .(10分)(3)解 连接EF .∵CD ⊥B 1C ,GF ∥CD ,∴GF ⊥B 1C .又∵GE ⊥平面B 1CD ,∴GE ⊥B 1C .又∵GE ∩GF =G ,∴B 1C ⊥平面GEF ,∴EF ⊥B 1C , ∴∠EFG 是二面角E -B 1C -D 的平面角.(12分) 设正方体的棱长为a ,则在△EFG 中,GF =12a ,EF =32a ,GE ⊥GF ,∴cos ∠EFG =GF EF =33, ∴二面角E -B 1C -D 的余弦值为33.(14分)。

2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案58变量间的相关关系]

2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案58变量间的相关关系]

教案 58变量间的有关关系学目: 1.会作两个有关量的数据的散点,会利用散点量的有关关系 .2.认识最小二乘法的思想,能依据出的性回方程系数公式成立性回方程.自主梳理1.两个量的性有关(1)正有关在散点中,点分布在从__________到 ________的地区,于两个量的种有关关系,我将它称正有关.(2)有关在散点中,点分布在从________到 ________的地区,两个量的种有关关系称有关.(3)性有关关系、回直假如散点中点的分布从整体上看大概在一条直邻近,我就称两个量之拥有性有关关系,条直叫做回直.2.回方程(1)最小二乘法求回直使得本数据的点到它的________________________ 的方法叫做最小二乘法.(2)回方程^^^方程 y = b x+ a 是两个拥有性有关关系的量的一数据(x1,y1 ),(x2,y2),⋯, (x n,^^y n)的回方程,此中 a , b 是待定参数.自我1.以下有关性回的法,不正确的选项是()A.有关关系的两个量不必定是因果关系B.散点能直地反应数据的有关程度C.回直最能代表性有关的两个量之的关系D.任一数据都有回直方程2.(2009 海·南,宁夏 )量 x, y 有数据 (x i, y i)(i =1,2,⋯, 10),得散点 (1) ;量 u,v 有数据 (u i,v i)(i = 1,2,⋯, 10),得散点 (2).由两个散点能够判断()A.量 x 与 y 正有关, u 与 v 正有关B.量 x 与 y 正有关, u 与 v 有关C.量 x 与 y 有关, u 与 v 正有关D.量 x 与 y 有关, u 与 v 有关3.(2011 ·川模 )下表是某厂1~4 月份用水量 (位:百吨 )的一数据:月份 x1234用水量 y 4.543 2.5^由散点图可知,用水量y 与月份 x 之间有较好的线性有关关系,其回归直线方程是y =^^- 0.7x +a ,则 a 等于 ()A. 10.5B. 5.15C. 5.2 D .5.254.(2010 广·东 )某市居民2005 ~ 2009 年家庭年均匀收入x(单位:万元 )与年均匀支出Y( 单位:万元 ) 的统计资料以下表所示:年份20052006200720082009收入 x11.512.11313.315支出 Y 6.88.89.81012依据统计资料,居民家庭年均匀收入的中位数是_________________________________ ,家庭年均匀收入与年均匀支出有______ 线性有关关系.5.(2011 金·陵中学模拟 )已知三点 (3,10), (7,20), (11,24) 的横坐标 x 与纵坐标 y 拥有线性关系,则其回归方程是________________.研究点一利用散点图判断两个变量的有关性例 1 有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,获取一个卖出热饮杯数与当日气温的对照表:温度- 504712151923273136(℃ )热饮15615013212813011610489937654杯数(1)画出散点图;(2)你能从散点图中发现气温与热饮销售杯数之间关系的一般规律吗?变式迁徙1某班5个学生的数学和物理成绩如表:学生A B C D E学科数学8075706560物理7066686462画出散点图,并判断它们能否有有关关系?研究点二求回归直线方程例 2 假定对于某设施的使用年限x 和所支出的维修花费y(万元 ) 有以下统计资料:使用年限 x23456维修花费 y 2.2 3.8 5.5 6.57.0^^^若由资料知 y 对 x 呈线性有关关系.试求回归方程y = b x+a .变式迁徙2已知变量x 与变量 y 有以下对应数据:x1234y 1323 22且 y 对 x 呈线性有关关系,求y 对 x 的回归直线方程.研究点三利用回归方程对整体进行预计例 3 下表供给了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨 )与相应的生产能耗 y(吨标准煤 )的几组比较数据.x3456y 2.534 4.5(1)请画出上表数据的散点图;^^^(2)请依据上表供给的数据,用最小二乘法求出y 对于 x 的回归方程 y= b x+a ;(3)已知该厂技改前 100 吨甲产品的生产能耗为90 吨标准煤.试依据(2)求出的回归方程,展望生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤?(参照数值: 3×2.5+ 4× 3+ 5× 4+6× 4.5= 66.5)变式迁徙 3 (2011 ·盐城期末 )某单位为了认识用电量y 度与气温 x℃之间的关系,随机统计了某 4 天的用电量与当日气温,并制作了比较表:气温 (℃)181310- 1用电量 (度 )24343864^^^^由表中数据得回归方程y = b x+a 中 b =- 2,展望当气温为- 4℃时,用电量的度数约为 ________.1.有关关系与函数关系不一样.函数关系中的两个变量间是一种确立性关系.而有关关系是一种非确立性关系,即有关关系是非随机变量与随机变量之间的关系.函数关系是一种因果关系,而有关关系不必定是因果关系,也可能是陪伴关系.2.回归直线方程:设x 与 y 是拥有有关关系的两个变量,且相应于n 个观察值的n 个点大概分布在某一条直线的邻近,就能够以为y 对 x 的回归函数的种类为直线型:^^^y= b x+ a .此中我们称这个方程为y 对 x 的回归直线方程.此中x =1ni,y=1 ni,( x,y )称为∑∑n i =1xn i= 1y样本点的中心.n n^ 3.求回归直线方程的步骤:(1) 计算出 x 、 y 、∑x i2、∑x i y i的值; (2) 计算回归系数 a 、i =1i= 1^^^^b; (3) 写出回归直线方程 y = b x+ a .(满分: 75 分)一、选择题 (每题 5 分,共 25 分 )1.以下命题:①线性回归方法就是由样本点去找寻一条切近这些样本点的直线的数学方法;②利用样本点的散点图能够直观判断两个变量的关系能否能够用线性关系表示;^^^^③经过回归直线y 此中正确的命题是A.①②=b x+ a 及回归系数 b ,能够预计和展望变量的取值和变化趋向.()B.①③C.②③D.①②③^2.设有一个回归直线方程为y = 2- 1.5x,则变量x 增添一个单位时() A. y 均匀增添 1.5 个单位B. y 均匀增添 2 个单位C. y 均匀减少 1.5 个单位D. y 均匀减少 2 个单位3.(2011 ·西 ) (x 1, y1), (x2, y2),⋯, (x n, y n) 是量 x 和 y 的 n 个本点,直l 是由些本点通最小二乘法获取的性回直(如 ),以下中正确的选项是 ()A. x 和 y 的有关系数直l 的斜率B. x 和 y 的有关系数在 0 到 1 之C.当 n 偶数,分布在l 两的本点的个数必定同样D.直 l 点 ( x , y )4.(2011 山· ) 某品的广告用x 与售 y 的数据以下表:广告用 x(万元 )4235售 y(万元 )49263954^^^^依据上表可得性回方程y =b x+ a 中的 b9.4,据此模型广告用 6 万元售 ()A. 63.6 万元B. 65.5 万元C. 67.7 万元D. 72.0 万元5.(2011 青· 模 )了观察两个量x 和 y 之的性有关性,甲、乙两位同学各自独立做了 10 次和 15 次,而且利用性回方法,求得回直分l1、 l2,已知两人所得的数据中,量 x 和 y 的数据的均匀都相等,且分是s、t ,那么以下法中正确的是 ()A.直 l1和 l2必定有公共点 (s, t)B.直 l1和 l2订交,但交点不必定是(s,t)C.必有 l1∥ l 2D. l1与 l 2必然重合二、填空 (每小 4 分,共 12分 )6.以下关系中,是有关关系的________. (填序号 )①学生的学度与学成之的关系;②教的教水平与学生的学成之的关系;③学生的身高与学生的学成之的关系;④家庭的条件与学生的学成之的关系.(12.5,8.25),回直的回7.已知回直的斜率的估是 0.73,本点的中心方程是______________ .8.(2011 ·名月考茂 )在研究硝酸的可溶性程度,它在不一样温度的水中的溶解度,得果以下表:温度 (x)010205070溶解度 (y)66.776.085.0112.3128.0由此获取回直的斜率________.三、解答 (共 38 分 )9.