人教版高一数学下学期期末考试卷
人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

17.(10分)在△ABC中,角A,B,C对边分别为a,b,c,若
(1)求c的值;
(2)求sinC的值.
18.(12分)已知 .
(1)求tanβ:
(2)求sin2α.
19.(12分)已知函数 (其中a∈R).
(1)当a=-1时,解关于x的不等式 ;
【解析】
【分析】
先将直线方程 化为: ,再利用两平行线间的距离公式求解.
【详解】直线方程 化为: ,
所以两条平行直线 与 的距离是:
.故选:D
【点睛】本题主要考查两平行线间 距离的求法,还考查了运算求解的能力,属于基础题.
7.A
【解析】
【分析】
分别取 、 、 的中点 、 、 ,连接 、 、 、 、 ,由题意结合平面几何的知识可得 、 、 或其补角即为异面直线SB与AC所成角,再由余弦定理即可得解.
所以点 到直线 的距离为 ,
所以圆M: ,
对于A、B,圆M的圆心 到直线 的距离 ,所以圆上的点到直线 的最小距离为 ,最大距离为 ,故A正确,B错误;
对于C,令 即 ,当直线 与圆M相切时,圆心 到直线的距离为 ,解得 或 ,则 的最小值是 ,故C正确;
对于D,圆 圆心为 ,半径为 ,若该圆与圆M有公共点,则 即 ,解得 ,故D正确.故选:ACD.
5.过圆 上一点M(-1.2)作圆的切线l,则l的方程是()
A. B. C. D.
6.两条平行直线 与 的距离是()
A. B. C. D.
7.如图,在三棱锥S-ABC中,SB=SC=AB=AC=BC=4,SA=2 ,则异面直线SB与AC所成角的余弦值是()
人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

9.若直线 与圆 相切,则 的值为()
A.2B. C.1D.
10.设直线 与圆 相交于 , 两点,若 ,则 ()
A. -1或1B. 1或5C. -1或3D. 3或5
11.若圆 与圆 的公共弦过圆C的圆心,则圆D的半径为()
A. 5B. C. D.
12.直线 分别与 轴, 轴交于 , 两点,点 在圆 上,则 面积的取值范围是()
即实数 的取值范围为 ;故选C.
【点睛】本题考查了二元二次方程表示圆的条件,其中解答中把圆的一般方程与标准方程,列出相应的不等式是解答的关键,着重考查了运算与求解能力,属于基础题.
7. C
【解析】
【分析】
由体积桥可知 ,求解出 和高 ,代入三棱锥体积公式求得结果.
【详解】 为 中点
又 平面
本题正确选项:
10. B
【解析】
【分析】
先求出圆心和半径,再利用圆心到直线的距离为 求出a的值.
【详解】由题得圆的方程为 ,所以圆心为(-1,2),半径为 .
所以圆心到直线的距离为 .故选B
【点睛】本题主要考查圆的标准方程,考查圆心到直线的距离的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.
11. D
【点睛】本题考查三棱锥体积 求解问题,关键是能够利用体积桥将所求三棱锥更换顶点,从而更容易求得几何体的高和底面积,属于基础题.
8. B
【解析】
【分析】
根据三视图复原几何体,结合题中数据,即可求得答案.
【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,
故几何体的表面积为 ,故选B.
22.(12分)已知点 ,圆 的方程为 ,点 为圆上的动点,过点 的直线 被圆 截得的弦长为 .
人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
). 1.sincos=( ) A .B .C .1D .2.在等差数列{a n }中,a 3=24,a 6=8,则a 9=( ) A .﹣24B .﹣16C .﹣8D .03.在△ABC 中,AB =,A =45°,B =75°,则BC =( ) A .2B .2C .2D .44.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5B .7C .9D .105.已知tan α=﹣,且α∈(0,π),则sin (α+)=( )A .B .C .D .6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人所得与下三人等.问各得几何?”其意思是:“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( )A .钱B .钱C .钱D .钱7.在△ABC 中,若sin A :sin B :sin C =5:6:8,则△ABC 是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .可能是锐角三角形也可能是钝角三角形 8.设a =cos29°﹣sin29°,b =、c =,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a9.周长为9的三角形三边长成公差为1的等差数列,最大内角和最小内角分别记为α,β,则sin (α+β)=( )密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .B .C .D . 10.在△ABC 中,若sin B sin C =cos 2,则( ) A .A =BB .B =C C .C =AD .B +C =11.已知数列{a n }满足a 1=2,a n +1=1﹣(n ∈N*),则a 2020=( )A .2B .C .﹣D .﹣312.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物MN 的顶部M 处的仰角分别为∠MAN =30°,∠MBN =60°,∠MCN =45°,且AB =BC =60m ,则建筑物的高度为( )A .12mB .12mC .30mD .30m二、填空题(本大题共4小题,每小题5分,共20分). 13.tan15°= .14.已知数列{a n }的前n 项和为S n ,=2n +1,则a 1+a 7= .15.已知α为锐角,sin (﹣α)=,则cos α= .16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sinC +c sin B =4a sin B sin C ,b 2+c 2﹣a 2=8,则△ABC 的面积为 .三、解答题:本大题共6小题,共70分.解答题应写出必要的文字说明、证明过程及演算步骤.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且=﹣6,S △ABC =3. (1)求角B 的大小; (2)若c =3,求b 的值.18.已知函数f (x )=cos 2x ﹣sin 2x ﹣2sin x cos x (x ∈R ). (1)求f ()的值;(2)求f (x )的最小正周期及单调递减区间.19.已知等差数列{a n }的前n 项和为S n ,且a 1=25,S 17=S 9.(1)求数列{a n }的通项公式; (2)求S n 的最大值. 20.已知sin α=,sin (α﹣β)=,其中α,β∈(0,).(1)求sin (α﹣2β)的值; (2)求β的值.密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题21.已知数列{a n }满足a 1=,且a n +1=.(1)求证:数列{}是等差数列;(2)若b n =a n •a n +1,求数列{b n }的前n 项和S n .22.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2=a 2+bc .(1)求角A 的大小;(2)若a =,求(﹣1)b +c 的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求. 1.sincos=( ) A .B .C .1D .【分析】直接利用二倍角公式求出函数的表达式,计算出值即可. 解:因为==.故选:A .2.