STM32的PWM控制

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习后发现stm32的定时器功能确实很强大,小总结一下方便以后使用的时候做参考。Stm32定时器一共分为三种:tim1和tim8是高级定时器,6和7是基本定时器,2—5是通用定时器。从名字就可以看得出来主要功能上的差异。今天我主要是用定时器做pwm输出,所以总结也主要是针对pwm方面的。
先大致说下通用和高级定时器的区别。通用的可以输出四路pwm信号互不影响。高级定时器可以输出三对互补pwm信号外加ch4通道,也就是一共七路。
所以这样算下来stm32一共可以生成4*5+7*2=30路pwm信号。接下来还有功能上的区别:通用定时器的pwm信号比较简单,就是普通的调节占空比调节频率(别的不常用到的没去深究);高级定时器的还带有互补输出功能,同时互补信号可以插入死区,也可以使能刹车功能,从这些看来高级定时器的pwm天生就是用来控制电机的。

Pwm输出最基本的调节就是频率和占空比。频率当然又和时钟信号扯上了关系。高级定时器是挂接到APB2上,而通用定时器是挂接到APB1上的。APB1和APB2的区别就要在于时钟频率不同。APB2最高频率允许72MH,而APB1最高频率为36MHZ。这样是不是通用定时器只最高36MHZ频率呢,不是的;通用定时器时钟信号完整的路线应该是下面这样的:
AHB(72mhz)→APB1分频器(默认2)→APB1时钟信号(36mhz)→倍频器(*2倍)→通用定时器时钟信号(72mhz)。
在APB1和定时器中间的倍频器起到了巨大的作用,假如红色字体的“APB1分频器”假如不为1(默认是2),倍频器会自动将APB1时钟频率扩大2倍后作为定时器信号源,这个它内部自动控制的不用配置。设置这个倍频器的目的很简单就是在APB1是36mhz的情况下通用定时器的频率同样能达到72mhz。我用的库函数直接调用函数SystemInit(); 这个函数之后时钟配置好了:通用定时器和高级定时器的时钟现在都是72mhz(你也可以自己再配置一下RCC让他的频率更低,但是不能再高了)。定时器接下来还有一个分频寄存器:TIMX_PSC经过他的分频后,才是定时器计数的频率。所以真正的时钟频率应该是72mhz/(TIMX_PSC-1),我们设为tim_frepuency下面还会用到。
stm32的时钟频率弄得确实是很饶人的,所以关键就是先要把思路理清楚。时钟的频率弄好了下面终于可以开说重点PWM了。当然还少不了频率:pwm主要就是控制频率和占空比的:这两个因素分别通过两个寄存器控制:TIMX_ARR和TIMX_CCRX。ARR寄存器就是自动重装寄存器,也就是计数器记到这个数以后清零再开始计,这样pwm的频率就是tim_frequency/(TIMX_ARR-1)。在计数时会不停的和CCRX寄存器中的数据进行比较,如果小于的

话是高电平或者低电平,计数值大
于CCRX值的话电平极性反相。所以这也就控制了占空比。


下面是定时器1的配置代码:
GPIO_InitTypeDef GPIO_InitStructure2;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
//第一步:配置时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB|RCC_APB2Periph_TIM1,ENABLE);
//第二步,配置goio口
/********TIM1_CH1 引脚配置*********/
GPIO_InitStructure2.GPIO_Pin=GPIO_Pin_8;
GPIO_InitStructure2.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure2.GPIO_Mode=GPIO_Mode_AF_PP; //设置为复用浮空输出
GPIO_Init(GPIOA,&GPIO_InitStructure2);
/*********TIM1_CH1N 引脚配置********/
GPIO_InitStructure2.GPIO_Pin=GPIO_Pin_13;
GPIO_InitStructure2.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure2.GPIO_Mode=GPIO_Mode_AF_PP; //设置为复用浮空输出
GPIO_Init(GPIOB,&GPIO_InitStructure2);

