激光位移传感器的工作原理复习进程
多线式激光位移传感器原理

多线式激光位移传感器原理多线式激光位移传感器是一种常见的非接触式测量传感器,广泛应用于工业自动化领域。
它通过激光束发射和接收的原理,实现对目标物体距离的精确测量。
本文将从原理、结构和应用三个方面介绍多线式激光位移传感器。
一、原理多线式激光位移传感器主要依靠激光测距原理进行测量。
其工作原理如下:传感器内部激光发射器会发射一束激光束,该激光束经过透镜聚焦后照射到被测物体上。
被测物体表面的一部分激光被反射回传感器,通过接收器接收到反射回来的光信号。
传感器会根据激光光束的发射和接收时间差来计算出被测物体与传感器之间的距离。
二、结构多线式激光位移传感器通常由激光发射器、接收器、透镜和信号处理电路等组成。
激光发射器负责产生激光光束,接收器用于接收反射回来的光信号。
透镜的作用是将激光束聚焦到被测物体上,以提高探测的精度。
信号处理电路则负责处理接收到的光信号,计算出被测物体与传感器的距离。
三、应用多线式激光位移传感器具有高精度、快速响应和非接触式测量等特点,广泛应用于工业自动化领域。
以下是几个常见的应用场景:1. 机械加工:多线式激光位移传感器可以用于测量机械加工过程中工件的位置和尺寸,以实现对加工质量的控制和监测。
2. 焊接和切割:在焊接和切割过程中,多线式激光位移传感器可以用于测量焊缝或切割线的位置和尺寸,以确保焊接或切割的准确性和一致性。
3. 机器人导航:多线式激光位移传感器可以用于机器人导航和定位,帮助机器人识别环境中的障碍物,并规划最优路径。
4. 线速度测量:多线式激光位移传感器可以用于测量物体的线速度,例如在生产线上测量传送带上物体的运动速度。
5. 液位测量:多线式激光位移传感器可以用于测量液体或粉体的液位,例如在储罐或仓库中实时监测物料的容量。
总结:多线式激光位移传感器通过激光测距原理实现对目标物体距离的精确测量。
它具有高精度、快速响应和非接触式测量等特点,广泛应用于工业自动化领域。
在机械加工、焊接和切割、机器人导航、线速度测量以及液位测量等方面发挥着重要的作用。
激光传感器的工作原理

激光传感器的工作原理激光传感器是一种基于激光技术的高精度、高灵敏度的测量设备,广泛应用于工业、环保、医疗、能源等领域。
本文将介绍激光传感器的工作原理及其应用。
一、激光传感器的基本组成激光传感器由三部分组成:发光器、接收器和信号处理器。
其中发光器负责发射激光信号,接收器负责接受反射回来的信号,信号处理器负责处理接收到的信号并输出测量结果。
二、激光传感器的工作原理激光传感器主要利用激光在介质中的传播和反射特性来进行测量。
具体工作原理如下:1.光的传播激光发射器向待测物体发射激光束,激光束在空气中传播时几乎不会发生散射和吸收,因此激光束的能量保持不变,能够远距离传播。
2.光的反射当激光束照射到待测物体表面时,一部分能量会被物体吸收或散射,但大部分能量会被物体表面反射回来。
这些反射光线会被接收器接收到,进而通过信号处理器进行分析。
3.测量距离通过测量激光束从发射器到物体表面的时间差,可以计算出距离。
激光束发射后,经过一段时间后,接收器会接收到反射回来的信号。
利用光速恒定的特性和时间差可以求出物体表面距离。
三、激光传感器的优点和应用激光传感器具有高精度、高灵敏度、广测量范围、快速反应等优点。
它可以被广泛应用于下列领域中:1.工业制造:激光传感器可以被用于精度高、速度快的零件检测、定位和测量。
可以用于测量机床加工时工件的距离和位置,以保证加工精度。
2.环境监测:激光传感器可以快速准确地测量大气、水资源、土壤等环境参数,例如通过测量水位来监测洪水。
3.医疗应用:激光传感器可以被应用于眼科手术、血糖测量和激光治疗等方面,广泛用于临床医学。