在等差数列{a n }中,a 3=24,a 6=8,则a 9=( ) A .﹣24B .﹣16C .﹣8D .0【分析】根据题意,由等差数列的性质可得a 3+a 9=2a 6,代入数据计算可得答案.解:根据题意,等差数列{a n }中,有a 3+a 9=2a 6, 又由a 3=24,a 6=8,则a 9=2a 6﹣a 3=﹣8; 故选:C . 3.在△ABC 中,AB =,A =45°,B =75°,则BC =( ) A .2B .2C .2D .4【分析】根据题意可求得C =60°,利用正弦定理即可得到B C .解:因为A =45°,B =75°,所以C =180°﹣45°﹣75°=60°,由正弦定理可得, 则BC ===2,故选:A .4.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=() A .5B .7C .9D .10【分析】由等差数列{a n }的性质,及a 1+a 3+a 5=3,可得3a 3=3,再利用等差数列的前n 项和公式即可得出. 解:由等差数列{a n }的性质,及a 1+a 3+a 5=3, ∴3a 3=3,密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴a 3=1, ∴S 5==5a 3=5.故选:A .5.已知tan α=﹣,且α∈(0,π),则sin (α+)=( )A .B .C .D .【分析】由特殊角的三角函数值得到α=,然后利用两角和与差的公式解答. 解:∵tan α=﹣,且α∈(0,π),∴α=,∴sin α=sin =,cos α=cos =﹣.∴sin (α+)=(sin αcos+cos αsin)=(×﹣×)=.故选:B .6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人所得与下三人等.问各得几何?”其意思是:“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .钱B .钱C .钱D .钱【分析】本题根据题意将实际问题转化为等差数列的问题即可解决.解:由题意,可设甲、乙、丙、丁、戊五人分得的钱分别为a 1,a 2,a 3,a 4,a 5.则a 1,a 2,a 3,a 4,a 5成等差数列,设公差为d . a 1+a 2+a 3+a 4+a 5=5, a 1+a 2=a 3+a 4+a 5.整理上面两个算式,得:,解得.∴a 5=a 1+4d =+4×(﹣)=. 故选:B .7.在△ABC 中,若sin A :sin B :sin C =5:6:8,则△ABC 是( ) A .钝角三角形 B .直角三角形密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题C .锐角三角形D .可能是锐角三角形也可能是钝角三角形【分析】根据正弦定理依据题设可求得a ,b 和c 的比例关系,进而令a =5,b =6,c =8,然后利用大角对大边推断出c为最大边,C 为最大角,利用余弦定理求得cos C 的值,进而判断得解.解:∵sin A :sin B :sin C =5:6:8,∴由正弦定理可知a :b :c =5:6:8,不妨令a =5,b =6,c =8, ∴cos C ===﹣<0,∵C ∈(0,π),∴C 为钝角,△ABC 是钝角三角形.故选:A . 8.设a =cos29°﹣sin29°,b =、c =,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a【分析】利用三角恒等变换化a =sin31°,b =sin29°,c =si n32°,再根据函数y =sin x 的单调性判断c >a >b . 解:a =cos29°﹣sin29°=sin (60°﹣29°)=sin31°,b ===sin29°,c ==sin32°,且y =sin x 在x ∈(0°,90°)内单调递增,所以sin32°>sin31°>sin29°,即c >a >b .故选:C . 9.周长为9的三角形三边长成公差为1的等差数列,最大内角和最小内角分别记为α,β,则sin (α+β)=( ) A .B .C .D .【分析】先根据条件求出边长,结合余弦定理求出中间角的余弦值,进而求得结论.解:因为周长为9的三角形三边长成公差为1的等差数列, 故三边长分别为2,3,4; 设中间边对应的角为A ; 则cos A ==;故sin (α+β)=sin (π﹣A )=sin A ===; 故选:D .10.在△ABC 中,若sin B sin C =cos 2,则( ) A .A =BB .B =CC .C =AD .B +C =【分析】利用三角函数的恒等变换变形得到cos (B ﹣C )=1,从而得到B =C ,则答案可求.密封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:∵由已知可得sin B sin C =cos 2=,即2sin B sin C =1+cos A =1﹣cos (B +C )=1﹣cos B cos C +sin B sin C ,则cos B cos C +sin B sin C =1,即cos (B ﹣C )=1.∵﹣π<B ﹣C <π,∴B ﹣C =0,即B =C .故选:B .11.已知数列{a n }满足a 1=2,a n +1=1﹣(n ∈N*),则a 2020=( ) A .2B .C .﹣D .﹣3【分析】利用数列的递推思想依次求出数列的前5项,从而得到数列{a n }是周期为4的周期数列,由此能求出a 2020. 解:∵数列{a n }满足a 1=2,a n +1=1﹣(n ∈N*),∴=, =﹣, =﹣3, =2,∴数列{a n }是周期为4的周期数列, ∵2020=505×4,∴a 2020=a 4=﹣3.故选:D .12.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物MN 的顶部M 处的仰角分别为∠MAN =30°,∠MBN =60°,∠MCN =45°,且AB =BC =60m ,则建筑物的高度为( )A .12mB .12mC .30mD .30m【分析】用MN 表示出AN ,BN ,CN ,利用余弦定理表示出cos ∠ABN ,cos ∠CBN ,根据cos ∠ABN +cos ∠CBN =0列方程求出MN .解:设MN =h ,则AN =h ,BN =,CN =h ,在△ABN 中,由余弦定理可得cos ∠ABN =,在△BCN 中,由余弦定理可得cos ∠NBC =,∵∠ABN +∠NBC =π, ∴+=0,即7200+﹣4h 2=0,解得:h 2=2160,∴h =12.故选:B .密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题二、填空题:本大题共4小题,每小题5分,共20分. 13.tan15°= 2﹣ .【分析】把15°变为45°﹣30°,然后利用两角差的正切函数公式及特殊角的三角函数值化简可得tan15°的值.解:tan15°=tan (45°﹣30°)====2﹣.故答案为:2﹣.14.已知数列{a n }的前n 项和为S n ,=2n +1,则a 1+a 7=29 .【分析】由题意利用数列的前n 项和与第n 项的关系,求得结果.解:数列{a n }的前n 项和为S n ,=2n +1,故S n =2n 2+n ﹣1,∴a 1=S 1=2,a 7=S 7﹣S 6=(2×72+7﹣1)﹣(2×62+6﹣1)=27,则a 1+a 7=2+27=29, 故答案为:29. 15.已知α为锐角,sin (﹣α)=,则cos α=+.【分析】先利用同角关系式求出余弦值,结合两角和差的余弦公式进行拆角转化即可. 解:∵α为锐角, ∴0<α<,则﹣<﹣α<0,﹣<﹣α<, ∵sin (﹣α)=,∴cos (﹣α)===,则cos α=cos (﹣α)=cos[(﹣α)﹣]=cos (﹣α)cos+sin (﹣α)sin=×+×=+,故答案为:+16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2﹣a 2=8,则△ABC 的面积为.