//第三步,定时器基本配置
TIM_TimeBaseStructure.TIM_Period=1000-1; // 自动重装载寄存器的值
TIM_TimeBaseStructure.TIM_Prescaler=72-1; // 时钟预分频数
TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; // 采样分频
TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;//向上计数
TIM_TimeBaseStructure.TIM_RepetitionCounter=0;//重复寄存器,用于自动更新pwm占空比 TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);

//第四步pwm输出配置
TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM2; //设置为pwm1输出模式
TIM_OCInitStructure.TIM_Pulse=500; //设置占空比时间
TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_Low; //设置输出极性
TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable; //使能该通道输出

//下面几个参数是高级定时器才会用到,通用定时器不用配置
TIM_OCInitStructure.TIM_OCNPolarity=TIM_OCNPolarity_High; //设置互补端输出极性
TIM_OCInitStructure.TIM_OutputNState=TIM_OutputNState_Enable;//使能互补端输出
TIM_OCInitStructure.TIM_OCIdleState=TIM_OCIdleState_Reset; //死区后输出状态
TIM_OCInitStructure.TIM_OCNIdleState=TIM_OCNIdleState_Reset;//死区后互补端输出状态
TIM_OC1Init(TIM1,&TIM_OCInitStructure); //按照指定参数初始化


//第五步,死区和刹车功能配置,高级定时器才有的,通用定时器不用配置
TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Disable;//运行模式下输出选择
TIM_BDTRInitStructure.TIM_OSS
IState = TIM_OSSIState_Disable;//空闲模式下输出选择
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLe

vel_OFF; //锁定设置
TIM_BDTRInitStructure.TIM_DeadTime = 0x90; //死区时间设置
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable; //刹车功能使能
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;//刹车输入极性
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;//自动输出使能
TIM_BDTRConfig(TIM1,&TIM_BDTRInitStructure);


//第六步,使能端的打开
TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable); //使能TIMx在CCR1上的预装载寄存器
TIM_ARRPreloadConfig(TIM1, ENABLE); //使能TIMx在ARR上的预装载寄存器
TIM_Cmd(TIM1,ENABLE); //打开TIM2
//下面这句是高级定时器才有的,输出pwm必须打开
TIM_CtrlPWMOutputs(TIM1, ENABLE); //pwm输出使能,一定要记得打开

TIM_OC1PreloadConfig(),TIM_ARRPreloadConfig();这两个函数控制的是ccr1和arr的预装在使能,使能和失能的区别就是:使能的时候这两个局存期的读写需要等待有更新事件发生时才能被改变(比如计数溢出就是更新时间)。失能的时候可以直接进行读写而没有延迟。
另外在运行当中想要改变pwm的频率和占空比调用:TIM_SetAutoreload()
TIM_SetCompare1()这两个函数就可以了。




























STM32 定时器产生PWM彻底应用

这次的任务是:用STM32的一个定时器在四个通道上产生四路频率可调占空比可调的PWM波。
看到这个题,我先看STM32的数据手册,把STM32的定时器手册看完就花了一天,但是看了一遍任然不知道所云,就看库函数,略有点理解,就想一哈把这个程序调出来,于是就花了一天多时间仿照网上别人的程序来写,花了一天多写出来调试,结果行不通,做了无用功,于是静下心来想想,还是一步一步的来。
我先用STM32的通用定时器用PWM模式产生四路相同占空比,不同频率的PWM波,配置如下:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);//使能TIM2时钟
TIM_InternalClockConfig(TIM2);//使用内部时钟

TIM_BaseInitStructure.TIM_Prescaler=3; //设置TIM时钟频率除数的预分频值
TIM_BaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up;//选择计数器模式
TIM_BaseInitStructure.TIM_Period=1799;//设置下一个更新事件装入活动的自动重装载寄存器周期的值
TIM_BaseInitStructure.TIM_ClockDivision=0;//设置时钟分割

TIM_TimeBaseInit(TIM2,&TIM_BaseInitStructure);

//通道1
TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1;//选择定时器模式
TIM_OCIn
itStructure.TIM_OutputState=TIM_OutputState_Enable;//选择输出比较状态
TIM_OCInitStructure.TIM_OutputNState=TIM_OutputNState_Disable;//选