4.能源领域:激光传感器可以被用于监测油井的油气流量、井口压力,以及发电站锅炉的水位、流量和压力等。
激光传感器具备高精度、稳定可靠、快速响应等优点,应用范围广泛,是现代传感技术的重要研究方向之一。
四、激光传感器的分类激光传感器可以按照测量方式、应用行业和工作原理等不同标准分类。
激光位移传感器三角法位移测量原理的流程讲解

文章标题:深度探讨激光位移传感器三角法位移测量原理激光位移传感器是一种常用的高精度位移测量设备,其原理基于三角法。
在工业生产和科学研究中,激光位移传感器被广泛应用于各种需要精密测量的领域,如机械加工、材料测试、建筑工程等。
本文将从深度和广度的角度对激光位移传感器三角法位移测量原理进行全面探讨,旨在帮助读者全面理解和掌握这一重要原理。
一、激光位移传感器的工作原理激光位移传感器是通过激光束测量目标物体表面到传感器本体的距离,从而实现对目标物体位移的测量。
激光位移传感器内部包含激光器、接收器和信号处理器等关键部件,其工作原理基于激光的反射和回波时间的测量。
激光位移传感器能够实现高精度的位移测量,其原理基于三角法。
二、激光位移传感器三角法位移测量原理的流程讲解2.1 发射激光束当激光位移传感器开始工作时,激光器内的激光束被发射出去,同时记录下发射的时间t1。
2.2 激光束照射目标物体激光束照射到目标物体表面后,被反射回激光位移传感器,同时记录下接收的时间t2。
2.3 计算激光束的传播时间利用激光发射和接收的时间差Δt=t2-t1,结合光速c,可以计算出激光束的传播时间。
根据传播时间和光速的关系,可以得到激光束从传感器到目标物体表面再返回传感器的距离。
2.4 计算目标物体的位移通过测量激光束的传播时间和目标物体的距离,可以计算出目标物体的位移。
激光位移传感器利用三角法原理,通过测量激光束的传播时间和目标物体的距离,实现对目标物体位移的精确测量。
三、总结回顾激光位移传感器的三角法位移测量原理是基于激光的反射和回波时间的测量,通过测量激光束的传播时间和目标物体的距离,实现对目标物体位移的精确测量。
这一原理在工业生产和科学研究中具有重要的应用价值,对于提高生产效率和实现精密测量起着至关重要的作用。
对激光位移传感器三角法位移测量原理进行深入的了解和掌握,对于工程技术人员和科研人员来说是至关重要的。
个人观点与理解经过对激光位移传感器三角法位移测量原理的深入研究和思考,我认为这一原理的实现过程虽然复杂,但其基本原理是相对简单的。
位移传感器的工作原理

位移传感器的工作原理
电阻式位移传感器是最早被广泛应用的一种位移传感器。
它们是由一
根金属线绕在一根细长的电绝缘丝上构成的。
金属线上的电阻与位置成正比。
当物体移动时,导线的长度将发生变化,从而改变电阻的值。
通过测
量电阻的变化,可以确定物体的位移。
电容式位移传感器是基于电容变化的原理工作的。
它们由一个固定电
容板和一个浮动电容板组成。
固定电容板与物体相连,浮动电容板与感兴
趣的物体相连。
当物体移动时,浮动电容板的位置将发生变化,从而改变
了电容值。
通过测量电容的变化,可以得知物体的位移。
激光位移传感器是利用激光束的干涉原理来测量物体位移的。
这种位
移传感器包括一个激光源和一个接收器。
激光束在物体上形成一个光栅,
当物体移动时,光栅的形状将发生变化,导致激光束在接收器上形成干涉
图案。
通过分析干涉图案的变化,可以得到物体的位移信息。
光栅位移传感器是一种使用光栅来测量物体位移的传感器。
光栅位移
传感器由一个光源和一个接收器组成。
光栅具有平行的光栅线。
当物体移
动时,光栅线将被遮挡或透过,从而改变光的强度。
通过测量光强的变化,可以确定物体的位移。
总的来说,位移传感器的工作原理是通过测量其中一种物理量的变化
来确定物体的位移。