(12 分 )(2011 威·海模 )某了定工定,需要确立加工部件所花的,此做了四次,获取的数据以下:部件的个数 x(个 )2345加工的 y(小 ) 2.534 4.5(1)在定的坐系中画出表中数据的散点;^^^(2)求出 y 对于 x 的回归方程 y= b x+a ,并在座标系中画出回归直线;(3)试展望加工10 个部件需要多少时间?n^∑ x i y i- n x y ^^(注: b =i= 1, a = y - b x )n∑ x i2- n x 2i =110. (12 分 )(2010 许·昌模拟 )某种产品的宣传费支出 x 与销售额 y(单位:万元 ) 之间有以下对应数据:x24568y3040605070(1)画出散点图;(2)求回归直线方程;(3)试展望宣传费支出为10 万元时,销售额多大?11. (14 分) 某公司上半年产品产量与单位成本资料以下:月份产量 (千件 )单位成本(元)127323723471437354696568(1)求出回归方程;(2)指出产量每增添 1 000 件时,单位成本均匀改动多少?(3)假定产量为 6 000 件时,单位成本为多少元?教案 58变量间的有关关系自主梳理1.(1)左下角右上角(2)左上角右下角 2.(1)距离的平方和最小n n∑ x i- x y i- y∑ x i y i- n x yi=1i=1(2)n n∑ x i- x 2∑ x i2- n x 2i= 1i= 1^y - b x自我检测1.D 2.C 3.D^7234.13正 5.y =4x+4讲堂活动区例 1 解题导引判断变量间能否线性有关,一种常用的简易可行的方法就是作散点图.散点图是由大批数据点分布组成的,是定义在拥有有关关系的两个变量基础之上的,对于性质不明确的两组数据可先作散点图,直观地剖析它们有没关系及关系的亲密程度.解 (1) 以 x 轴表示温度,以 y 轴表示热饮杯数,可作散点图,以下图.(2)从图中能够看出,各点分布在从左上角到右下角的地区里,所以,气温与热饮销售杯数之间是负有关关系,即气温越高,卖出去的热饮杯数越少.从散点图能够看出,这些点大概分布在一条直线邻近.变式迁徙1解以x轴表示数学成绩,y 轴表示物理成绩,可得相应的散点图以以下图所示:由散点图可见,二者之间拥有有关关系.例 2 解题导引依据题目给出的数据,利用公式求回归系数,而后获取回归方程.解制表以下:i12345共计x i2345620y i 2.2 3.8 5.5 6.57.025x i y i 4.411.422.032.542.0112.3x i 2491625369055x = 4; y =5; ∑ x2i = 90;∑ x i y i =112.3i =1i =1^112.3- 5× 4×5于是有 b=2= 12.3= 1.23;^^90- 5× 410a = y -b x=5- 1.23×4= 0.08.^∴回归直线方程为 y = 1.23x + 0.08.变式迁徙 2解x = 1+ 2+ 3+4 54= 2,1+3+2+ 322= 7,y =4n4 ∑x i 2=12+ 22+ 32+ 42= 30,i =1n3+3× 2+ 4× 3= 43,∑x i y i =1× 1+ 2×i =1 n 22243- 4×5× 7^∑ x i y i -n x y∴b i =1= 22 4=n25 = 0.8,2 230- 4×∑= x i - n x4i 1^^5=- 0.25,a = y -b x =7- 0.8×42^∴ y = 0.8x -0.25.例 3 解题导引 利用描点法获取散点图,按求回归方程的步骤和公式,写出回归方程,最后对整体进行预计.利用回归方程能够进行展望,回归方程将部分观察值所反应的规律进行延长,是我们对有线性有关关系的两个变量进行剖析和控制,依照自变量的取值预计和预告因变量值的基础和依照,有宽泛的应用.解 (1) 散点图:(2) x = 3+4+ 5+ 6 =4.5, y = 2.5+ 3+ 4+ 4.5=3.5,4 4 4∑x i y i =3× 2.5+ 4× 3+ 5× 4+6× 4.5= 66.5.i =14 ∑x 2i =32+ 42+ 52+ 62= 86,i =14^∑i =1x i y i -4 x y ∴b = 4∑i =1x 2i - 4 x 266.5- 4× 4.5× 3.5=86- 4× 4.52=0.7,^^a = y -b x =3.5- 0.7× 4.5= 0.35.^∴所求的回归方程为 y = 0.7x + 0.35. (3)此刻生产 100 吨甲产品用煤^y = 0.7× 100+ 0.35=70.35,∴降低 90- 70.35= 19.65(吨标准煤 ). 变式迁徙 3 68 分析x = 10, y = 40,回归方程过点( x , y ),^^∴40=- 2× 10+ a .∴a = 60. ^∴ y =- 2x + 60.^令 x =- 4,y = (- 2)× (- 4)+ 60=68. 课后练习区1.D [依据线性回归的含义、方法、作用剖析这三个命题都是正确的. ]2.C[设(x 1, y 1), (x 2 ,y 2)在直线上,若 x 2=x 1+ 1,则 y 2- y 1= (2- 1.5x 2)- (2- 1.5x 1)= 1.5(x 1-x 2 )=- 1.5, y 均匀减少 1.5个单位. ]3.D [由于有关系数是表示两个变量能否拥有线性有关关系的一个值,它的绝对值越接近 1,两个变量的线性有关程度越强,所以 A 、B 错误. C 中 n 为偶数时,分布在 l 双侧的样本点的个数能够不同样,所以 C 错误.依据线性回归方程必定经过样本中心点可知D 正确.所以选 D .]4+ 2+ 3+5= 7, y = 49+ 26+ 39+ 544.B [∵x =44 = 42,2^^^7^ ^又y = b x +a 必过 ( x, y ) ,∴ 42= 2× 9.4+ a , ∴a = 9.1.^∴线性回归方程为 y = 9.4x + 9.1.^∴当x = 6 时, y = 9.4×6+ 9.1=65.5(万元 ). ]^^^^^5.A[回归直线方程为 y= b x +a.而 a = y - b x ,^^^^即a = t -b s , t = b s + a .∴(s ,t) 在回归直线上. ∴直线 l 1 和 l 2 必定有公共点 (s , t). ] 6.①② 分析①中学生的学习态度与学习成绩之间不是因果关系,但拥有有关性,是有关关系.②教师的执教水平与学生的学习成绩之间的关系是有关关系.③④都不具备有关关系.^7.y = 0.73x - 0.875^ ^分析 a = y - bx =8.25- 0.73× 12.5=- 0.875.8.0.880 9分析x = 30, y = 93.6,5 5∑x i 2=7 900, ∑x i y i = 17 035,i =1i = 1∴回归直线的斜率为5^∑ i i - 5 xy17 035- 5× 30× 93.6 i =1x yb =5= ≈0.880 9.∑x i 2- 5 x27 900- 4 500i = 19.解(1)散点图以下图.(4 分 )4 (2)由表中数据得 ∑x i y i = 52.5,i =14x = 3.5, y = 3.5, ∑x 2i =54,i =1 ^ ^^∴b = 0.7.∴a = y - b x = 1.05.^∴ y = 0.7x +1.05.回归直线如图中所示. (10 分 ) (3)将 x = 10 代入回归直线方程, 得 y = 0.7×10+ 1.05=8.05( 小时 ),∴展望加工 10 个部件需要 8.05 小时. (12 分 )10. 解 (1)依据表中所列数据可得散点图以下图:(4 分)25250(2)计算得: x = 5=5, y = 5 = 50,55∑ i2=145, ∑ i y i =1 380.i = 1xi =1x5- 5 xy^∑1 380- 5×5× 50i = 1x i y i,于是可得 b=522 = 5×5 2=6.5-5 x 145-∑ x i^^i =1a = y -b x =50- 6.5×5= 17.5,^所以,所求回归直线方程是 y = 6.5x + 17.5.(10 分 )^(3)由上边求得的回归直线方程可知,当宣传费支出为10 万元时, y = 6.5× 10+ 17.5=82.5(万元 ),即这类产品的销售大概为82.5 万元. (12 分 )6611. 解(1)n = 6, ∑x i = 21, ∑y i = 426, x = 3.5, y = 71,i =1i = 166∑x i 2=79, ∑x i y i = 1 481,i = 16i =1^∑ i i - 6 xy1 481- 6×3.5× 71i =1x yb =6i 2- 6 x 2 = 79- 6× 3.52≈-1.82.∑i = 1x(3 分)2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案58变量间的相关关系]^^a= y - b x =71+ 1.82× 3.5= 77.37.(5 分 )^^^∴回归方程为 y = a +bx= 77.37-1.82x.(6 分 )^(2)由于单位成本均匀改动 b =- 1.82<0 ,且产量 x 的计量单位是千件,所以依据回归系数b 的意义有:产量每增添一个单位即 1 000 件时,单位成本均匀减少 1.82 元. (10 分)(3)当产量为 6 000 件时,即 x= 6,代入回归方程:^y = 77.37-1.82× 6=66.45(元 ).∴当产量为 6 000 件时,单位成本为66.45 元.(14 分)-11-。

2016高考总复习步步高资料学案 (23)

2016高考总复习步步高资料学案 (23)
A.1B.2
C.D.
(2)已知i,j为互相垂直的单位向量,a=i-2j,b=i+λj,且a与b的夹角为锐角,实数λ的取值范围为________.
探究点二两向量的平行与垂直问题
例2 已知a=(cosα,sinα),b=(cosβ,sinβ),且ka+b的长度是a-kb的长度的倍(k>0).
(1)求证:a+b与a-b垂直;
3.已知△ABC中,=a,=b,a·b<0,S△ABC=,|a|=3,|b|=5,则∠BAC等于()