【分析】直接利用正弦定理求出A 的值,进一步利用余弦定理求出bc 的值,最后求出三角形的面积.解:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . b sin C +c sin B =4a sin B sin C ,利用正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C , 由于0<B <π,0<C <π, 所以sin B sin C ≠0, 所以sin A =,密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题则A = 由于b 2+c 2﹣a 2=8, 则:,①当A =时,,解得bc =,所以.②当A =时,,解得bc =﹣(不合题意),舍去. 故:. 故答案为:.三、解答题:本大题共6小题,共70分.解答题应写出必要的文字说明、证明过程及演算步骤.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且=﹣6,S △ABC =3. (1)求角B 的大小; (2)若c =3,求b 的值.【分析】(1)由平面向量数量积的运算可得ac •cos B =﹣6,由正弦的面积公式可得ac •sin B =6,两式作商得tan B =﹣1,再结合B 的取值范围即可得解.(2)由(1)知,ac =,若c =3,则a =,再由余弦定理b 2=a 2+c 2﹣2ac •cos B ,代入数据进行运算即可得解.解:(1)在△ABC 中,因为=﹣6,所以ac •cos B =﹣6,又S △ABC =3,所以ac sin B =3,即ac •sin B =6, 所以tan B =﹣1, 因为0<B <π,所以B =. (2)由(1)知,ac ==.若c =3,则a =,由余弦定理知,b 2=a 2+c 2﹣2ac •cos B =9+8﹣2×3××()=29,所以b =.18.已知函数f (x )=cos 2x ﹣sin 2x ﹣2sin x cos x (x ∈R ). (1)求f ()的值;(2)求f (x )的最小正周期及单调递减区间.【分析】(1)利用辅助角公式进行化简,然后代入求值即可.(2)结合三角函数的周期公式,以及单调递减区间的性质建立不等式进行求解.密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:(1)f (x )=cos 2x ﹣sin 2x ﹣2sin x cos x =cos2x ﹣sin2x =2cos (2x +),则f ()=2cos=2×(﹣)=﹣1.(2)f (x )的最小正周期T ==π,令 2k π≤2x +≤2k π+π,k ∈Z ,得k π﹣≤x ≤k π+,k ∈Z ,即f (x )的单调递减区间为[k π﹣,k π+],k ∈Z .19.已知等差数列{a n }的前n 项和为S n ,且a 1=25,S 17=S 9.(1)求数列{a n }的通项公式; (2)求S n 的最大值.【分析】(1)利用等差数列{a n }的前n 项和公式列方程求出公差d =﹣2,由此能求出数列{a n }的通项公式. (2)由a 1=25,d =﹣2,求出S n ==﹣n 2+26n =﹣(n ﹣13)2+169,由此能求出数列的前n 项和最大值.解:(1)∵等差数列{a n }的前n 项和为S n ,且a 1=25,S 17=S 9. ∴由,解得d =﹣2, ∴数列{a n }的通项公式. (2)∵a 1=25,d =﹣2,∴S n ==﹣n 2+26n =﹣(n ﹣13)2+169,∴数列的前13项和最大,最大值为S 13=169. 20.已知sin α=,sin (α﹣β)=,其中α,β∈(0,).(1)求sin (α﹣2β)的值; (2)求β的值.【分析】(1)根据三角函数的同角关系,结合两角和差的正弦公式进行转化求解即可.(2)利用两角和差的正弦公式弦求出sin β的值,结合角的范围进行求解. 解:(1)由sin α=,及α∈(0,).得cos α==,因为α,β∈(0,),所以α﹣β∈(﹣,),又sin (α﹣β)=所以cos (α﹣β)==,所以sin2(α﹣β)=2sin (α﹣β)cos (α﹣β)=2××=,cos2(α﹣β)=1﹣2sin 2(α﹣β)=1﹣2×()2=,所以sin (α﹣2β)=sin[2(α﹣β)﹣α]=sin2(α﹣β)cos α﹣cos2(α﹣β)sin α=×=﹣.密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)sin β=sin[α﹣(α﹣β)]=sin αcos (α﹣β)﹣cos αsin (α﹣β)=×﹣×=,又β∈(0,),所以β=.21.已知数列{a n }满足a 1=,且a n +1=.(1)求证:数列{}是等差数列;(2)若b n =a n •a n +1,求数列{b n }的前n 项和S n .【分析】(1)数列{a n }满足a 1=,且a n +1=.两边取倒数可得:=+,即﹣=,=2.即可证明.(2)利用等差数列的通项公式、求和公式即可得出. 解:(1)证明:∵数列{a n }满足a 1=,且a n +1=.两边取倒数可得:=+,即﹣=,=2. ∴数列{}是等差数列,公差为,首项为2.(2)由(1)知:=2+(n ﹣1)×═,∴a n =.∴b n =a n •a n +1==4, ∴S n =4+……+=4×=.22.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2=a 2+bc . (1)求角A 的大小;(2)若a =,求(﹣1)b +c 的取值范围.【分析】(1)由已知利用余弦定理得cos A =,结合A 为△ABC 的内角,求出A 的值.(2)利用正弦定理,三角函数恒等变换,可得(﹣1)b +c =4sin (B +),然后求出B +的范围,利用正弦函数的性质,求出(﹣1)b +c 的取值范围.解:(1)由b 2+c 2=a 2+bc ,得=,由余弦定理,得cos A =.又A 为△ABC 的内角,所以A =. (2)由正弦定理,得=2,所以b =2sin B ,c =2sin C , 所以(﹣1)b +c =2()sin B +2sin C密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题=2()sin B +2sin (﹣B )=2()sin B +2(cos B +sin B )=2sin B +2cos B =4sin (B +), 因为A =,所以B ∈(0,),所以B +∈(,),所以sin (B +)∈(,1], 所以(﹣1)b +c ∈(,4].人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号 一 二 三 总分 得分一、选择题(本大题共12小题,每小题5分,共60分。
人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

对于B中,若 , , ,则 或 与 相交,所以B项不正确;
对于C中,设 ,在平面 内任取一点 ,作 ,垂足分别为 ,由面面垂直的性质定理,可得 ,
又因为 ,可得 ,所以C项正确;
对于D中,若 , , , ,只有 相交时,才有 ,所以D项不正确.故选:C.
2.抛掷两枚质地均匀的硬币,设事件 “第一枚硬币正面向上”,设事件 “第二枚硬币正面向上”,则()
A.事件 与 互为对立事件B.件 与 为互斥事件
C.事件 与事件 相等D.事件 与 相互独立
3.为了解疫情防控延迟开学期间全区中小学线上教学的主要开展形式,某课题组面向各学校开展了一次随机调查,并绘制得到如下统计图,则采用“直播+录播”方式进行线上教学的学校占比约为()
【详解】由平均数的计算公式,可得数据的平均数为 ,所以A项正确;
由方差的公式,可得 ,
所以标准差为 ,所以B项不正确;
根据众数的概念,可得数据的众数为 和 ,所以C项正确;
根据百分位数的概念,可得第85百分位数:从大到小排序的第8和第9个数据的平均数值,即为 ,所以D项不正确.
