(完整版)(整理)镜片镀膜技术原理

(完整版)(整理)镜片镀膜技术原理
(完整版)(整理)镜片镀膜技术原理

镜片镀膜技术原理

原理

内容: 一、耐磨损膜(硬膜)无论是无机材料还是有机材料制成的眼镜片,在日常的使用中,由于与灰尘或砂砾(氧化硅)的摩擦都会造成镜片磨损,在镜片表面产生划痕。与玻璃片相比,有机材料制成的硬性度比较低,更易产生划痕。通过显微镜,我们可以观察到镜片表面的划痕主要分为二种,一是由于砂砾产生的划痕,浅而细小,戴镜者不容易察觉;另一种是由较大砂砾产生的划痕,深且周边粗糙,处于中心区域则会影响视力。

(1)技术特征

1)第一代抗磨损膜技术

抗磨损膜始于20 世纪70 年代初,当时认为玻璃镜片不易磨制是因为其硬度高,而有机镜片则太软所以容易磨损。因此将石英材料于真空条件下镀在有机镜片表面,形成一层非常硬的抗磨损膜,但由于其热胀系数与片基材料的不匹配,很容易脱膜和膜层脆裂,因此抗磨损效果不理想。

2)第二代抗磨损膜技术

20 世纪80 年代以后,研究人员从理论上发现磨损产生的机理不仅仅与硬度相关,膜层材料具有“硬度/形变”的双重特性,即有些材料的硬度较高,但变形较小,而有些材料硬度较低,但变形较大。第二代的抗磨损膜技术就是通过浸泡工艺法在有机镜片的表面镀上一种硬度高且不易脆裂的材料。

3)第三代抗磨损膜技术第三代的抗磨损膜技术是20 世纪90 年代以后发展起来的,主要是为了解决有机镜片镀上减反射膜层后的耐磨性问题。由于有机镜片片基的硬度和减反射膜层的硬度有很大的差别,新的理论认为在两者之间需要有一层抗磨损膜层,使镜片在受到砂砾磨擦时能起缓冲作用,并而不容易产生划痕。第三代抗磨损膜层材料的硬度介于减反射膜和镜片片基的硬度之间,其磨擦系数低且不易脆裂。

4)第四代抗磨损膜技术第四代的抗膜技术是采用了硅原子,例如法国依视路公司的帝镀斯(TITUS )加硬液中既含有有机基质,又含有包括硅元素的无机超微粒物,使抗磨损膜具备韧性的同时又提高了硬度。现代的镀抗磨损膜技术最主要的是采用浸泡法,即镜片经过多道清洗后,浸入加硬液中,一定时间后,以一定的速度提起。这一速度与加硬液的黏度有关,并对抗磨损膜层的厚

度起决定作用。提起后在100 °C左右的烘箱中聚合4—5小时,镀层厚约 3 —5微米。

(2)测试方法判断和测试抗磨损膜耐磨性的最根本的方法是临床使用,让戴镜者配戴一段时间,然后

用显微镜观察并比镜片的磨损情况。当然,这通常是在这一新技术正式推广前所采用的方法,目前我们常用的较迅速、直观的测试方法是:

1 )磨砂试验将镜片置于盛有砂砾的宣传品内(规定了砂砾的粒度和硬度),在一定的控制

下作来回磨擦。结束后用雾度计测试镜片磨擦前后的光线漫反射量,并且与标准镜片作比较。

2)钢丝绒试验

用一种规定的钢丝绒,在一定的压力和速度下,在镜片表面上磨擦一珲的次数,然后用雾度计测试镜片磨擦前后的光线漫反射量,并且与标准镜片作比较。当然,我们也可以手工操作,对二片镜片用同样的压力磨擦同样的次数,然后用肉眼观察和比较。

上述两种测试方法的结果与戴镜者长期配戴的临床结果比较接近。

3)减反射膜和抗磨损膜的关系

镜片表面的减反射膜层是一种非常薄的无机金属氧化物材料(厚度低于 1 微米),硬且脆。当镀于玻璃镜片上时,由于片基比较硬,砂砾在其上面划过,膜层相对不容易产生划痕;但是减反射膜镀于有机镜片上时,由于片基较软,砂砾在膜层上划过,膜层很容易产生划痕。

因此有机镜片在镀减反射膜前必须要镀抗磨损膜,而且两种膜层的硬度必须相匹配。二、减反射膜

(1)为什么需要镀减反射膜?