A.30°B.-150°
C.150°D.30°或150°
4.(2010·湖南)若非零向量a,b满足|a|=|b|,(2a+b)·b=0,则a与b的夹角为()
A.30°B.60°
C.120°D.150°
则|a|=________________,cos〈a,b〉=____________________________.
(4)若A(x1,y1),B(x2,y2),则|=________________________,所以||=_____________________.
自我检测
1.(2010·湖南)在Rt△ABC中,∠C=90°,AC=4,则·等于()
自主梳理
1.向量数量积的定义
(1)向量数量积的定义:____________________________________________,其中|a|cos〈a,b〉叫做向量a在b方向上的投影.
(2)向量数量积的性质:
①如果e是单位向量,则a·e=e·a=__________________;
②非零向量a,b,a⊥b⇔________________;
5.已知a=(2,3),b=(-4,7),则a在b上的投影为()

2016高考总复习步步高资料学案 (16)

2016高考总复习步步高资料学案 (16)

学案20 函数y =A sin(ωx +φ)的图象及三角函数模型的简单应用导学目标:1.了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.自主梳理1.用五点法画y =A sin(ωx +φ)一个周期内的简图用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点.如下表所示.2.图象变换:函数y =A sin(ωx +φ) (A >0,ω>0)的图象可由函数y =sin x 的图象作如下变换得到:(1)相位变换:y =sin x →y =sin(x +φ),把y =sin x 图象上所有的点向____(φ>0)或向____(φ<0)平行移动__________个单位.(2)周期变换:y =sin (x +φ)→y =sin(ωx +φ),把y =sin(x +φ)图象上各点的横坐标____(0<ω<1)或____(ω>1)到原来的________倍(纵坐标不变).(3)振幅变换:y =sin (ωx +φ)→y =A sin(ωx +φ),把y =sin(ωx +φ)图象上各点的纵坐标______(A >1)或______(0<A <1)到原来的____倍(横坐标不变).3.当函数y =A sin(ωx +φ) (A >0,ω>0),x ∈(-∞,+∞)表示一个振动量时,则____叫做振幅,T =________叫做周期,f =______叫做频率,________叫做相位,____叫做初相.函数y =A cos(ωx +φ)的最小正周期为____________.y =A tan(ωx +φ)的最小正周期为________.自我检测1.(2011·池州月考)要得到函数y =sin ⎝⎛⎭⎫2x -π4的图象,可以把函数y =sin2x 的图象( ) A .向左平移π8个单位B .向右平移π8个单位C .向左平移π4个单位D .向右平移π4个单位2.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4 (x ∈R ,ω>0)的最小正周期为π.将y =f (x )的图象向左平移|φ|个单位长度,所得图象关于y 轴对称,则φ的一个值是( )A.π2B.3π8C.π4D.π83.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx的图象,只要将y =f (x )的图象( )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(2011·太原高三调研)函数y =sin ⎝⎛⎭⎫2x -π3的一条对称轴方程是( ) A .x =π6 B .x =π3C .x =π12D .x =5π125.(2011·六安月考)若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为( )A .1 B. 2 C. 3 D .2探究点一 三角函数的图象及变换例1 已知函数y =2sin ⎝⎛⎭⎫2x +π3. (1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y=2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.变式迁移1 设f (x )=12cos 2x +3sin x cos x +32sin 2x (x ∈R ).(1)画出f (x )在⎣⎡⎦⎤-π2,π2上的图象; (2)求函数的单调增减区间;(3)如何由y =sin x 的图象变换得到f (x )的图象?探究点二 求y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.求函数f (x )的解析式.变式迁移2 (2011·宁波模拟)已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的图象与y轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和(x 0+2π,-2).(1)求f (x )的解析式及x 0的值;(2)若锐角θ满足cos θ=13,求f (4θ)的值.探究点三 三角函数模型的简单应用例3 已知海湾内海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ).下表是某日各时刻记录的浪高数据:数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00至晚上20∶00之间,有多少时间可供冲浪者进行运动?变式迁移3 交流电的电压E (单位:伏)与时间t (单位:秒)的关系可用E =2203sin ⎝⎛⎭⎫100πt +π6表示,求: (1)开始时的电压;(2)最大电压值重复出现一次的时间间隔;(3)电压的最大值和第一次取得最大值时的时间.数形结合思想的应用例 (12分)设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α、β. (1)求实数a 的取值范围; (2)求α+β的值. 【答题模板】解 (1)原方程可化为sin(θ+π3)=-a2,作出函数y =sin(x +π3)(x ∈(0,2π))的图象.[3分]由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎨⎧-1<-a 2<1-a 2≠32.即-2<a <-3或-3<a <2.[6分](2)由图知:当-3<a <2,即-a 2∈(-1,32)时,直线y =-a 2与三角函数y =sin(x +π3)的图象交于C 、D 两点,它们中点的横坐标为76π,∴α+β2=7π6,∴α+β=7π3.[8分]当-2<a <-3,即-a 2∈(32,1)时,直线y =-a 2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3.[11分]综上所述,α+β=π3或α+β=73π.[12分]【突破思维障碍】在解决三角函数的有关问题时,若把三角函数的性质融于函数的图象之中,将数(量)与图形结合起来进行分析、研究,可使抽象复杂的数理关系通过几何图形直观地表现出来,这是解决三角函数问题的一种有效的解题策略.图象的应用主要有以下几个方面:①比较大小;②求单调区间;③解不等式;④确定方程根的个数.如判断方程sin x =x 的实根个数;⑤对称问题等.【易错点剖析】此题若不用数形结合法,用三角函数有界性求a 的范围,不仅过程繁琐,而且很容易漏掉a ≠-3的限制,而从图象中可以清楚地看出当a =-3时,方程只有一解.1.从“整体换元”的思想认识、理解、运用“五点法作图”,尤其在求y =A sin(ωx +φ)的单调区间、解析式等相关问题中要充分理解基本函数y =sin x 的作用.2.三角函数自身综合问题:要以课本为主,充分掌握公式之间的内在联系,从函数名称、角度、式子结构等方面观察,寻找联系,结合单位圆或函数图象等分析解决问题.3.三角函数模型应用的解题步骤:(1)根据图象建立解析式或根据解析式作出图象.(2)将实际问题抽象为与三角函数有关的简单函数模型.(3)利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.(满分:75分)一、选择题(每小题5分,共25分)1.将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式是( )A .y =sin 12x B .y =sin ⎝⎛⎭⎫12x -π2 C .y =sin ⎝⎛⎭⎫12x -π6 D .y =sin ⎝⎛⎭⎫2x -π6 2.(2011·银川调研)如图所示的是某函数图象的一部分,则此函数是( )A .y =sin ⎝⎛⎭⎫x +π6B .y =sin ⎝⎛⎭⎫2x -π6C .y =cos ⎝⎛⎭⎫4x -π3D .y =cos ⎝⎛⎭⎫2x -π6 3.为得到函数y =cos ⎝⎛⎭⎫2x +π3的图象,只需将函数y =sin2x 的图象( ) A .向左平移5π12个单位长度B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度4.(2009·辽宁)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0)的图象如图所示,f (π2)=-23,则f (0)等于( )A .