每种位移传感器都有各自的利弊和适用范围。
选取合
适的位移传感器取决于具体的应用需求和测量精度要求。
激光位移传感器三角法位移测量原理的流程讲解

激光位移传感器三角法位移测量原理的流程讲解激光位移传感器三角法位移测量原理的流程讲解一、引言激光位移传感器是一种常用的测量设备,广泛应用于自动化控制、机械制造、光学仪器等领域。
它通过利用激光束的干涉原理,实现对物体位移的精确测量。
本文将从深度和广度的角度,详细讲解激光位移传感器使用的三角法位移测量原理的流程,并分享笔者的个人观点和理解。
二、激光位移传感器三角法位移测量原理的介绍三角法位移测量原理是基于几何三角学的原理,通过测量激光束入射角度和反射角度的变化,进而计算出物体的位移。
该原理的基本思想是,根据光线的入射角度和反射角度之间的关系,利用三角函数计算出位移的大小。
下面是激光位移传感器三角法位移测量的流程讲解:1. 激光束发射:激光位移传感器首先通过一个激光发射器发射一束平行的单色激光束。
2. 光束照射:激光束照射到待测物体表面,产生可见光的反射。
3. 反射光线接收:激光位移传感器中的接收器接收到反射光线,其中包括入射角度和反射角度的信息。
4. 角度测量:接收到的反射光线经过光电元件转化为电信号,进而通过电子元件测量入射角度和反射角度。
5. 位移计算:根据几何三角学的原理,利用三角函数计算出位移的大小。
一般情况下,我们可以通过测量入射角度和反射角度的差值,结合被测物体与传感器之间的距离关系,计算出位移的数值。
三、激光位移传感器三角法位移测量原理的优点和应用激光位移传感器的三角法位移测量原理具有多种优点和广泛的应用。
该原理具有高精度和快速响应的特点,能够实时准确地测量物体的位移。
该原理适用于不同材料和表面状态的物体,具有广泛的适用性。
激光位移传感器可以实现非接触测量,不会对被测物体造成损伤。
激光位移传感器广泛应用于各个领域,如自动化控制中的位置测量、机械制造中的位移检测等。
四、个人观点和理解从个人角度来看,激光位移传感器三角法位移测量原理是一种非常有价值的测量方法。
它通过光学原理和数学三角函数的运算,实现了高精度和快速响应的位移测量。
位移传感器的工作原理

位移传感器的工作原理概述:位移传感器是一种用于测量物体位移的装置,广泛应用于工业自动化、机械制造、航空航天等领域。
它能够将物体的位移转化为电信号输出,以实现对位移的准确测量和控制。
本文将详细介绍位移传感器的工作原理及其应用。
一、工作原理:位移传感器的工作原理基于物理量的变化与电信号的转换。
常见的位移传感器有电阻式、电容式、电感式、光电式等多种类型,下面以电阻式位移传感器为例来介绍其工作原理。
1. 电阻式位移传感器:电阻式位移传感器是利用电阻值随着物体位移的变化而发生变化的原理来测量位移的。
它通常由电阻元件和测量电路组成。
(1)电阻元件:电阻元件是位移传感器的核心部分,它通常采用导电材料制成,如碳膜电阻、金属薄膜电阻等。
电阻元件的形状可以是线性的,也可以是非线性的,根据不同的应用需求选择不同的电阻元件。
(2)测量电路:测量电路用于测量电阻元件的电阻值,并将其转化为电信号输出。
常见的测量电路有电压分压法、电流源法等。
其中,电压分压法是最常用的方法,它通过在电阻元件两端加上一个恒定电流,测量电阻元件两端的电压来计算电阻值。
2. 工作过程:电阻式位移传感器的工作过程如下:(1)传感器安装:将位移传感器固定在需要测量位移的物体上,使其能够随着物体的位移而发生相应的变化。
(2)位移测量:当物体发生位移时,位移传感器内部的电阻元件也会随之发生变化。
通过测量电路,可以将电阻元件的变化转化为电信号输出。
(3)信号处理:位移传感器输出的电信号通常需要进行进一步的处理,以满足实际应用的需求。
常见的信号处理方法有放大、滤波、线性化等。