1)镜面反射光线通过镜片的前后表面时,不但会产生折射,还会产生反射。这种在镜片前表面产生的反射光会使别人看戴镜者眼睛时,看到的却是镜片表面一片白光。拍照时,这种反光还会严重影响戴镜者的美观。

2)"鬼影" 眼镜光学理论认为眼镜片屈光力会使所视物体在戴镜者的远点形成一个清晰的像,也可以解释为所视物的光线通过镜片发生偏折并聚集于视网膜上,形成像点。但是由于屈光镜片的前后表面的曲率不同,并且存在一定量的反射光,它们之间会产生内反射光。内反射光会在远点球面附近产生虚像,也就是在视网膜的像点附近产生虚像点。这些虚像点会影响视物的清晰度和舒适性。

3)眩光

象所有光学系统一样,眼睛并不完美,在视网膜上所成的像不是一个点,而是一个模糊圈。因此,二个相邻点的感觉是由二个并列的或多或少重叠的模糊圈产生的。只要二点之间的距离足够大,在视网膜上的成像就会产生二点的感觉,但是如果二点太接近,那么二个模糊圈会趋向与重合,被误认为是一个点。

对比度可以用来反映这种现象,表达视力的清晰度。对比值必须大于某一确定值(察觉阈,相当于1-2)才能够确保眼睛辨别二个邻近点。

对比度的计算公式为: D =(a-b)/(a+b)

其中C为对比度,二个相邻物点在视网膜上所成像的感觉最高值为a,相邻部份的最低值为

b。如果对比度C值越高,说明视觉系统对该二点的分辨率越高,感觉越清晰;如果二个物点非常接近,它们的相邻部分的最低值比较接近于最高值,则 C 值低,说明视觉系统对该

二点感到不清晰,或不能清晰分辨。

让我们来模拟这样一个场景产:夜晚,一位戴眼镜的驾车者清晰地看见对面远处有二辆自行车正冲着他的车骑过来。此时,尾随其后的汽车的前灯在驾车者镜片后表面上产生反射:该反射光在视网膜上形成的像增加了二个被观察点的强度(自行车车灯)。所以, a 段和b 段的长度增加,即然分母(a+b)增加,而分子(a-b)保持不变,于是就引起了C值的减少。对比减小的结果会令驾驶员最初产生的存在二个骑车人的感觉重合成为单一的像,就好比区分它们的角度被突然减小!

4)透过量

反射光占入射光的百分比取决于镜片材料的折射率,可通过反射量的公式进行计算。

反射量公式:R=( n-1)平方/(n+1)平方

R :镜片的单面反射量n:镜片材料的折射率

例如普通树脂材料的折射率为 1.50 ,反射光R = (1.50 —1 )平方/ (1.50 + 1)平方=0.

04 = 4%。

镜片有两个表面,如果R1 为镜片前表面的量,R2 为镜片后表面的反射量,则镜片的总反射量R = R1 + R2。(计算R2的反射量时,入射光为100% —R1 )。镜片的透光量T

=100%-R1-R2。

由此可见,高折射率的镜片如果没有减反射膜,反射光会对戴镜者带来的不适感比较强烈。

( 2)原理

减反射膜是以光的波动性和干涉现象为基础的。二个振幅相同,波长相同的光波叠加,那么光波的振幅增强;如果二个光波原由相同,波程相差,如果这二个光波叠加,那么互相

抵消了。减反射膜就是利用了这个原理,在镜片的表面镀上减反射膜,使得膜层前后表面产生的反射光互相干扰,从而抵消了反射光,达到减反射的效果。

1 )振幅条件

膜层材料的折射率必须等于镜片片基材料折射率的平方根。

2)位相条件

膜层厚度应为基准光的1/4波长。d=^ /4入=555nm时,d=555/4=139nm

对于减反射膜层,许多眼镜片生产商采用人眼敏感度较高的光波(波长为555nm) 。当镀膜

的厚度过薄(〈139nm), 反射光会显出浅棕黄色,如果呈蓝色则表示镀膜的厚度过厚( 〉1 39nm )。

镀膜反射膜层的目的是要减少光线的反射,但并不可能做到没有反射光线。镜片的表面也总会有残留的颜色,但残留颜色哪种是最好的,其实并没有标准,目前主要是以个人对颜色的喜好为主,较多为绿色色系。