-23B .-12C.23D.12 5.(2011·烟台月考)若函数y =A sin(ωx +φ)+m (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是( )A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2C .y =2sin ⎛⎭⎫4x +π+2D .y =2sin ⎛⎭⎫4x +π+2 题号1 2 3 4 5 答案6.已知函数y =sin(ωx +φ) (ω>0,-π≤φ<π)的图象如图所示,则φ=________.7.(2010·潍坊五校联考)函数f (x )=cos2x 的图象向左平移π4个单位长度后得到g (x )的图象,则g (x )=______.8.(2010·福建)已知函数f (x )=3sin ⎝⎛⎭⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎡⎦⎤0,π2,则f (x )的取值范围是____________. 三、解答题(共38分)9.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如下图所示.(1)求函数f (x )的解析式;(2)当x ∈[-6,-23]时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.10.(12分)已知函数f (x )=A sin(ωx +φ) (A >0,0<ω≤2且0≤φ≤π)是R 上的偶函数,其图象过点M (0,2).又f (x )的图象关于点N ⎝⎛⎭⎫3π4,0对称且在区间[0,π]上是减函数,求f (x )的解析式.11.(14分)(2010·山东)已知函数f (x )=sin(π-ωx )·cos ωx +cos 2ωx (ω>0)的最小正周期为π,(1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数y =g (x )在区间⎣⎡⎦⎤0,π16上的最小值.答案自主梳理1.0-φω π2-φω π-φω 3π2-φω 2π-φω 0 π2 π 3π2 2π 2.(1)左 右 |φ| (2)伸长 缩短 1ω (3)伸长 缩短 A 3.A 2πω 1T ωx +φ φ 2π|ω| π|ω|自我检测1.B 2.D 3.A 4.D 5.B 课堂活动区例1 解题导引 (1)作三角函数图象的基本方法就是五点法,此法注意在作出一个周期上的简图后,应向两边伸展一下,以示整个定义域上的图象;(2)变换法作图象的关键是看x 轴上是先平移后伸缩还是先伸缩后平移,对于后者可利用ωx +φ=ω⎝⎛⎭⎫x +φω来确定平移单位. 解 (1)y =2sin ⎝⎛⎭⎫2x +π3的振幅A =2,周期T =2π2=π,初相φ=π3. (2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X . 列表:(3)将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍(纵坐标不变),得到y =sin2x的图象;再将y =sin2x 的图象向左平移π6个单位,得到y =sin2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 变式迁移1 解 y =12·1+cos2x 2+32sin2x +32·1-cos2x2=1+32sin2x -12cos2x =1+sin ⎝⎛⎭⎫2x -π6. (1)(五点法)设X =2x -π6,则x =12X +π12,令X =0,π2,π,3π2,2π,于是五点分别为⎝⎛⎭⎫π12,1,⎝⎛⎭⎫π3,2,⎝⎛⎭⎫7π12,1,⎝⎛⎭⎫5π6,0,⎝⎛⎭⎫13π12,1,描点连线即可得图象,如下图.(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得单调增区间为⎣⎡⎦⎤-π6+k π,k π+π3,k ∈Z . 由π2+2k π≤2x -π6≤3π2+2k π,k ∈Z , 得单调减区间为⎣⎡⎦⎤π3+k π,k π+5π6,k ∈Z . (3)把y =sin x 的图象向右平移π6个单位;再把横坐标缩短到原来的12倍(纵坐标不变);最后把所得图象向上平移1个单位即得y =sin ⎝⎛⎭⎫2x -π6+1的图象. 例2 解题导引 确定y =A sin(ωx +φ)+b 的解析式的步骤:(1)求A ,b .确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2.(2)求ω.确定函数的周期T ,则ω=2πT.(3)求参数φ是本题的关键,由特殊点求φ时,一定要分清特殊点是“五点法”的第几个点.解 由图象可知A =2,T =8.∴ω=2πT =2π8=π4.方法一 由图象过点(1,2),得2sin ⎝⎛⎭⎫π4×1+φ=2, ∴sin ⎝⎛⎭⎫π4+φ=1.∵|φ|<π2,∴φ=π4, ∴f (x )=2sin ⎝⎛⎭⎫π4x +π4.方法二 ∵点(1,2)对应“五点”中的第二个点. ∴π4×1+φ=π2,∴φ=π4, ∴f (x )=2sin ⎝⎛⎭⎫π4x +π4.变式迁移2 解 (1)由题意可得:A =2,T 2=2π,即2πω=4π,∴ω=12,f (x )=2sin ⎝⎛⎭⎫12x +φ,f (0)=2sin φ=1, 由|φ|<π2,∴φ=π6.∴f (x )=2sin(12x +π6).f (x 0)=2sin ⎝⎛⎭⎫12x 0+π6=2, 所以12x 0+π6=2k π+π2,x 0=4k π+2π3(k ∈Z ),又∵x 0是最小的正数,∴x 0=2π3.(2)f (4θ)=2sin ⎝⎛⎭⎫2θ+π6 =3sin 2θ+cos 2θ,∵θ∈⎝⎛⎭⎫0,π2,cos θ=13,∴sin θ=223, ∴cos 2θ=2cos 2θ-1=-79,sin 2θ=2sin θcos θ=429,∴f (4θ)=3×429-79=46-79. 例3 解题导引 (1)三角函数模型在实际中的应用体现在两个方面,一是已知函数模型,如本例,关键是准确理解自变量的意义及自变量与函数之间的对应法则,二是把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.(2)如何从表格中得到A 、ω、b 的值是解题的关键也是易错点,同时第二问中解三角不等式也是易错点.(3)对于三角函数模型y =A sin(ωx +φ)+k (A >0,ω>0)中参数的确定有如下结论:①A =y max -y min 2;②k =y max +y min 2;③ω=2πT;④φ由特殊点确定.解 (1)由表中数据,知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5; 由t =3,y =1.0,得b =1.0,∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放, ∴12cos π6t +1>1,∴cos π6t >0, ∴2k π-π2<π6t <2k π+π2,k ∈Z ,即12k -3<t <12k +3,k ∈Z .①∵0≤t ≤24,故可令①中的k 分别为0,1,2, 得0≤t <3,或9<t <15,或21<t ≤24.∴在规定时间上午8∶00至晚上20∶00之间,有6个小时的时间可供冲浪者运动,即上午9∶00至下午3∶00.变式迁移3 解 (1)t =0时,E =2203sin π6=1103(伏).(2)T =2π100π=0.02(秒).(3)当100πt +π6=π2,t =1300秒时,第一次取得最大值,电压的最大值为2203伏.课后练习区1.C 2.D 3.A 4.C 5.D 6.9π107.-sin2x8.⎣⎡⎦⎤-32,3 9.解 (1)由图象知A =2,∵T =2πω=8,∴ω=π4.……………………………………………………………………(2分)又图象经过点(-1,0),∴2sin(-π4+φ)=0.∵|φ|<π2,∴φ=π4.∴f (x )=2sin(π4x +π4).………………………………………………………………………(5分)(2)y =f (x )+f (x +2)=2sin(π4x +π4)+2sin(π4x +π2+π4)=22sin(π4x +π2)=22cos π4x .……………………………………………………………(8分)∵x ∈[-6,-23],∴-3π2≤π4x ≤-π6.∴当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;当π4x =-π,即x =-4时,y =f (x )+f (x +2)取得最小值-2 2.………………………(12分)10.解 根据f (x )是R 上的偶函数,图象过点M (0,2),可得f (-x )=f (x )且A =2, 则有2sin(-ωx +φ)=2sin(ωx +φ), 即sin ωx cos φ=0,∴cos φ=0,即φ=k π+π2 (k ∈Z ).而0≤φ≤π,∴φ=π2.………………………………………………………………………(4分)再由f (x )=2sin(-ωx +π2)=2cos ωx 的图象关于点N ⎝⎛⎭⎫3π4,0对称,f (3π4)=2cos(3ω4π)=0 ∴cos 3ω4π=0,……………………………………………………………………………(8分)即3ω4π=k π+π2 (k ∈Z ),ω=43⎝⎛⎭⎫k +12 (k ∈Z ). 又0<ω≤2,∴ω=23或ω=2.……………………………………………………………(10分)最后根据f (x )在区间[0,π]上是减函数,可知只有ω=23满足条件.所以f (x )=2cos 23x .………………………………………………………………………(12分)11.解 (1)f (x )=sin(π-ωx )cos ωx +cos 2ωx=sin ωx cos ωx +1+cos2ωx2=12sin 2ωx +12cos 2ωx +12=22sin ⎝⎛⎭⎫2ωx +π4+12.……………………………………………………………………(6分) 由于ω>0,依题意得2π2ω=π,所以ω=1.………………………………………………(8分)(2)由(1)知f (x )=22sin ⎝⎛⎭⎫2x +π4+12, 所以g (x )=f (2x )=22sin ⎝⎛⎭⎫4x +π4+12.……………………………………………………………………(10分) 当0≤x ≤π16时,π4≤4x +π4≤π2.所以22≤sin ⎝⎛⎭⎫4x +π4≤1. 因此1≤g (x )≤1+22,…………………………………………………………………(13分)所以g (x )在此区间内的最小值为1.…………………………………………………(14分)。