故选:AC.
【点睛】本题主要考查了平均数,标准差的计算,以及众数与百分位数的概念及应用,其中解答中熟记平均数和方差的计算公式,以及众数与百分位数的概念是解答的关键,属于基础题.
【解析】
【分析】
由已知利用三角形的面积公式、余弦定理、同角三角函数基本关系式可得 ,结合范围 ,可得 的值.
【详解】由题意可得 ,
可得 ,可得 ,
由于 ,
可得 .故选: .
【点睛】本题主要考查了三角形的面积公式、余弦定理、同角三角函数基本关系式在解三角形中的综合应用,熟练掌握相关公式定理是解题的关键,属于基础题.
人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第Ⅰ卷(选择题,满分60分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求) 1.现有这么一列数:1,32,54,78,(),1132,1364,…,按照规律,( )中的数应为( ). A.916B.1116C.12D.11182. 设,,a b c ∈R ,且a b >,则( ) A.ac bc >B.11a b< C.20c a b≥- D.11a b a>-3. 在△ABC 中,点D 在边BC 上,若2BD DC =,则AD = A. 14AB +34AC B.34AB +14AC C.13AB +23AC D.23AB +13AC 4. 设单位向量1cos 3e α⎛⎫= ⎪⎝⎭,,则cos 2α的值为( )A.79B.12-C.79-D.35. 已知ABC 中,23,22,4a b B π===,那么满足条件的ABC( ) A. 有一个解 B. 有两个解C. 不能确定D. 无解6.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212-a a b的值是 ( ) A.12B.12-C.12或12-D.147. 《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十四日所织尺数为( )A. 13B. 14C. 15D. 168. 在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,其中22tan tan a B b A =,那么ABC 一定是()A. 锐角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形9. 已知α,β都是锐角,3sin 5α=,()5cos 13αβ+=-,则sin β=( ) A.5665-B.1665-C. 3365D.636510. 如图所示,隔河可以看到对岸两目标A ,B ,但不能到达,现在岸边取相距4km 的C ,D 两点,测得∠ACB =75°,∠BCD密线学校 班级 姓名 学号密 封 线 内 不 得 答 题=45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km.A.85 B.415C.215511. 设G 是ABC 的重心,且()()()sin sin sin 0A GA B GB C GC ++=,若ABC 外接圆的半径为1,则ABC 的面积为( )A. 33B.33C. 34D.91612.当x θ=时,函数()2cos f x sinx x =+取得最小值,则sin 3πθ⎛⎫+ ⎪⎝⎭的值为( ) A. -215510B.2515+ C. 10 D.310第Ⅰ卷(非选择题,满分90分)二、填空题(本题共4小题,每小题5分,共20分) 13. 当1x >时,41x x +-的最小值为______. 14. 在ABC 中,tan ,tan A B 是方程22370x x +-=的两根,则tan C =_______.15. 如图,在半径为3的圆上,C 为圆心,A 为圆上的一个定点,B 为圆上的一个动点,若||||+=-AC CB AC CB ,则AB AC ⋅=_____.16.已知数列{}n a 满足1212a a ++…2*1()n a n n n N n +=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*4()1nnT n N n λ≤∈+恒成立,则λ的最小值是_______.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.17. (10分)已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4). (1)求顶点D 的坐标;(2)求AC 与BD 所成夹角的余弦值.18. (11分)已知数列{}n a 是公比为2的等比数列,且234,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记2,,n n na nb log a n ⎧=⎨⎩为奇数为偶数,数列{}n b 的前n 项和为n T ,求2n T . 19. (11分)已知向量()cos 3m x x=,(cos ,cos )n x x =且函数()f x m n =⋅.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)求函数()f x 在,02x ⎡⎤∈-⎢⎥⎣⎦π时的值域; (2)设α是第一象限角,且112610f απ⎛⎫+= ⎪⎝⎭求sin()4cos(22)παπα++的值. 20. (12分)首届世界低碳经济大会的主题为“节能减排,绿色生态”.某企业在国家科研部门的支持下,投资810万元生产并经营共享单车,第一年维护费为10万元,以后每年增加20万元,每年收入租金300万元.(1)若扣除投资和各种维护费,则从第几年开始获取纯利润? (2)若干年后企业为了投资其他项目,有两种处理方案: ①纯利润总和最大时,以100万元转让经营权;②年平均利润最大时以460万元转让经营权,问哪种方案更优?21. (12分)已知ABC 的角A ,B ,C 的对边分别为a ,b ,c ,满足()(sin sin )()sin b a B A b c C -+=-. (1)求A ;(2)从下列条件中:①3a =②3ABCS=中任选一个作为已知条件,求ABC 周长的取值范围.注:如果选择多个条件分别解答,按第一个解答计分. 22. (14分)函数()f x 满足:对任意,R αβ∈,都有()g()()αβαββα=+f f ,且(2)2f =,数列{}n a 满足()()2+=∈nn a f n N .(1)证明数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式;(2)记数列}{nb 前n 项和为n S ,且(1)nn n n ba +=,问是否存在正整数m ,使得(1)(4)190m m m S b +-+<成立,若存在,求m 的最小值;若不存在,请说明理由.参考答案与试题解析 第Ⅰ卷(选择题,满分60分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求) 1. A 【解析】 【分析】根据题意得出每个数的分母为2n ,分子为连续的奇数,即可求解.【详解】由题意知,一列数:1,32,54,78,(),1132,1364,…, 可得每个数的分母为2,n n N ∈,分子为连续的奇数,所以( )中的数应为916故选:A.【点睛】本题主要考查了数列的项的归纳推理,其中解答中根据数的排列,找出数字的规律是解答的关键,着重考查了归纳推理的应用. 2. C密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【解析】【分析】根据不等式的性质,直接判断即可. 