我们也会发现残留颜色在镜片凸面与凹面的曲率不同也使镀膜的速度不同,因此在镜片

中央部分呈绿色,而在边缘部分则为淡紫红色或其它颜色。

3)镀减反射膜技术

有机镜片镀膜的难度要比玻璃镜片高。玻璃材料能够承受300 °C 以上的高温,而有机镜片在超过100 °C 时便会发黄,随后很快分解。

可以用于玻璃镜片的减反射膜材料通常采用氟化镁( MgF2 ),但由于氟化镁的镀膜工艺必须在高于200°C 的环境下进行,否则不能附着于镜片的表面,所以有机镜片并不采用它。

20 世纪90 年代以后,随着真空镀膜技术的发展,利用离子束轰击技术,使得膜层与镜片的结合,膜层间的结合得到了改良。而且提炼出的象氧化钛,氧化锆等高纯度金属氧化物材料可以通过蒸发工艺镀于树脂镜片的表面,达到良好的减反射效果。

以下对有机镜片的减反射膜镀膜技术作一介绍。

1)镀膜前的准备

镜片在接受镀膜前必须进行预清洗,这种清洗要求很高,达到分子级。在清洗槽中分别放置各种清洗液,并采用超声波加强清洗效果,当镜片清洗完后,放进真空舱内,在此过程

中要特别注意避免空气中的灰尘和垃圾再黏附在镜片表面。最后的清洗是在真空舱内,在此

过程中要特别注意避免空气中的灰尘和垃圾再黏附在镜片表面。最后的清洗是在真空舱内镀

前进行的,放置在真空舱内的离子枪将轰击镜片的表面(例如用氩离子),完成此道清洗工序后即进行减反射膜的镀膜。

2)真空镀膜

真空蒸发工艺能够保证将纯质的镀膜材料镀于镜片的表面,同时在蒸发过程中,对镀膜材料的化学成分能严密控制。真空蒸发工艺能够对于膜层的厚度精确控制,精度达到。

3)膜层牢固性

对眼镜片而言,膜层的牢固性是至关重要的,是镜片重要的质量指标。镜片的质量指标包括镜片抗磨损、抗文化馆、抗温差等。因此现在有了许多针对性的物理化学测试方法,在模拟戴镜者的使用条件下,对镀膜镜片进行膜层牢度质量的测试。这些测试方法包括:盐水试验、蒸汽试验、去离子水试验、钢丝绒磨擦试验、溶解试验、黏着试验、温差试验和潮湿度试验等等。

三、抗污膜(顶膜)

(1)原理

镜片表面镀有多层减反射膜后,镜片特别容易产生污渍,而污渍会破坏减反射膜的减反射效果。在显微镜下,我们可以发现减反射膜层呈孔状结构,所以油污特别容易浸润至减反射膜层。解决的方法是在减反射膜层上再镀一层具有抗油污和抗水性能的顶膜,而且这层膜必须非常薄,以使其不会改变减反射膜的光学性能。

(2)工艺抗污膜的材料以氟化物为主,有二种加工方法,一种是浸泡法,一种是真空镀膜,而最常见的方法是真空镀膜。而最常用的方法是真空镀膜。当减反射膜层完成后,可使用蒸发工艺将氟化物镀于反射膜上。抗污膜可将多孔的减反射膜层覆盖起来,并且能够将水和油与镜片的接触面积减少,使油和水滴不易粘附于镜片表面,因此也称为防水膜。

对于有机镜片而言,理想的表面系统处理应该是包括抗磨损膜、多层减反射膜和顶膜抗污膜的复合膜。通常抗磨损膜镀层最厚,约为3-5mm ,多层减反射膜的厚度约为0.3um ,

顶层抗污腊镀最薄,约为0.005 -0.01mm 。以法国依视路公司的钻晶(crizal),复合膜为例,在镜片的片基上首先镀上具有有机硅的耐磨损膜;然后采用IPC 的技术,用离子轰击进行镀减反射膜前的预清洗;清洗后采用高硬度的二氧化锆(ZrO2)等材料进行多层减反射膜层的真空镀制;最后再镀上具有110 的接触角度的顶膜。钻晶复合膜技术的研制成功表明了有机镜片的表面处理技术达到了一个新的高度。