2016版《步步高》高考数学大二轮总复习总结与增分策略(文科)配套课件+配套文档:专题六-解析几何-

2016版《步步高》高考数学大二轮总复习总结与增分策略(文科)配套课件+配套文档:专题六-解析几何-

第3讲 圆锥曲线的综合问题1.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 22.(2015·陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1(2014·北京)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.思维升华 解决范围问题的常用方法:(1)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 已知椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32). (1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值.热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.思维升华 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.跟踪演练2 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.热点三探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.2.反证法与验证法也是求解存在性问题常用的方法.例3如图,抛物线C:y2=2px的焦点为F,抛物线上一定点Q(1,2).(1)求抛物线C的方程及准线l的方程;(2)过焦点F的直线(不经过Q点)与抛物线交于A,B两点,与准线l交于点M,记QA,QB,QM的斜率分别为k1,k2,k3,问是否存在常数λ,使得k1+k2=λk3成立,若存在λ,求出λ的值;若不存在,说明理由.思维升华 解决探索性问题的注意事项:存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 (2015·四川)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1. (1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.提醒:完成作业 专题六 第3讲二轮专题强化练专题六第3讲 圆锥曲线的综合问题A 组 专题通关1.(2015·北京西城区期末)若曲线ax 2+by 2=1为焦点在x 轴上的椭圆,则实数a ,b 满足( )A .a 2>b 2B.1a <1b C .0<a <b D .0<b <a2.已知椭圆x 24+y 2b 2=1(0<b <2)的左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32D. 3 3.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||F A |-|FB ||的值为( )A .4 2B .8C .8 2D .164.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能5.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .86.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为_______________________________________________________________.7.已知A (1,2),B (-1,2),动点P 满足AP →⊥BP →.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是________.8.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A 、B ,则直线AB 恒过定点________.9.已知抛物线x 2=2py (p >0),过点M (0,m )的直线l 与抛物线交于A ,B 两点,又过A ,B 两点分别作抛物线的切线,两条切线相交于点P .(1)求证:两条切线的斜率之积为定值;(2)当p =m =4时,求△P AB 面积的最小值.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,过点M (2,0)的直线l 与椭圆C相交于A,B两点,O为坐标原点.(1)求椭圆C的方程;(2)若B点关于x轴的对称点是N,证明:直线AN恒过一定点.B 组 能力提高11.已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.12.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为________. 13.已知P 、Q 、M 、N 四点都在以中心为坐标原点,离心率为22,左焦点为F (-1,0)的椭圆C 上,已知PF →与FQ →共线,MF →与FN →共线,PF →·MF →=0.(1)求椭圆C 的方程;(2)试用直线PQ 的斜率k (k ≠0)表示四边形PMQN 的面积S ,并求S 的最小值.学生用书答案精析第3讲 圆锥曲线的综合问题高考真题体验1.D[如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0.令Δ=122-4×9(r 2-46)=0,解得r 2=50,即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62,故选D.]2.(1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2,所以椭圆的方程为x 22+y 2=1. (2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1, 得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2,从而直线AP ,AQ 的斜率之和 k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2 =2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2. 热点分类突破例1 解 (1)由题意,得椭圆C 的标准方程为x 24+y 22=1, 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0. 又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4 =x 20+4-x 202+2(4-x 20)x 20+4 =x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),且当x 20=4时等号成立, 所以|AB |2≥8.故线段AB 长度的最小值为2 2.跟踪演练1 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b 2=1, 又a 2=b 2+c 2,∴a 2=4,b 2=3,∴椭圆标准方程为x 24+y 23=1. (2)显然直线PQ 不与x 轴重合,当直线PQ 与x 轴垂直时,|PQ |=3,|F 1F 2|=2,1PF Q S =3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程, 整理,得(3+4k 2)y 2+6ky -9k 2=0,Δ>0,y 1+y 2=-6k 3+4k 2,y 1·y 2=-9k 23+4k 2. 1PF Q S =12·|F 1F 2|·|y 1-y 2|=12k 2+k 4(3+4k 2)2,令t =3+4k 2,∴t >3,k 2=t -34, ∴1PF Q S =3-3(1t +13)2+43, ∵0<1t <13, ∴1PF Q S ∈(0,3),∴当直线PQ 与x 轴垂直时1PF Q S 最大,且最大面积为3. 设△PF 1Q 内切圆半径为r ,则1PF Q S =12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3. 