择互补输出比较状态
TIM_OCInitStructure.TIM_Pulse=CCR1_Val;//设置了待装入捕获比较器的脉冲值
TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_High;//设置输出极性
TIM_OCInitStructure.TIM_OCNPolarity=TIM_OCNPolarity_Low;//设置互补输出极性
TIM_OCInitStructure.TIM_OCIdleState=TIM_OCIdleState_Set;//选择空闲状态下得非工作状态
TIM_OCInitStructure.TIM_OCNIdleState=TIM_OCNIdleState_Reset;//选择互补空闲状态下得非工作状态
TIM_OC1Init(TIM2,&TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);

//通道2
TIM_OCInitStructure.TIM_Pulse=CCR2_Val;//设置了待装入捕获比较器的脉冲值
TIM_OC2Init(TIM2,&TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM2,TIM_OCPreload_Enable);

//通道3
TIM_OCInitStructure.TIM_Pulse=CCR3_Val;//设置了待装入捕获比较器的脉冲值
TIM_OC3Init(TIM2,&TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM2,TIM_OCPreload_Enable);

//通道4
TIM_OCInitStructure.TIM_Pulse=CCR4_Val;//设置了待装入捕获比较器的脉冲值
TIM_OC4Init(TIM2,&TIM_OCInitStructure);
TIM_OC4PreloadConfig(TIM2,TIM_OCPreload_Enable);

TIM_Cmd(TIM2, ENABLE);
TIM_CtrlPWMOutputs(TIM2,ENABLE);
用pwm模式输出的频率和占空比是固定的,不可调,要想输出频率可调,占空比可调,必须得使用比较输出模式。这点资料是在STM32全国巡回研讨会上看到的,如图:

所以,接下来我就写了一个程序通过输出比较模式产生一路PWM波,这个波的频率和占空比都由自己确定,函数配置如下:
TIM_BaseInitStructure.TIM_Prescaler=3; //设置TIM时钟频率除数的预分频值(18M)
TIM_BaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up;//选择计数器模式
TIM_BaseInitStructure.TIM_Period=1800;//设置下一个更新事件装入活动的自动重装载寄存器周期的值
TIM_BaseInitStructure.TIM_ClockDivision=0;//设置时钟分割
TIM_TimeBaseInit(TIM2,&TIM_BaseInitStructure);
//通道1
TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_Toggle;//选择定时器模式
TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;//选择输出比较状态
TIM_OCInitStructure.TIM_OutputNState=TIM_OutputNState_Disable;//选择互补输出比较状态
TIM_OCInitStructure.TIM_Pulse=CCR1_Val1;//设置了待装入捕获比较器的脉冲值
TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_High;//设置输出极性
TIM_OCInitStructure.TIM_OCNPolarity=TIM_OCNPolarity_Low;//设置互补输出极性
TIM_OCInitStructure.TIM_OCIdleState=TIM_OCIdleState_Set;//选择空闲状态下得非工作状态
TIM_OCInitStructure.TIM_OCNIdleState=TIM_OCNIdleState_Reset;//选择互补空闲状态下得非工作状态
TIM_OC1Init(TIM2,&TIM_OCInitStructure);
TIM_OC1PreloadConf
ig(TIM2, TIM_OCPreload_Disable);
TIM_ARRPreloadConfig(TIM2,ENABLE);
TIM_ITConfig(TIM2,TIM_IT_CC1,ENABLE);
TIM_Cmd(TIM2,ENABLE);