(4)数据显示与控制:经过信号处理后,位移传感器的输出结果可以通过显示装置进行实时显示,也可以通过控制装置进行自动控制。
二、应用领域:位移传感器广泛应用于各个领域,以下列举几个常见的应用领域:1. 工业自动化:位移传感器在工业自动化领域中用于测量机器人的位置、运动轨迹等信息,以实现精准控制和操作。
激光位移传感器原理

激光位移传感器原理激光位移传感器是一种利用激光技术来测量目标物体位置的传感器。
它通过测量激光束和目标物体之间的距离来实现精准的位移测量,具有高精度、快速响应、非接触测量等优点,被广泛应用于工业自动化、机器人技术、精密加工等领域。
本文将介绍激光位移传感器的原理及其工作过程。
激光位移传感器的原理是基于激光测距技术,利用激光束与目标物体之间的反射光信号来测量目标物体的位移。
其工作原理主要包括激光发射、光束聚焦、反射光接收和信号处理等步骤。
首先,激光位移传感器通过激光发射器发射一束激光,激光束经过透镜的聚焦作用后,形成一个非常细小的光斑,然后照射到目标物体上。
当激光束照射到目标物体表面时,会产生反射光,反射光经过透镜再次聚焦后,进入光电探测器进行接收。
光电探测器接收到反射光信号后,将其转换成电信号,并经过信号处理电路进行放大、滤波和数字化处理,最终得到目标物体与传感器之间的距离信息。
激光位移传感器通过测量激光束与目标物体之间的距离,可以实现对目标物体位置的高精度测量。
激光位移传感器的工作过程非常简单,但却能够实现高精度的位移测量。
其原理是基于激光的直线传播特性和反射光的接收特性,利用光电探测器将反射光信号转换成电信号,并进行信号处理得到目标物体的位移信息。
由于激光束具有高能量密度和方向性好的特点,因此激光位移传感器具有快速响应、高精度、非接触测量等优点,适用于对目标物体位置要求较高的场合。
总之,激光位移传感器是一种利用激光技术实现位移测量的高精度传感器,其原理是基于激光的直线传播和反射光的接收特性,通过测量激光束与目标物体之间的距离来实现位移测量。
激光位移传感器具有快速响应、高精度、非接触测量等优点,被广泛应用于工业自动化、机器人技术、精密加工等领域。
希望本文能够帮助读者更好地理解激光位移传感器的原理及其工作过程。
位移传感器的工作原理

位移传感器的工作原理位移传感器是一种用于测量物体位移或者位置的设备,广泛应用于工业自动化、机械创造、航空航天等领域。
它能够将物体的位移转化为电信号输出,提供准确的位移测量数据,为工程师和研究人员提供重要的参考信息。
一、工作原理位移传感器的工作原理基于不同的技术原理,常见的包括电阻式、电容式、电感式、光电式和霍尔效应式等。
以下将分别介绍这些工作原理。
1. 电阻式位移传感器电阻式位移传感器利用电阻值的变化来测量位移。
它通常由一个电阻元件和一个滑动触点组成。
当物体发生位移时,滑动触点会相应地改变与电阻元件之间的接触面积,从而改变电阻值。
通过测量电阻值的变化,可以确定物体的位移。
2. 电容式位移传感器电容式位移传感器利用电容值的变化来测量位移。
它由两个电极之间的电介质组成,当物体发生位移时,电介质的相对位置会发生改变,从而改变电容值。
通过测量电容值的变化,可以确定物体的位移。
3. 电感式位移传感器电感式位移传感器利用电感值的变化来测量位移。
它由一个线圈和一个磁铁组成,当物体发生位移时,磁铁的位置相对于线圈会发生改变,从而改变电感值。
通过测量电感值的变化,可以确定物体的位移。
4. 光电式位移传感器光电式位移传感器利用光的传输和接收来测量位移。
它由一个光源和一个光敏元件组成,当物体发生位移时,光线的传输路径会发生改变,从而改变光敏元件接收到的光强度。
通过测量光强度的变化,可以确定物体的位移。
5. 霍尔效应式位移传感器霍尔效应式位移传感器利用霍尔元件的特性来测量位移。