磁控溅射镀膜原理和工艺设计

磁控溅射镀膜原理及工艺 摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。这里主要讲一下由溅射镀 膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。 关键词:溅射;溅射变量;工作气压;沉积率。 绪论 溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用二极溅射设备如右图。 通常将欲沉积的材料制成板材-靶,固定在阴 极上。基片置于正对靶面的阳极上,距靶一定距 离。系统抽至高真空后充入(10~1)帕的气体(通 常为氩气),在阴极和阳极间加几千伏电压,两极 间即产生辉光放电。放电产生的正离子在电场作 用下飞向阴极,与靶表面原子碰撞,受碰撞从靶 面逸出的靶原子称为溅射原子,其能量在1至几十 电子伏范围内。溅射原子在基片表面沉积成膜。 其中磁控溅射可以被认为是镀膜技术中最突出的 成就之一。它以溅射率高、基片温升低、膜-基结 合力好、装置性能稳定、操作控制方便等优点, 成为镀膜工业应用领域(特别是建筑镀膜玻璃、透 明导电膜玻璃、柔性基材卷绕镀等对大面积的均 匀性有特别苛刻要求的连续镀膜场合)的首选方 案。 1磁控溅射原理 溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区

真空蒸发和离子溅射镀膜

实验一真空蒸发和离子溅射镀膜 随着材料科学的发展,近年来薄膜材料作为其中的一个重要分支从过去体材料一统天下的局面中脱赢而出。如过去需要众多材料组合才能实现的功能,现在仅需数几个器件或一块 集成电路板就能完成,薄膜技术正是实现器件和系统微型化的最有效的技术手段。薄膜技术 还可以将各种不同的材料灵活的复合在一起,构成具有优异特性的复杂材料体系,发挥每种 材料各自的优势,避免单一材料的局限性。薄膜的应用范围越来越宽,按其用途可分为光学薄膜、微电子学薄膜、光电子学薄膜、集成光学薄膜、信息存储薄膜、防护功能薄膜等。目前,薄膜材料在科学技术和社会经济各个领域发挥着越来越重要的作用。因此薄膜材料的制 备和研究就显得非常重要。 薄膜的制备方法可分为物理法、化学法和物理化学综合法三大类。物理法主要指物理气 相沉积技术(Physical Vapor Deposition, 简称PVD),即在真空条件下,采用各种物理方法 将固态的镀膜材料转化为原子、分子或离子态的气相物质后再沉积于基体表面,从而形成固 体薄膜的一类薄膜制备方法。物理气相沉积过程可概括为三个阶段: 1.从源材料中发射出粒 子;2.粒子输运到基片;3.粒子在基片上凝结、成核、长大、成膜。由于粒子发射可以采用不同的方式,因而物理气相沉积技术呈现出各种不同形式,主要有真空蒸发镀膜、溅射镀膜 和离子镀膜三种主要形式。在这三种PVD基本镀膜方法中,气相原子、分子和离子所产生的方式和具有的能量各不相同,由此衍生出种类繁多的薄膜制备技术。本实验主要介绍了真空 蒸发和离子溅射两种镀膜技术。在薄膜生长过程中,膜的质量与真空度、基片温度、基片清 洁度、蒸发器的清洁度、蒸发材料的纯度、蒸发速度等有关。在溅射薄膜的生长过程中,气体流量(压力)也会对形成的薄膜的性质产生影响。通过改变镀膜条件,即可得到性质炯异的薄膜材料。 对制备的薄膜材料,可通过 X射线衍射、电子显微镜(扫描电镜、透射电镜等)、扫描探针(扫描隧道显微镜、原子力显微镜等)以及光电子能谱、红外光谱等技术来进行分析和 表征,还可通过其它现代分析技术测试薄膜的各种相应特性等。 【实验目的】 1?掌握溅射的基本概念,学习直流辉光放电的产生过程和原理; 2?掌握几种主要溅射镀膜法基本原理及其特点,掌握真空镀膜原理; 3.掌握真空镀膜和溅射镀膜的基本方法; 4?熟悉金属和玻璃片的一般清洗技术,学习薄膜厚度的测量方法; 5.了解真空度、基片温度、基片清洁度、蒸发器的清洁度、蒸发材料的纯度、蒸发速度等 因素,在薄膜生长过程中对形成薄膜性质的影响。 【实验原理】 一真空蒸发镀膜原理 任何物质在一定温度下,总有一些分子从凝聚态(固态,液态)变成为气态离开物质表 面,但固体在常温常压下,这种蒸发量是极微小的。如果将固体材料置于真空中加热至此材料蒸发温度时,在气化热作用下材料的分子或原子具有足够的热震动能量去克服固体表面原子间的吸引力,并以一定速度逸出变成气态分子或原子向四周迅速蒸发散射。当真空度高,分子平均自由程—远大于蒸发器到被镀物的距离d时(一般要求2~ 3 d ),材料的蒸气分子在散射途中才能无阻当地直线达到被镀物和真空室表面。在化学吸附(化学键力引起 的吸附)和物理吸附(靠分子间范德瓦尔斯力产生的吸附)作用下,蒸气分子就吸附在基片