}



void TIM2_IRQHandler(void)
{
TIM_ClearITPendingBit(TIM2,TIM_IT_CC1);
if(n==1)
{
n=0;
TIM_SetCompare1(TIM2,CCR1_Val2);
}
else
{
n=1;
TIM_SetCompare1(TIM2,CCR1_Val1);
}
}
通过改变比较寄存器(CCR1)中的值,改变PWM的占空比,在每次匹配中断中改变CCR1的值。上面程序实现的是产生一路频率为10K占空比为40%的PWM波。
有了上面的思想我就想产生四路不同频率不同占空比的PWM波,经过反复思考光配函数似乎不能实现,在网上去查了的,很多网友也说不能实现,有一个网友给了一个提示:软件模拟。刚开始没明白什么意思,于是还是自己继续配置库函数,在这个过程中一直有两个疑问:
每次中断中,CCR寄存器的值都在循环的增加,CCR的寄存器不可能是无限大吧?就算是无限大,计数器也不是无限大呀,他只能记到65535。初步确定使用匹配中断不行,我有想过同时使用溢出中断和匹配中断,但这样四路PWM波只能是固定的,频率和占空比不能调。大概说一下怎样用溢出中断和匹配中断实现四路固定的PWM波,把计数器寄存器(CNT)的值装最大周期的那个PWM波,当一次计数完成算一下三路小点周期数,在匹配中断中对应的设个变量,CCR就改变几次,溢出中断来了就再次给计数器装初值,同时四个比较寄存器从装初值,这样很麻烦,理论上可以实现,但我考虑到最终不能实现我的要求,就没有去验证。所以产生四路频率可调占空比可调,用一个定时器似乎不能实现,就一直卡到这里,我又在想飞哥说能实现,就肯定能实现,我又在网上找资料,还是没找到,只是有人题四路,软模拟,于是我就思考用软模拟实现,最后在一个师兄的指点下,确实用软件模拟一个中间比较寄存器能实现,思路大概是这样子的,首先让比较寄存器装满,也就是最大值(65535),然后通过改变模拟比较寄存器的值,每次匹配中断只需把模拟比较寄存器的值去比较就行,具体方案看程序。
unsigned char Cnt[4]; //一个数组,这个数组的每个元素对应一个通道,用来判断装PWM得高电平还是低电平数
unsigned int T[4];//周期数组
unsigned int R[4];//模拟的比较寄存器数组,一样的每个通道对应一个数组元素
unsigned int Rh[4];//模拟的PWM高电平比较寄存器
unsigned int Rl[4]; //模拟的PWM低电平比较寄存器
unsigned char F[4];//占空比数组
unsigned int CCR1,CCR2,CCR3,CCR4;

void Init(void)
{
unsigned char i = 0;
for(i = 0; i < 4; i++)
{
Cnt[i]= 0;
T[i] = 0;
R[i] = 0;
Rh[i] = 0;
Rl[i] = 0;
F[i] = 0;
}
//t的范围为(0~65536

T[0] = 450; //F=40K
T[1] = 600; //F=30K
T[2] = 900; //F=20K
T[3] = 1800; //F=10K
//F(占空比)的

范围为(0~100)
F[0] = 40;
F[1] = 30;
F[2] = 20;
F[3] = 10;
for(i = 0; i < 4; i++)
{
Rh[i] = (T[i] * F[i]) / 100;
Rl[i] = T[i] - Rh[i];
}
R[0] = Rl[0];
R[1] = Rl[1];
R[2] = Rl[2];
R[3] = Rl[3];

CCR1 = R[0];
CCR2 = R[1];
CCR3 = R[2];
CCR4 = R[3];
}
对应的数组初始化

void RCC_Configuration(void)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_GPIOD,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_AFIO,ENABLE);
}
时钟配置
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
//Key1 PA0 Key3 PA8
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_8;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;
GPIO_Init(GPIOA,&GPIO_InitStructure);
//Key2 PC13
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_13;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;
GPIO_Init(GPIOC,&GPIO_InitStructure);
//Key PD3
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;
GPIO_Init(GPIOD,&GPIO_InitStructure);
//TIM3 CH1 CH2
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6|GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;
GPIO_Init(GPIOA,&GPIO_InitStructure);
//TIM3 CH3 CH4
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;
GPIO_Init(GPIOB,&GPIO_InitStructure);
}
管脚配置
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
#ifdef VECT_TAB_RAM
NVIC_SetVectorTable(NVIC_VectTab_RAM,0x0);
#else
NVIC_SetVectorTable(NVIC_VectTab_FLASH,0x0);
#endif
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);

NVIC_InitStructure.NVIC_IRQChannel=TIM3_IRQChannel;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority=1;
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;

NVIC_Init(&NVIC_InitStructure);
}
中断配置
void TIM_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;

TIM_InternalClockConfig(TIM3);