霍尔元件是一种基于霍尔效应的半导体器件,当物体发生位移时,磁场的强度和方向会发生改变,从而改变霍尔元件的输出电压。
通过测量输出电压的变化,可以确定物体的位移。
二、应用领域位移传感器广泛应用于各个领域,以下列举几个常见的应用领域。
1. 工业自动化在工业自动化领域,位移传感器被用于监测机器人的位置和姿态,实现精确的定位和运动控制。
它还可以用于测量生产线上的物体位置,确保生产过程的准确性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光位移传感器的工作原理ZLDS10X可定制激光位移传感器量程: 2~1000mm(可定制)精度: 最高0.1%(玻璃0.2%)分辨率: 最高0.03%频率响应: 2K.5K.8K.10K基本原理是光学三角法:半导体激光器1被镜片2聚焦到被测物体6。
反射光被镜片3收集,投射到CCD 阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。
激光传感器原理与应用激光传感器是利用激光技术进行测量的传感器。
它由激光器、激光检测器和测量电路组成。
激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。
激光和激光器——激光是20世纪60年代出现的最重大的科学技术成就之一。
它发展迅速,已广泛应用于国防、生产、医学和非电测量等各方面。
激光与普通光不同,需要用激光器产生。
激光器的工作物质,在正常状态下,多数原子处于稳定的低能级E1,在适当频率的外界光线的作用下,处于低能级的原子吸收光子能量受激发而跃迁到高能级E2。
光子能量E=E2-E1=hv,式中h为普朗克常数,v为光子频率。
反之,在频率为v的光的诱发下,处于能级 E2的原子会跃迁到低能级释放能量而发光,称为受激辐射。
激光器首先使工作物质的原子反常地多数处于高能级(即粒子数反转分布),就能使受激辐射过程占优势,从而使频率为v的诱发光得到增强,并可通过平行的反射镜形成雪崩式的放大作用而产生强大的受激辐射光,简称激光。
激光具有3个重要特性:(1)高方向性(即高定向性,光速发散角小),激光束在几公里外的扩展范围不过几厘米;(2)高单色性,激光的频率宽度比普通光小10倍以上;(3)高亮度,利用激光束会聚最高可产生达几百万度的温度。
激光器按工作物质可分为4种:(1)固体激光器:它的工作物质是固体。
常用的有红宝石激光器、掺钕的钇铝石榴石激光器 (即YAG激光器)和钕玻璃激光器等。
它们的结构大致相同,特点是小而坚固、功率高,钕玻璃激光器是目前脉冲输出功率最高的器件,已达到数十兆瓦。
(2)气体激光器:它的工作物质为气体。
现已有各种气体原子、离子、金属蒸气、气体分子激光器。
常用的有二氧化碳激光器、氦氖激光器和一氧化碳激光器,其形状如普通放电管,特点是输出稳定,单色性好,寿命长,但功率较小,转换效率较低。
(3)液体激光器:它又可分为螯合物激光器、无机液体激光器和有机染料激光器,其中最重要的是有机染料激光器,它的最大特点是波长连续可调。
(4)半导体激光器:它是较年轻的一种激光器,其中较成熟的是砷化镓激光器。
特点是效率高、体积小、重量轻、结构简单,适宜于在飞机、军舰、坦克上以及步兵随身携带。
可制成测距仪和瞄准器。
但输出功率较小、定向性较差、受环境温度影响较大。
应用——利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。
激光传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。
激光测长——精密测量长度是精密机械制造工业和光学加工工业的关键技术之一。