即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大, ∴PF 2→=F 2Q →,∴λ=1.例2 解 (1)设椭圆方程为x 2a 2+y 2b 2=1 (a >b >0), 由e =c a =12,得a =2c , ∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c 2=1. 又由题意知(2+c )2+12=10,解得c 2=1,故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1. (2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0. 则⎩⎪⎨⎪⎧ Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k 2.①又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2,∴(x 1-2)(x 2-2)+y 1y 2=0,∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7, 由①,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝⎛⎭⎫x -27,直线过定点⎝⎛⎭⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝⎛⎭⎫27,0.跟踪演练2 (1)解 设椭圆的半焦距为c ,圆心O 到直线l 的距离d =61+1=3,∴b =5-3= 2.由题意得⎩⎪⎨⎪⎧ c a =33,a 2=b 2+c 2,b =2,∴a 2=3,b 2=2. ∴椭圆E 的方程为y 23+x 22=1. (2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k (x -x 0)+y 0,y 23+x 22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0,∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0,整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0, 设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2,则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1. ∴两条切线的斜率之积为常数-1.例3 解 (1)把Q (1,2)代入y 2=2px ,得2p =4,所以抛物线方程为y 2=4x ,准线l 的方程为x =-1.(2)由条件可设直线AB 的方程为y =k (x -1),k ≠0.由抛物线准线l :x =-1,可知M (-1,-2k ).又Q (1,2),所以k 3=2+2k 1+1=k +1, 即k 3=k +1.把直线AB 的方程y =k (x -1),代入抛物线方程y 2=4x ,并整理,可得k 2x 2-2(k 2+2)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,知x 1+x 2=2k 2+4k 2,x 1x 2=1. 又Q (1,2),则k 1=2-y 11-x 1,k 2=2-y 21-x 2. 因为A ,F ,B 共线,所以k AF =k BF =k ,即y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=2-y 11-x 1+2-y 21-x 2=y 1x 1-1+y 2x 2-1-2(x 1+x 2-2)x 1x 2-(x 1+x 2)+1=2k -2(2k 2+4k 2-2)1-2k 2+4k 2+1=2k +2, 即k 1+k 2=2k +2.又k 3=k +1,可得k 1+k 2=2k 3.即存在常数λ=2,使得k 1+k 2=λk 3成立.跟踪演练3 解 (1)由已知,点C 、D 的坐标分别为(0,-b ),(0,b ),又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧ 1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1. (2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧ x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0, 其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1, 从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2. 所以当λ=1时,-λ-12k 2+1-λ-2=-3,此时OA →·OB →+λP A →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD ,此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD →=-2-1=-3.故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3.高考押题精练解 (1)因为C 1,C 2的焦点重合, 所以a 2-3=a 2, 所以a 2=4.又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1, 抛物线C 2的方程为y 2=4x .(2)假设存在直线l 使得|PN ||MQ |=2, 则可设直线l 的方程为y =k (x -1),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0, 则x 1+x 4=2k 2+4k 2,x 1x 4=1, 所以|PN |=1+k 2·(x 1+x 4)2-4x 1x 4=4(1+k 2)k 2. 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2, 所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k 2. 若|PN ||MQ |=2,则4(1+k 2)k 2=2×12(1+k 2)3+4k 2,解得k =±62.故存在斜率为k =±62的直线l ,使得|PN ||MQ |=2.二轮专题强化练答案精析第3讲 圆锥曲线的综合问题1.C [由ax 2+by 2=1,得x 21a +y 21b =1, 因为焦点在x 轴上,所以1a >1b>0, 所以0<a <b .]2.D [由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b = 3.]3.C [依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程⎩⎪⎨⎪⎧y =x -2,y 2=8x消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12,x 1x 2=4,则||AF |-|BF ||=|(x 1+2)-(x 2+2)|=|x 1-x 2| =(x 1+x 2)2-4x 1x 2=144-16=8 2.] 4.A [∵x 1+x 2=-b a ,x 1x 2=-c a. ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=b 2a 2+2c a =b 2+2ac a 2. ∵e =c a =12,∴c =12a , ∴b 2=a 2-c 2=a 2-⎝⎛⎭⎫12a 2=34a 2.∴x 21+x 22=34a 2+2a ×12a a 2=74<2.∴P (x 1,x 2)在圆x 2+y 2=2内.]5.C [设P (x 0,y 0),则x 204+y 203=1,即y 20=3-3x 204, 又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3=14(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →∈[2,6],所以(OP →·FP →)max =6.]6.-2解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则P A 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即P A 1→·PF 2→取最小值,最小值为-2.7.(1,2)解析 设P (x ,y ),由题设条件,得动点P 的轨迹为(x -1)(x +1)+(y -2)·(y -2)=0,即x 2+(y -2)2=1,它是以(0,2)为圆心,1为半径的圆.又双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax ,即bx ±ay =0, 由题意,可得2aa 2+b 2>1,即2ac >1, 所以e =c a<2,又e >1,故1<e <2. 8.(0,2)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得,y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2.