【详解】对A ,当0c时,不成立,故A 错对B ,若a 为正数,b 为负数,不成立,故B 错对C ,由a b >,所以0a b ->,所以20c a b ≥-成立,故C 正确对D ,当2,1a b ==-时,11a b a>-不成立,故D 错 故选:C【点睛】本题考查不等式的性质,选择题可以使用特殊值法,便于计算,属基础题. 3. C 【解析】 分析】根据向量减法和2BD DC =用,AB AC 表示BD ,再根据向量加法用,AB BD 表示AD .【详解】如图:因22,()33BC AC AB BD BC AC AB =-==-,所以212()333AD AB BD AB AC AB AB AC =+=+-=+,故选C. 【点睛】本题考查向量几何运算的加减法,结合图形求解. 4. A【解析】 由题设可得2218cos 1cos 99αα+=⇒=,则27cos 22cos 19αα=-=,应选答案A . 5. B 【解析】 【分析】通过比较sin a B 与b 的大小关系,简单判断可得结果. 【详解】由题可知:23,22,4a b B π===2sin 2362==a B 622<=<b a 所以可知ABC 有两个解故选:B【点睛】本题考查两边及其一边所对应的角判定三角形个数,掌握比较方法以及正弦定理的使用,属基础题. 6. A【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d ,则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q ,则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a a b --==.本题选择A 选项.7. B 【解析】【分析】由已知条件利用等差数列的前n 项和公式和通项公式列出方程组,求出首项和公差,由此能求出第十四日所织尺数. 【详解】设第一天织1a 尺,从第二天起每天比第一天多织d 尺,由已知得1111721284715a d a d a d a d +⎧⎨+++++⎩==解得:111a d ==, ,∴第十四日所织尺数为14113113114=+=+⨯=a a d .故选:B . 【点睛】本题考查等差数列的性质,考查了等差数列的前n 项和,是基础的计算题. 8. D 【解析】 【分析】根据正弦定理sin sin a bA B =,将等式中的边,a b 消去,化为关于角,A B的等式,整理化简可得角,A B 的关系,进而确定三角形ABC 的形状.【详解】由正弦定理可得:22sin tan sin tan =A B B A ,整理得sin cos sin cos A A B B =,因此有11sin 2sin 222A B =,可得22A B =或22A B π=-, 当22A B =时,ABC 为等腰三角形;当22A B π=-时,有2A B π+=,ABC 为直角三角形,故选:D .【点睛】本题考查通过正弦定理化简判定三角形形状,熟悉正弦定理、余弦定理以及三角形面积公式,属基础题. 9. D 【解析】 【分析】 计算得到4cos 5α=,()12sin 13αβ+=,再根据()sin sin βαβα=+-展开得到答案. 【详解】α,β都是锐角,3sin 5α=,()5cos 13αβ+=-,故4cos 5α=,()12sin 13αβ+=. ()()()63sin sin sin cos cos sin 65βαβααβααβα=+-=+-+=.故选:D . 【点睛】本题考查了同角三角函数关系,和差公式,意在考查学生的计算能力. 10. B 【解析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【分析】由已知可求30CAD ∠=︒,120ACD ∠=︒,由正弦定理可求AD 的值,在BCD ∆中,60CBD ∠=︒,由正弦定理可求BD 的值,进而由余弦定理可求AB 的值.【详解】由已知,ACD ∆中,30CAD ∠=︒,120ACD ∠=︒,由正弦定理,sin sin CD ADCAD ACD =∠∠,所以·sin 4?sin12043sin sin30CD ACD AD CAD ∠︒===∠︒在BCD ∆中,60CBD ∠=︒,由正弦定理,sin sin CD BDCBD BCD =∠∠,所以·sin 4sin4546sin sin603CD BCD BD CBD ∠︒===∠︒ 在ABD ∆中,由余弦定理,222802?·3AB AD BD AD BD ADB =+-∠=,解得:415AB =所以A 与B 的距离415AB =故选B点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题. 11. B 【解析】 【分析】根据G 是三角形ABC 的重心得到0GA GB GC ++=,结合已知条件进行化简,求得sin sin sin A B C ==,由此判断出三角形ABC 是等边三角形,再结合三角形ABC 外接圆半径以及正弦定理,求得三角形ABC 的边长,由此求得三角形ABC 的面积. 【详解】∵G 是ABC 的重心,∴0GA GB GC ++=,则GA GB GC =--,代入()()()sin sin sin 0A GA B GB C GC ++=得,()()sin sin sin sin 0A B GB A C GC -+-=,∵GB GC ⋅不共线,∴sin sin 0A B -=且sin sin 0A C -=, 即sin sin sin A B C ==,∴ABC 是等边三角形,又ABC 外接圆的半径为1,∴由正弦定理得,22sin 60aR ==︒,则3a =∴2333ABC S ==△.故选:B. 【点睛】本小题主要考查三角形重心的向量表示,考查正弦定理的运用,考查化归与转化的数学思想方法,属于中档题.12. A 【解析】 【分析】利用辅助角公式可知函数min ()f x ,然后把x θ=代入结合平方关系可得sin ,cos θθ,最后利用两角和的正弦公式计算可得结果. 详解】由题可知:()()2cos 5,tan 2ϕϕ=+=+=f x sinx x x所以min ()5=-f x 2cos 5θθ+=-sin密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题所以225sin sin 2cos 5sin cos 125cos 5θθθθθ⎧=⎪⎧+=-⎪⎪⎨⎨+=⎪⎩⎪=-⎪⎩所以2155sin sin cos cos sin 33310πππθθθ⎛⎫+=+=- ⎪⎝⎭故选:A【点睛】本题考查辅助角公式以及平方关系,还考查了两角和的正弦公式,着重考查计算,属基础题.第Ⅰ卷(非选择题,满分90分)二、填空题(本题共4小题,每小题5分,共20分) 13. 5 【解析】 【分析】将所求代数式变形为()4111x x -++-,然后利用基本不等式可求得所求代数式的最小值. 【详解】1x >,10x ∴->,由基本不等式得()()444112115111x x x x x x +=-++≥-⋅=---. 当且仅当3x =时,等号成立.因此,41x x +-的最小值为5.故答案为:5.【点睛】本题考查利用基本不等式求代数式的最值,考查计算能力,属于基础题. 14.13【解析】 【分析】根据韦达定理以及两角和的正切公式计算即可.【详解】由题可知:tan ,tan A B 是方程22370x x +-=的两根所以37tan tan ,tan tan 22+=-=-A B A B 所以()tan tan tan tan 1tan tan 13+=-+=-=-A B C A B A B故答案为:13【点睛】本题主要考查两角和的正切公式,牢记公式,细心计算,属基础题. 15. 9 【解析】 【分析】化简||||+=-AC CB AC CB ,两边平方可得0AC CB ⋅=,然后将AB 用,CA CB 表示,然后进行计算即可.