TIM_BaseInitStructure.TIM_Prescaler=3;//4分频,18M
TIM_BaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up;
TIM_BaseInitStructure.TIM_Period=65535;
TIM_BaseInitStructure.TIM_ClockDivision=0;
TIM_BaseInitStructure.TIM_RepetitionCounter=0;
TIM_TimeBaseInit(TIM3,&TIM_BaseInitStructure);

TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_Toggle;
TIM_OCInitStructure.TIM_OutputState=TIM_OutputS
tate_Enable;
TIM_OCInitStructure.TIM_Pulse=CCR1;
TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_Low;
TIM_OC1Init(TIM3,&TIM_OCInitStructure);

TIM_OC1PreloadConfig(TIM3,TIM_OCPreload_Disable);
TIM_ClearITPendingBit(TIM3,TIM_IT_CC1);

TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_Toggle;
TIM_OCInitStructure.TIM_Pulse=CCR2;
TIM_OC2Init(TIM3,&TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Disable);
TIM_ClearITPendingBit(TIM3,TIM_IT_CC2);

TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_Toggle;
TIM_OCInitStructure.TIM_Pulse=CCR3;
TIM_OC3Init(TIM3,&TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM3,TIM_OCPreload_Disable);
TIM_ClearITPendingBit(TIM3,TIM_IT_CC3);

TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_Toggle;
TIM_OCInitStructure.TIM_Pulse=CCR4;
TIM_OC4Init(TIM3,&TIM_OCInitStructure);
TIM_OC4PreloadConfig(TIM3,TIM_OCPreload_Disable);
TIM_ClearITPendingBit(TIM3,TIM_IT_CC4);

TIM_Cmd(TIM3,ENABLE);
TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE);
TIM_ITConfig(TIM3,TIM_IT_CC1|TIM_IT_CC2|TIM_IT_CC3|TIM_IT_CC4,ENABLE);
}

void TIM3_IRQHandler(void)
{
if(TIM_GetITStatus(TIM3,TIM_IT_CC1)!=RESET)
{
TIM_ClearITPendingBit(TIM3,TIM_IT_CC1);
Cnt[0]=(~Cnt[0])&0x01;
if(Cnt[0]==0x01)
R[0]+=Rl[0];
else
R[0] += Rh[0];
if(R[0]>65535)
R[0]=R[0]-65535;
CCR1=R[0];
TIM_SetCompare1(TIM3,CCR1);
}
if(TIM_GetITStatus(TIM3,TIM_IT_CC2)!=RESET)
{
TIM_ClearITPendingBit(TIM3,TIM_IT_CC2);
Cnt[1]=(~Cnt[1])&0x01;
if(Cnt[1]==0x01)
R[1]+=Rl[1];
else
R[1] += Rh[1];
if(R[1]>65535)
R[1]=R[1]-65535;
CCR2=R[1];
TIM_SetCompare2(TIM3,CCR2);
}
if(TIM_GetITStatus(TIM3,TIM_IT_CC3)!=RESET)
{
TIM_ClearITPendingBit(TIM3,TIM_IT_CC3);
Cnt[2]=(~Cnt[2])&0x01;
if(Cnt[2]==0x01)
R[2]+=Rl[2];
else
R[2] += Rh[2];
if(R[2]>65535)
R[2]=R[2]-65535;
CCR3=R[2];
TIM_SetCompare3(TIM3,CCR3);
}
if(TIM_GetITStatus(TIM3,TIM_IT_CC4)!=RESET)
{
TIM_ClearITPendingBit(TIM3,TIM_IT_CC4);

Cnt[3] = (~Cnt[3])&0x01;

if(Cnt[3]==0x01)
R[3]+=Rl[3];
else
R[3] += Rh[3];
if(R[3]>65535)
R[3]=R[3]-65535;
CCR4=R[3];
TIM_SetCompare4(TIM3,CCR4);
}
}
中断函数
其余就是按键扫描函数,通过改变周期数组中的值和占空比寄存器中的值就能改变PWM波的频率和占空比,当然按键可以设置为4个(一个按键对应一个通道),如果IO够用也可以设置8个,没两个按键对应一个通道分别改变频率和占空比。


相关文档
最新文档