又点Q (t ,-2)的坐标满足这两个方程,代入得:-2=12x 1t -y 1,-2=12x 2t -y 2,则说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过定点(0,2).9.(1)证明 依题意,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2=2py ,得x 2-2pkx -2pm =0, 则由根与系数的关系,得x 1+x 2=2pk ,x 1x 2=-2pm .对抛物线y =x 22p 求导,得y ′=x p, 设两条切线的斜率分别为k 1,k 2,则k 1=x 1p ,k 2=x 2p, 所以k 1k 2=x 1p ·x 2p =-2pm p 2=-2m p, 即两条切线的斜率之积为定值-2m p. (2)解 因为p =m =4,所以抛物线方程为x 2=8y ,y ′=x 4,x 1+x 2=8k ,x 1x 2=-32, 则直线P A 的方程为y -x 218=x 14(x -x 1), PB 的方程为y -x 228=x 24(x -x 2). 将两方程联立,得P 点的坐标为(x 1+x 22,x 1x 28),所以P (4k ,-4). 于是|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=81+k 2·k 2+2, 又点P 到直线AB 的距离d =4(k 2+2)1+k2, 所以S △P AB =16k 2+2·(k 2+2).当k 2=0,即k =0时,所求面积最小为32 2. 10.(1)解 由题意知b =1,e =c a =22,得a 2=2c 2=2a 2-2b 2,故a 2=2.故所求椭圆C 的方程为x 22+y 2=1. (2)证明 设直线l 的方程为y =k (x -2),则由⎩⎪⎨⎪⎧ y =k (x -2),x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 21+2k 2, x 1x 2=8k 2-21+2k 2. 由对称性可知N (x 2,-y 2),定点在x 轴上,直线AN :y -y 1=y 1+y 2x 1-x 2(x -x 1). 令y =0得:x =x 1-y 1(x 1-x 2)y 1+y 2=x 1y 2+x 2y 1y 1+y 2=2kx 1x 2-2k (x 1+x 2)k (x 1+x 2-4)=2x 1x 2-2(x 1+x 2)x 1+x 2-4=16k 2-41+2k 2-16k 21+2k 28k 21+2k 2-4=1, 故直线AN 恒过定点(1,0).11.[1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2,x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1. 12.116 解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y得x 2-3x -4=0,∴x A =-1,x D =4,∴y A =14,y D =4. 直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5, ∴|AB ||CD |=|AF |-1|DF |-1=116. 13.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则a 2=b 2+c 2,又依题意,知c =1,c a =22,所以a =2,b =1.所以椭圆C 的方程为x 22+y 2=1. (2)依题意,易知PQ 与MN 垂直于点F .设PQ 的方程为y =k (x +1), 由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,消y , 得(1+2k 2)x 2+4k 2x +2k 2-2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2,所以|PQ |=(1+k 2)(x 1-x 2)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2]=22(1+k 2)1+2k 2. 同理,可得|MN |=22(1+1k 2)1+2k 2=22(1+k 2)2+k 2, 所以四边形PMQN 的面积为S =12|PQ |·|MN |=4(1+k 2)2(1+2k 2)(k 2+2)=2-2k 22k 4+5k 2+2=2-22k 2+2k2+5≥169. 当且仅当k 2=1时,取等号.所以四边形PMQN 的面积S 的最小值为169.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案58 变量间的相关关系导学目标:1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.自主梳理1.两个变量的线性相关 (1)正相关 在散点图中,点散布在从__________到________的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关 在散点图中,点散布在从________到________的区域,两个变量的这种相关关系称为负相关.(3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程 (1)最小二乘法求回归直线使得样本数据的点到它的________________________的方法叫做最小二乘法.(2)回归方程方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ^,b ^是待定参数.自我检测1.下列有关线性回归的说法,不正确的是( ) A .相关关系的两个变量不一定是因果关系 B .散点图能直观地反映数据的相关程度C .回归直线最能代表线性相关的两个变量之间的关系D .任一组数据都有回归直线方程 2.(2009·海南,宁夏)对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图(1);对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图(2).由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 3.(2011·银川模拟)下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其回归直线方程是y ^=-0.7x +a ^,则a ^等于( )A .10.5B .5.15C .5.2D .5.25 4.(2010·广东)某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:, 家庭年平均收入与年平均支出有______线性相关关系. 5.(2011·金陵中学模拟)已知三点(3,10),(7,20),(11,24)的横坐标x 与纵坐标y 具有线性关系,则其回归方程是________________.探究点一 利用散点图判断两个变量的相关性例1 有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出热饮杯数与当天气温的对比表:(1)(2)你能从散点图中发现气温与热饮销售杯数之间关系的一般规律吗?变式迁移1 某班5个学生的数学和物理成绩如表:探究点二 求回归直线方程例2 假设关于某设备的使用年限x 和所支出的维修费用y(万元)有以下统计资料:若由资料知y 对x 呈线性相关关系.试求回归方程y =b x +a .变式迁移2 已知变量x 与变量y 有下列对应数据:且y 对x探究点三 利用回归方程对总体进行估计例3 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归方程y ^=b ^x +a ^; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)变式迁移3 (2011·盐城期末)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得回归方程y =b x +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.点大致分布在某一条直线的附近,就可以认为y 对x 的回归函数的类型为直线型:其中1b ;(3)写出回归直线方程y =b x +a .(满分:75分)一、选择题(每小题5分,共25分) 1.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线y ^=b ^x +a ^及回归系数b ^,可以估计和预测变量的取值和变化趋势. 其中正确的命题是( ) A .①② B .①③ C .②③ D .①②③2.设有一个回归直线方程为y ^=2-1.5x ,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位 D .y 平均减少2个单位3.(2011·陕西)设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .x 和y 的相关系数为直线l 的斜率B .x 和y 的相关系数在0到1之间C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同D .直线l 过点(x ,y )4.(2011·山东)某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得线性回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元 5.