【详解】由题可知:||||+=-AC CB AC CB ,两边平方可得0AC CB ⋅=AB CB CA =-所以()()229⋅=-⋅-=-⋅==AB AC CB CA CA CA CA CB CA故答案为:9【点睛】本题考查向量的运算以及向量的数量积,属基础题. 16. 32 【解析】 【分析】依据题意可得2=2n a n ,然后可得n b ,利用裂项相消法可得nT ,最密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题后化简以及函数的单调性可得结果.【详解】由题可知:1212a a ++…21+=+n a n n n ① 当2n ≥时,1212a a ++…()211111-+=-+--n a n n n ② ①-②是可得:12n a n n =,所以()2=22≥n a n n当1n =时,1=2a 符合上式,所以()2=2*∈n a n n N则()()2222121211114411+⎛⎫++===- ⎪ ⎪++⎝⎭n n n n n b a a n n n n 所以()122222*********...1...422331⎛⎫ ⎪=+++=-+-+++- ⎪+⎝⎭n n T b b b n n 所以()()()2221114141⎛⎫+ ⎪=-=⎪++⎝⎭n n n T n n又41λ≤+n n T n ,所以()()22111124411λλ+⇒≥+⨯=≤+++++n n n n n n n n又函数()111f x x =++在()0,∞+单调递减 所以max 13112⎛⎫+= ⎪+⎝⎭n 所以*4()1n n T n N n λ≤∈+恒成立,则32λ≥故答案为:32【点睛】本题主要考查裂项相消法求和以及数列中恒成立问题,审清题意,细心计算,属中档题.三、解答题:解答应写出必要的文字说明、证明过程或演算步骤.17. (1)(2,2);(2)685.【解析】【分析】(1)根据向量的坐标表示,计算AB DC =,可得结果. (2)用坐标表示AC ,BD ,然后根据平面向量的夹角公式计算即可.【详解】(1)设顶点D 的坐标为(,)x y .(2,1)A -,(1,3)B -,(3,4)C ,(1(2),31)(1,2)AB ∴=----=,(3,4)DC x y =--,又AB DC =,所以(1,2)(3,4)x y =--.即13,24,x y =-⎧⎨=-⎩解得2,2.x y =⎧⎨=⎩所以顶点D 的坐标为(2,2). (2)由22(5,3),||5334AC OC OA AC =-==+=22(3,1),||3(1)10BD OD OB BD =-=-=+-=353(1)12AC BD ⋅=⨯+⨯-=685cos ,||||3410AC BD AC BD AC BD ⋅∴<>===⋅⨯【点睛】本题考查向量的坐标运算以及向量夹角公式,重在明白向量坐标的表示方法以及夹角公式的记忆,属基础题. 18. (1)12n n a -=;(2)224133=+-n n T n .【解析】 【分析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)依题意利用等差数列的性质可得22a=,然后利用等比数列通项公式计算即可.(2)由(1)的结论可得12,1,n n n b n n -⎧=⎨-⎩为奇数为偶数,然后利用分组求和,可得结果.【详解】(1)由题意可得()32421a a a +=+,即()2222214a a a +=+,解得:22a =,∴2112a a ==, ∴数列{}n a 的通项公式为12n n a -=.(2)12,1,n n n b n n -⎧=⎨-⎩为奇数为偶数21232=+++⋯+n n T b b b b3242152162()()-+++⋯++++⋯=++n n n T b b b b b b b b()024*******(13521)-=+++⋯+++++⋯+-n n T n2214(121)4114233-+-=+=+--n nn n n T n 【点睛】本题主要考查数列分组求和,掌握常用的求和方法:公式法、裂项相消法、分组求和法、错位相减法等,属基础题.19. (1)1[,1]2-;(2)522-.【解析】【分析】(1)用坐标表示向量的数量积以及辅助角公式可得 (1)1()sin(2)62f x x π=++,然后使用整体法以及正弦函数的性质可得结果.(2)根据(1)的条件可得3cos 5α=,然后使用两角和的正弦公式以及二倍角的余弦公式化简求值即可. 【详解】(1)由2()cos 3sin cos f x m n x x x =⋅=()1311cos 22sin(2)2262π=+=++f x x x x50,22666x x ππππ-≤≤∴-≤+≤ 1sin(2)[1,]62x π∴+∈-,则()f x 的值域为1[,1]2-(2)π11(),2610f α+=ππ111 sin 2()266210α⎡⎤∴+++=⎢⎥⎣⎦ 则π3sin()25α+=即3cos 5α= ,又α为第一象限的角,则4sin 5α22π2sin()cos )42cos(2π2)c 2cos )2co o s s 2sin ααααααααα++==++-则πsin()4cos(2π2)2522cos sin 2αααα==--++【点睛】本题考查向量数量积的坐标表示以及正弦型函数的性质,考查三角恒等变形,本题重在考查公式的应用以及计算能力的培养,属中档题.20. (1)从第4年开始获取纯利润;(2)方案②. 【解析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【分析】(1)依据题意可知每年的维护费用满足的是等差数列,然后可得利润2300(81010)y n n =-+,令0y >,简单计算以及判断可得结果.(2)根据(1)的结论可计算方案①所获利润,计算2300(81010)--=n n W n结合基本不等式可得所获利润,然后进行比较可得结果.【详解】(1)设第n 年获取利润为y 万元,n 年共收入租金300n 万元,付出维护费构成一个以10为首项,20为公差的等差数列,共2(1)1020102n n n n -+⨯=因此利润2300(81010)y n n =-+ 令0y >,解得:327n <<所以从第4年开始获取纯利润.(2)方案①:纯利润22300(81010)10(15)1440y n n n =-+=--+ 所以15年后共获利润:1440+100=1540(万元) 方案②:年平均利润2300(81010)810300(10)n n W n n n--==-+810300210120n n≤-⨯= 当且仅当81010n n =,即n =9时取等号所以9年后共获利润:120×9+460=1540(万元)综上:两种方案获利一样多,而方案②时间比较短,所以选择方案②.【点睛】本题考查数列模型的应用问题,审清题意,理清思路,细心就算,属中档题. 21.(1)3A π=;(2)选择①,(23,33;选择②,[6,) +∞. 【解析】【分析】(1)根据正弦定理将角化边计算可得1cos 2A =,最后可得结果.(2)选①根据正弦定理以及辅助角公式化简可得周长23)36π=+l B ,然后根据角度范围可得结果;选②可得bc ,然后结合余弦定理以及不等式可得结果. 【详解】(1)因为()(sin sin )()sin b a B A b c C -+=- 由正弦定理得()()()b a b a b c c -+=-,即222b c a bc +-=由余弦定理得2221cos ,(0,)22b c a A A bc π+-==∈所以3A π=(2)选择①3a =由正弦定理2sin sin sin b c aB C A===, 即ABC 周长22sin 2sin 32sin 2sin()33l B C B B π=+=+- 3sin 33B B =23)36B π=+251 (0,) ,sin()1366626B B B πππππ∈∴<+<<+≤密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题即ABC 周长的取值范围(23,33选择②3ABCS.,得13sin 324ABC S bc A bc ===△,得4bc =.