现代长度计量多是利用光波的干涉现象来进行的,其精度主要取决于光的单色性的好坏。
激光是最理想的光源,它比以往最好的单色光源(氪-86灯)还纯10万倍。
因此激光测长的量程大、精度高。
由光学原理可知单色光的最大可测长度L与波长λ和谱线宽度δ之间的关系是L=λ2/δ。
用氪-86灯可测最大长度为38.5厘米,对于较长物体就需分段测量而使精度降低。
若用氦氖气体激光器,则最大可测几十公里。
一般测量数米之内的长度,其精度可达0.1微米。
激光测距——它的原理与无线电雷达相同,将激光对准目标发射出去后,测量它的往返时间,再乘以光速即得到往返距离。
由于激光具有高方向性、高单色性和高功率等优点,这些对于测远距离、判定目标方位、提高接收系统的信噪比、保证测量精度等都是很关键的,因此激光测距仪日益受到重视。
在激光测距仪基础上发展起来的激光雷达不仅能测距,而且还可以测目标方位、运运速度和加速度等,已成功地用于人造卫星的测距和跟踪,例如采用红宝石激光器的激光雷达,测距范围为500~2000公里,误差仅几米。
目前常采用红宝石激光器、钕玻璃激光器、二氧化碳激光器以及砷化镓激光器作为激光测距仪的光源。
激光测厚——利用三角测距原理,上位于C型架的上、下方分割有一个精密激光测距传感器,由激光器发射出的调制激光打到被测物的表面,通过对线阵 CCD的信号进行采样处理,线阵CCD摄像机在控制电路的控制下同步得到被测物到C型架之间的距离,通过传感器反馈的数据来计算中间被测物的厚度。
由于检测是连续进行的,因此就可以得到被测物的连续动态厚度值。
影响激光测厚精度的安装因素:和其它传感器测厚一样,要实现精密测厚需要注意以下条件,否则再好的传感器也测不准。
精密测厚,选精密激光位移传感器很重要,但如果两个传感器不能同步工作,安装不同轴,则根本测不准:(1)单激光位移传感器测厚被测体放在测量平台上,测量出传感器到平台表面距离,然后再测出传感器到被测体表面间距,经计算后测出厚度。
要求被测体与测量平台之间无气隙,被测体无翘起。
这些严格要求只有在离线情况能实现。
(2)双激光位移传感器测厚在被测体上方和下方各安装一个激光位移传感器,被测体厚度D=C-(A+B)。
其中,C是两个传感器之间距离,A是上面传感器到被测体之间距离,B是下面传感器到被测体之间距离。
在线厚度测量用这种方法优点是可消除被测体振动对测量结果的影响。
但同时对传感器安装和性能有要求。
保证测量准确性的条件是:两个传感器发射光束必须同轴,以及两个传感器扫描必须同步。
同轴是靠安装实现,而同步要靠选择有同步端激光传感器。
不同步将代来很大误差:如果被测体存在振动频率20HZ,振幅1mm,如果信号不同步延迟1ms,那么就会带来125µm误差。
安装使两个激光同轴,不但确保被测体同一位置上的厚度,同时降低了被测体倾斜带来的误差。
以被测体运动方向不同轴为例,当不同轴1mm,被测体倾斜2°可带来35µm误差。
激光三角漫反射位移传感器用于测厚有明显优点:(1)非常小的测量光斑,是点光斑面积,它比面积型非接触电容、电涡流传感器需要的面积小很多,对被测体面积几乎无要求,适合测量非常小面积尺寸厚度;(2)较远的测量范围起始间距。
它比非接触电容、电涡流传感器起始间距大很多。
这样传感器可以远离被测体,免受碰坏,及被测体热辐射影响;(3)有很大的测量范围,这是其它传感器很难做到的;(4)与被测体材料无关,即金属非金属体,非透明有漫反射条件表面都能测。
(5)用激光测厚取代同位素测厚,可以消除对用户的放射性损害。
激光测振——它基于多普勒原理测量物体的振动速度。
多普勒原理是指:若波源或接收波的观察者相对于传播波的媒质而运动,那么观察者所测到的频率不仅取决于波源发出的振动频率而且还取决于波源或观察者的运动速度的大小和方向。