(2011·青岛模拟)为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1、l 2,已知两人所得的试验数据中,变量x 和y 的数据的平均值都相等,且分别是s 、t ,那么下列说法中正确的是( )A .直线l 1和l 2一定有公共点(s ,t)B .直线l 1和l 2相交,但交点不一定是(s ,t)C .必有l 1∥l 2D .l 1与l 2必定重合二、填空题(每小题4分,共12分)6.下列关系中,是相关关系的为________.(填序号) ①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系; ④家庭的经济条件与学生的学习成绩之间的关系.7.已知回归直线的斜率的估计值是0.73,样本点的中心为(12.5,8.25),则回归直线的回归方程是______________.8.(2011·茂名月考)在研究硝酸钠的可溶性程度时,观测它在不同温度的水中的溶解度,得观测结果如下表:三、解答题(共38分) 9.(12分)(2011·威海模拟)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:(1)(2)求出y 关于x 的回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间?(注:b ^=∑n i =1x i y i -n x y∑ni =1x 2i -n x2,a ^=y -b ^x )10.(12分)(2010·许昌模拟)某种产品的宣传费支出x 与销售额y(单位:万元)之间有如下对应数据:(1)画出散点图; (2)求回归直线方程;(3)试预测宣传费支出为10万元时,销售额多大?11.(14分)(1)(2)指出产量每增加1000件时,单位成本平均变动多少? (3)假定产量为6000件时,单位成本为多少元?学案58 变量间的相关关系自主梳理1.(1)左下角 右上角 (2)左上角 右下角 2.(1)距离的平方和最小(2)∑ni =1(x i -x )(y i -y )∑n i =1(x i -x )2 ∑ni =1x i y i -n x y∑ni =1x 2i -n x 2y -b ^x自我检测1.D 2.C 3.D4.13 正 5.y ^=74x +234课堂活动区例1 解题导引 判断变量间是否线性相关,一种常用的简便可行的方法就是作散点图.散点图是由大量数据点分布构成的,是定义在具有相关关系的两个变量基础之上的,对于性质不明确的两组数据可先作散点图,直观地分析它们有无关系及关系的密切程度.解 (1)以x 轴表示温度,以y 轴表示热饮杯数,可作散点图,如图所示.(2)从图中可以看出,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间是负相关关系,即气温越高,卖出去的热饮杯数越少.从散点图可以看出,这些点大致分布在一条直线附近.变式迁移1 解 以x 轴表示数学成绩,y 轴表示物理成绩,可得相应的散点图如下图所示:由散点图可见,两者之间具有相关关系.例2 解题导引 根据题目给出的数据,利用公式求回归系数,然后获得回归方程. 解 制表如下:i 1 2 3 4 5 合计 x i 2 3 4 5 6 20 y i 2.2 3.8 5.5 6.5 7.0 25 x i y i 4.4 11.4 22.0 32.5 42.0 112.3 x 2i4 9 16 25 36 90 x =4;y =5;∑5i =1x2i =90;∑5i =1x i y i =112.3 于是有b ^=112.3-5×4×590-5×42=12.310=1.23;a ^=y -b ^x =5-1.23×4=0.08. ∴回归直线方程为y ^=1.23x +0.08. 变式迁移2 解 x =1+2+3+44=52,y =12+32+2+34=74,∑ni =1x 2i =12+22+32+42=30, ∑ni =1x i y i=1×12+2×32+3×2+4×3=432, ∴b ^=∑n i =1x i y i -n x y ∑n i =1x 2i -n x 2=432-4×52×7430-4×254=0.8,a ^=y -b ^x =74-0.8×52=-0.25,∴y ^=0.8x -0.25.例3 解题导引 利用描点法得到散点图,按求回归方程的步骤和公式,写出回归方程,最后对总体进行估计.利用回归方程可以进行预测,回归方程将部分观测值所反映的规律进行延伸,是我们对有线性相关关系的两个变量进行分析和控制,依据自变量的取值估计和预报因变量值的基础和依据,有广泛的应用.解 (1)散点图:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5, ∑4i =1x i y i =3×2.5+4×3+5×4+6×4.5=66.5.∑4i =1x 2i =32+42+52+62=86, ∴b ^=∑4i =1x i y i -4x y∑4i =1x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35. ∴所求的回归方程为y ^=0.7x +0.35. (3)现在生产100吨甲产品用煤y ^=0.7×100+0.35=70.35,∴降低90-70.35=19.65(吨标准煤). 变式迁移3 68解析 x =10,y =40,回归方程过点(x ,y ),∴40=-2×10+a ^.∴a ^=60. ∴y ^=-2x +60.令x =-4,y ^=(-2)×(-4)+60=68. 课后练习区1.D [根据线性回归的含义、方法、作用分析这三个命题都是正确的.]2.C [设(x 1,y 1),(x 2,y 2)在直线上,若x 2=x 1+1,则y 2-y 1=(2-1.5x 2)-(2-1.5x 1)=1.5(x 1-x 2)=-1.5,y 平均减少1.5个单位.]3.D [因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以A 、B 错误.C 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以C 错误.根据线性回归方程一定经过样本中心点可知D 正确.所以选D .]4.B [∵x =4+2+3+54=72,y =49+26+39+544=42,又y ^=b ^x +a ^必过(x ,y ),∴42=72×9.4+a ^,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元).]5.A [回归直线方程为y ^=b ^x +a ^.而a ^=y -b ^x ,即a ^=t -b ^s ,t =b ^s +a ^.∴(s ,t)在回归直线上. ∴直线l 1和l 2一定有公共点(s ,t).] 6.①②解析 ①中学生的学习态度与学习成绩之间不是因果关系,但具有相关性,是相关关系.②教师的执教水平与学生的学习成绩之间的关系是相关关系.③④都不具备相关关系.7.y ^=0.73x -0.875解析 a ^=y -b ^x =8.25-0.73×12.5=-0.875. 8.0.8809解析 x =30,y =93.6,∑5i =1x 2i =7900,∑5i =1x i y i =17035, ∴回归直线的斜率为b ^=∑5i =1x i y i -5x y∑5i =1x 2i -5x 2=17035-5×30×93.67900-4500≈0.8809.9.解(1)散点图如图所示.(4分)(2)由表中数据得∑4i =1x i y i =52.5, x =3.5,y =3.5,∑4i =1x 2i =54, ∴b ^=0.7.∴a ^=y -b ^x =1.05.∴y ^=0.7x +1.05.回归直线如图中所示.(10分) (3)将x =10代入回归直线方程, 得y =0.7×10+1.05=8.05(小时),∴预测加工10个零件需要8.05小时.(12分)10.解 (1)根据表中所列数据可得散点图如图所示:(4分)(2)计算得:x =255=5,y =2505=50, ∑5i =1x 2i =145,∑5i =1x i y i =1380. 于是可得b ^=∑5i =1x i y i -5x y∑5i =1x 2i -5x 2=1380-5×5×50145-5×52=6.5,a ^=y -b ^x =50-6.5×5=17.5,因此,所求回归直线方程是y ^=6.5x +17.5.(10分)(3)由上面求得的回归直线方程可知,当宣传费支出为10万元时,y ^=6.5×10+17.5=82.5(万元),即这种产品的销售大约为82.5万元.(12分)11.解 (1)n =6,∑6i =1x i =21,∑6i =1y i =426,x =3.5,y =71, ∑6i =1x 2i =79,∑6i =1x i y i =1481, b ^=∑6i =1x i y i -6x y∑6i =1x 2i -6x 2=1481-6×3.5×7179-6×3.52≈-1.82.(3分)a ^=y -b ^x =71+1.82×3.5=77.37.(5分)∴回归方程为y ^=a ^+b ^x =77.37-1.82x.(6分)(2)因为单位成本平均变动b ^=-1.82<0,且产量x 的计量单位是千件,所以根据回归系数b 的意义有:产量每增加一个单位即1000件时,单位成本平均减少1.82元.(10分) (3)当产量为6000件时,即x =6,代入回归方程:y ^=77.37-1.82×6=66.45(元).∴当产量为6000件时,单位成本为66.45元. (14分)。

相关文档
最新文档