由余弦定理得22222()3()12,a b c bc b c bc b c =+-=+-=+-即ABC 周长2()12,l a b c b c b c =++=+-+24b c bc +≥=,当且仅当2b c ==时等号成立 2 41246l a b c ∴=++-= 即ABC 周长的取值范围[6,) +∞【点睛】本题考查正弦定理、余弦定理以及面积公式解三角形,注意边角如何转化,以及求范围问题常会转化为三角函数或者不等式的应用,属中档题.22. (1)证明见解析;2n n a n =⋅;(2)存在,4. 【解析】【分析】(1)依据题意计算()()()1122222,++==⋅+⋅n n nn a f f f 然后可得1122n n n a a ++=+,根据递推关系以及等差数列的定义可得结果. (2)根据(1)的结论可得12n nn b +=,然后利用错位相减法可得n S ,最后构造函数,利用函数的单调性可得结果.【详解】(1)()()112,22,=∴==n n a f a f()()()()112222222,n n n n n a f f f f ++==⋅=⋅+⋅1122n n n a a ++∴=+, 11122n nn na a ++∴-= 2n na ⎧⎫∴⎨⎬⎩⎭为等差数列,首项为112a =,公差为1,,22nn n na n a n ∴∴==⋅.(2)由(1)12n n n n n n b a ++==23111111234(1)22222n n nS n n -=⨯+⨯+⨯++⨯++⨯ 2311111123(1)22222n n n S n n +=⨯+⨯++⨯++⨯,两式相减得121111111133(1)22222222n n n n n S n +++=+++-+⨯+=-332n nn S +∴=-,假设存在正整数m , 使得(1)(4)190m m m S b +-+<成立,即2160m m +-> 由指数函数与一次函数单调性知:()216m F m m =+- m N +∈为增函数.又因为34(3)231650,(4)241640F F =+-=-<=+-=> 所以当4m ≥时恒有()2160m F m m =+->成立. 故存在正整数m ,使得(1)(4)190m m m S b +-+<成立, 所以m 的最小值为4.【点睛】本题考查根据递推关系证明等差数列以及错位相减法求和,还考查了数列恒等式问题,本题关键在于得到1122n n n a a ++=+,考查分析能力以及计算能力,属中档题.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第I 卷 选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。
人教版2020-2021学年下学期高一数学期末检测卷及答案(含四套题)

根据向量的坐标表示可得 , , ,再利用向量数量积的坐标表示即可判断.
【详解】根据已知,有 , , ,
因为 ,
所以 ,即 .
故 为直角三角形.故选:A
【点睛】本题考查了向量的坐标表示、向量数量积的坐标表示,属于基础题.
3. A
【解析】
【分析】
根据不等式的性质和带特殊值逐一排除.
【详解】若 ,则 ,故B错,
【详解】解:从随机数表第7行第8列的数3开始向右读,第一个小500的数字为331,第二个为572不合题意,第三个为455,第四个068,第五个877,不合题意,第六个047,第七个447,
所以取出的5颗种子的编号55,068,047,447,
【解析】
【分析】由 ,得 ,利用基本不等式即可得解.
【详解】因为 ,所以 ,所以 .
等号成立的条件为 ,即 时取得最小值.
故答案为:12
【点睛】此题考查利用基本不等式求最值,关键在于熟练掌握基本不等式的使用条件,注意考虑等号成立的条件.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
【详解】由题意九个儿子的年龄成等差数列,公差为3.记最小的儿子年龄为 ,则 ,解得 .故选B.
【点睛】本题考查等差数列的应用,解题关键正确理解题意,能用数列表示题意并求解.
9. D
【解析】
【分析】
画出可行域,利用几何概型概率计算公式求得概率.
【详解】画出图像如下图所示,整个区域是正方形区域,符合 的是阴影部分区域.故所求的概率为 .故选D.
Ⅱ卷
二、填空题(共4小题,每题5分)(每题5分,满分20分,将答案填在横线上)
13. (1). 331 (2). 455 (3). 068 (4). 047 (5). 447
人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

C. D.
7.函数y=tan 的定义域是()
A. B.
C. D.
8.若 , 是第二象限的角,则 等于()
A. B. C. D.
9.已知sinx+cosx= ,则sin 2x=
A. B. C.- D.-
10.已知tanx= ,则tan2x等于()
A. B. C. D.
11.已知向量 , ,且 ,则 的值为()
1. D
【解析】
【分析】
根据复数模的计算公式,计算出 的模.
【详解】依题意, ,故选D.
【点睛】本小题主要考查复数模的概念及运算,属于基础题.
2. C
【解析】
【分析】
根据 在不同象限的符号进行推测即可
【详解】由题,因为 ,则 的终边落在第二象限或第三象限;
因为 ,则 的终边落在第三象限或第四象限;
综上, 的终边落在第三象限
24.(1)最小正周期为 ,函数 的单调递增区间为 ,单调递减区间为 ;(2)当 时, .
【解析】
【分析】
(1)根据 可得函数的最小正周期,然后使用整体法以及正弦函数的单调性,简单计算可得结果.
(2)使用整体法,先计算 的范围,然后根据正弦函数的性质,简单计算可得结果.
【详解】(1)由题可知:
则函数的最小正周期为 ,
故选:C.
【点睛】本题考查三角函数值在各个象限内的符号,属于基础题.
3. C
【解析】
【分析】
根据同角三角函数的基本关系及角所在的象限,即可求解.
【详解】因为 且 为第三象限角,
所以 ,
则 数间的基本关系,属于中档题.
4. A
【解析】
【分析】
利用两角和正弦公式计算即可.
人教版2020-2021学年下学期高一数学期末检测卷及答案(含三套题)

C.关于直线 对称D.关于直线 对称
二、填空题(每小题5分,共20分)
13. 的值为__________.
14.过点(1,3)且与直线x+2y-1=0垂直的直线的方程是________.
15.化简: =_____
16. 2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.
1.直线 的倾斜角为()
A. ;B. ;C. ;D.
2.如图所示,正方形 的边长为 ,它是水平放置的一个平面图形的直观图,则原图形的周长是()
A. B. C. D.
3.在空间直角坐标系中,点P(3,4,5)关于 平面的对称点的坐标为( )
A.(−3,4,5)B.(−3,−4,5)
C.(3,−4,−5)D.(−3,4,−5)
, ,
故函数的单调增区间为 ,
【点睛】本题考查利用 的部分图象求函数解析式,关键是掌握运用五点作图的某一
点求 ,考查三角函数单调区间的求法,是中档题.
人教版2020--2021学年下学期期末考试卷
高一数学
(满分:150分时间:120分钟)
题号
一
二
三
总分
得分
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
【详解】 角 在第三象限,且 , 且 ,
因此, .