所测频率与波源的频率之差称为多普勒频移。
在振动方向与方向一致时多普频移fd=v/λ,式中v 为振动速度、λ为波长。
在激光多普勒振动速度测量仪中,由于光往返的原因,fd =2v/λ。
这种测振仪在测量时由光学部分将物体的振动转换为相应的多普勒频移,并由光检测器将此频移转换为电信号,再由电路部分作适当处理后送往多普勒信号处理器将多普勒频移信号变换为与振动速度相对应的电信号,最后记录于磁带。
这种测振仪采用波长为6328埃(┱)的氦氖激光器,用声光调制器进行光频调制,用石英晶体振荡器加功率放大电路作为声光调制器的驱动源,用光电倍增管进行光电检测,用频率跟踪器来处理多普勒信号。
它的优点是使用方便,不需要固定参考系,不影响物体本身的振动,测量频率范围宽、精度高、动态范围大。
缺点是测量过程受其他杂散光的影响较大。
激光测速——它也是基多普勒原理的一种激光测速方法,用得较多的是激光多普勒流速计(见激光流量计),它可以测量风洞气流速度、火箭燃料流速、飞行器喷射气流流速、大气风速和化学反应中粒子的大小及汇聚速度等。
多普勒测速系统(Doppler velocity-measuring system)原理:从开过来的机车所听到的声波间的距离被压缩了,就好像一个人正在关手风琴。
这个动作的结果产生一个明显的较高的音调。
当火车离去时,声波传播开来,就出现了较低的声音--这种现象被称为“多普勒”效应。
检查机动车速度的雷达测速仪也是利用这种多普勒效应。
从测速仪里射出一束射线,射到汽车上再返回测速仪。
测速仪里面的微型信息处理机把返回的波长与原波长进行比较。
返回波长越紧密,前进的汽车速度也越快--那就证明驾驶员超速驾驶的可能性也越大。
激光多普勒测速仪是测量通过激光探头的示踪粒子的多普勒信号,再根据速度与多普勒频率的关系得到速度。
由于是激光测量,对于流场没有干扰,测速范围宽,而且由于多普勒频率与速度是线性关系,和该点的温度,压力没有关系,是目前世界上速度测量精度最高的仪器。
多普勒测速工作原理可以用干涉条纹来说明。
当聚焦透镜把两束入射光以某角会聚后,由干激光束良好的相干性,在会聚点上形成明暗相间的干涉条纹,条纹间隔正比干光波波长,而反比干半交角的正弦值。
当流体中的粒子从条纹区的方向经过时,会依次散射出光强随时间变化的一列散射光波,称为多普勒信号。
这列光波强度变化的频率称为多普勒频移。
经过条纹区粒子的速度愈高,多普勒频移就愈高。
将垂直于条纹方向上的粒子速度,除以条纹间隔,考虑到流体的折射率就能得到多普勒频移与流体速度之间线性关系。
多普勒测速系统就是利用速度与多谱勒频移的线性关系来确定速度的。
各个方向上的多普勒频率的相位差和粒子的直径成正比,利用监测到的相位差可以来确定粒径。
光学测速测长系统相对于传统的测速测长系统(编码器或测速电机)的优势是:(1)编码器或测速马达测量都是依靠测速辊与被测量物体的摩擦来实现的,存在摩擦的地方就会有相对滑动的存在,尤其是在速度变化的过程中滑动更明显,此时会产生较明显的误差;而多普勒测量系统是非接触测量,从原理上消除了这个误差。
(2)接触式测量过程中,当生产的产品为对表面光洁度要求非常高的产品时,比如不锈钢板带,容易对表面产生损伤,而采用多普勒测量系统完全避免。
(3)编码器或测速马达是机械类产品,长期的运转存在机械磨损,从而影响到测量精度,而多普勒测量系统属于光学仪器,内部没有机械磨损,不存在随运行时间而测量精度变化的问题。
(4)在钢铁的轧机或平整机运行过程中,由于在板带上有巨大的张力,在高速运行中会产生高频振动,对接触式的测速系统影响非常大。
比如在平整机上,采用编码器对平整机的延长率进行控制时,实际测量的结果是板带平整后的延长率是在3%-15%之间变化,升速或降速时编码器信号由于摩擦打滑的影响无法参与控制。