【点睛】本题考查同角三角函数的基本关系,考查知一求二,解决这类问题首先要确定角所在的象限,其次就是要确定所求三角函数值的符号,最后再利用相关公式进行计算,考查计算能力,属于基础题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题分钟.1206页,21小题,满分150分.考试用时本试卷共分.在每小题给出的四个选项中,只分,共50一、选择题:本大题共10个小题,每小题5有一项是符合题目要
求的.?Alog(x?2)}B?{x|y?}1xx|?A?{,则,1.设集合B2][?2,12()?2,1][?,1)(?2,1. D C.A.B.
2i)iz?(a?M a i.已知,为虚数单位,在复平面内对应的点为为实数,复数2]世纪教育网来源:21[2??aM在第四象限”的”是“点则“B.必要而不充分条件A.充分而不必要条件
D.既不充分也不必要条件C.充要条件
}{a4?a0q?,若3.已知等比数列中,公比,D n2
aa?a?的最值情况为则32144??A.有最小值B.有最大值CA1212.有最小值.有最大值DC4.由两个完全相同的正四棱锥组合而成的空间几何体的B左)视图、俯视图相同,如右图所示,(正主)视图、侧(第4题图
开始ABCD其中四边形的正方形,则该几何体是边长1的表面积为3433
BA..
否?2013n?323DC..
是输出S S?5.执行如图所示的程序框图,输出的是ncosS?S?13结束
0.A.B世纪教育网212n?n?11?1D..C
第5题图6.下列四个命题中,正确的有
r越小,说明两变量间的线性相关程度越低;①两个变量间的相关系数
22p?p?x?1?x0R??x0??xx1?R?x?”;“②命题::“”的否定,,00022RR③用相关指数越大,则说明模型的拟合效果越好;来刻画回归效果,若3.022c?log2?b30a?.ba?c?,,.④若,则3.0.
.③④.②③DA.①③B.①④C.把正奇数数列按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括7)5(3,(1),个数,第五个括号两个数,第六个括号三个数,….依次划分为,号一
)(13)25()(19,21,9,11),23(15,17)(750个括号内各数之和,,,,,….则第为390396394392..C.A.D B
)?afx)?(xf(x)g(x)?f(y?R a,的定义域是,若对于任意的正数函数已知函数8.)(xy?f的图象可能是都是其定义域上的减函数,则函数yyy
y
xO xxxOOO
D.C.A.B.
221?x?y),20A(?2,0)B(O NN A的9.已知定点:上任意一点,点,是圆关于点,PMAMBMP,则点对称点为相交于点,线段的轨迹是的中垂线与直线C.抛物线D.圆
A.椭圆B.双曲线
?)xx(x)?f?(x)(???x,xIf(x)f)f(x I.设函数,上可导,若总有在区间,100000)(xy?fU I为区间函数.则称上的12x x?ye?y???yx)?1,0(y?cos2xU上为,中,在区间在下列四个函数,,x函数的个数是3421..A.B C.D
分.20二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分MDC
、1213题为必做题.(一)必做题:11、???ABCDA602的边长为.如图,菱形,,
11ABAM?DCM.的值为为的中点,则AB题图11第
1??xy??1x?y?2x yymx?z?35?0m,满足约束条件的最大值为,,若目标函数)12.设(??0y?x?0,?m则.的值为x..13ay?xy?log?alnlna?1两个函数图象有且只有一个公共点时,与设,则当a.、15题为选做题,考生只能从中选做一题(二)选做题:第14)14.(坐标系与参数方程选做题1?t?x??2?txOy l为参数),以原点在平面直角坐标系(中,直线的参数方程为?3?t??2y??2?O
??xcos2?Cl上为极点,则轴正半轴为极轴建立极坐标系,曲线,的极坐标方程为Q CP间的最
短距离为与.上的动点的动点15.(几何证明选讲选做题)BCABCDDAD2为以四边形如图,为半径的圆弧与以是边长为为圆心,的正方形,OCFCFABFEBF的长为并延长.则线段交.直径的圆交于点于,连接
AD
E F ]世纪教育网:21[来源
?C B O]世纪教育网[来源:21
15题图第
.解答须写出文字说明、证明过程和演算步骤.三、解答题:本大题共6小题,满分80分13分)16.(本小题满分进,(肯定还是否定)某校为了解高三年级不同性别的学生对体育课改上自习课的态度1011630:.行了如下的调查研究全年级共有,现按分层抽样方名学生,男女生人数之比为1.法抽取若干名学生,每人被抽到的概率均为61()求抽取的男学生人数和女学生人数;22?列联表:)通过对被抽取的学生的问卷调查,得到如下2
(.
总计否定肯定男生 10
女生 30
总计
①完成列联表;97.5%的把握认为态度与性别有关?②能否有5441名女人持否定态度,(3)若一班有人持肯定态度;二班有名男生被抽到,其中22人持否定态度,人持肯定态度.生被抽到,其中9态现从这求其中恰有一人持肯定人中随机抽取一男一女进一步询问所持态度的原因,度一人持否定态度的概率.:解答时可参考下面临界值表
0.005 0.010 0.10 0.05 0.025 0k7.879
2)?kP(K
3.841
6.635
5.024
2.706
分).(本小题满分1217?)?A?cosAsin(ca bC?ABCBA.
设,的三个内角.,,,已知所对的边分别为6A的大小;(1)求角c?a?2b(,求的最大值.2)若
分).(本小题满分1814??60?ABC??ACD?90?BAC??CAD?P?ABCD?PA面,中,在四棱锥,ABCDEPDPA?2AB?4.的中点,,为PC?AE;)求证:(1CE//PAB;面(2)求证:PV ACE?P的体积(3)求三棱锥.
E
世纪教育网21A
DBC题图18第
19.(本小题满分13分)??n1n?a?S?n?n2?a Sa}{*n?N,已知数列,若,的前.项和为n?1n1nn}{a)求数列的通项公式:(1n S n?T*n?N(2)令.,nn2n TT?;①当为何正整数值时,1nn?mn m?T,总有的取值范围.②若对一切正整数,求n
分).(本小题满分201422yx1??0?a?bBAF分别是椭圆的左顶(如图,点)的左焦点,点是椭圆,22ba1x0)k?k(BCBF?A C作斜率为,轴上,且点点和上顶点,椭圆的离心率为,过点在212MD?ME??a ClMEFDB.交于两点,满足的直线,与由三点, ,确定的圆相2 3BOF?,求椭圆的方程;)若(1的面积为l的斜率是否为定值?证明你的结论)直线. (2
y
l EB
D
CAFM
?xO
题图20第
14分)21.(本小题满分)?1a(x2x?)x?xg(?lnxx)?f(0?aa?R已知函数.),,(
1?x1)a(x?)(xlnx??ga(hx)?1(并确定其零点个数;)求函数的单调区间,1x?a)f(x在其定义域内单调递增,求的取值范围;(2)若1111?????lnn?1?n?N*3)证明不等式().(1?n2753.。