镜片镀膜常识

镜片镀膜常识 镜面镀膜有三层: 外层防污膜是防灰尘和油渍; 中层防反射膜,是提高镜片光线通过率; 内层加硬膜是防止镜片磨损、刮花。 这三层镀膜,会使视线更明亮,在昏暗的环境下也不会灰蒙蒙,间接起到缓解视疲劳的作用。 镀膜镜片价格 质量好的镜片镀膜,价格几乎与镜片相同。如果有眼镜店说加层镀膜只多十几块钱,那消费者就要考虑真伪和质量问题了。而加膜之后,从侧面看镜片呈现紫色还是蓝色,只表明镀膜阻挡光线中的哪种颜色,没有品质上的区别。 加膜镜片有玻璃和树脂加膜镜片。 现在许多人配眼镜时,要求在镜片上加膜。镜片加膜主要有两种:一种是抗反射膜,即通过在镜片前表面镀上多层不同折射率与不同厚度的透明材料,利用光干涉的原理来减少镜片表面多余的反射光。镜片加了抗反射膜后,对光线的通透性会增加,佩戴者感觉眩光减少了,视物也更加真切和明亮。另一种是加硬膜,主要用于树脂镜片。它一般加在镜片前表面,使树脂镜片抗磨能力增强,同时光的通透性也有所加强。使用者在清洁加硬膜镜片时,应先用清水将镜片前后表面洗净,再用干净软布吸干,注意不要在镜片干燥时擦拭。如果普通的镜片可以看得很清楚,就不需要加膜,如果要加,树脂镜片可以加抗反射膜,也可以加硬膜,玻璃镜片一般只加抗反射膜。 原载:视客眼镜网

在磁粉探伤检测过程中,每个被检工件在磁化后,都要吸附一定数量的磁粉,因此,磁悬液使用一段时间后,应该测定磁悬液的浓度,以保证磁粉探伤的检测精度和可靠性。 一、用磁悬液浓度检测管测定 检测磁悬液浓度的准确方法是应用磁悬液浓度测定管——即磁粉沉淀管。 1、开启设备油泵十五分钟,待储液桶的磁悬液充分搅拌、均匀后,从油枪或喷淋系统取样100ml,装入磁悬液沉淀管,垂直静置放置。 2、煤油磁悬液和水剂磁悬液放置60分钟,变压器油和10#机油磁悬液放置24小时。 3、时间到后,观测磁粉沉淀管的磁粉沉淀刻度。 4、荧光磁粉的沉淀容积刻度为0.1~0.5ml,普通磁粉的沉淀容积刻度为1.2~2.5ml。 5、当磁粉的沉淀容积刻度在上述数值的下限值时,应添加相应的磁粉或重新调制磁悬液。 6、需要准确计算磁悬液的浓度时,应首先作出三种标准磁悬液(荧光磁粉磁悬液按:1g/L、2g/L、3g/L配置;非荧光磁粉磁悬液按:10g/L、20g/L、30g/L 配置,各取样品500ml)的浓度和沉淀高度的曲线,然后测出待检磁悬液的沉淀高度,用对比法进行计算。 7、完全沉淀后,磁悬液的载液很脏时,应该重新调制磁悬液。 二、根据经验和目测法判定 用户检测磁悬液浓度的最精确的方法是使用磁粉沉淀管。对于经验非常丰富的操作者或者没有购买磁粉沉淀管的用户来说,也可以根据经验用目测的方法来判断。 1、磁悬液的颜色变化很大,有很多脏物时,应重新调制磁悬液。 2、用户在探伤检测时,工件表面的磁粉分布较淡,或者根本没有磁痕堆积。应考虑添加磁粉或者重新调制磁悬液。

溅射技术及其发展的历程

溅射技术及其发展的历程 1842年格洛夫(Grove)在实验室中发现了阴极溅射现象。他在研究电子管阴极腐蚀问题时,发现阴极材料迁移到真空管壁上来了。但是,真正应用于研究的溅射设备到1877年才初露端倪。迄后70年中,由于实验条件的限制,对溅射机理的认同长期处于模糊不请状态,所以,在1950年之前有关溅射薄膜特性的技术资料,多数是不可*的。19世纪中期,只是在化学活性极强的材料、贵金属材料、介质材料和难熔金属材料的薄膜制备工艺中,采用溅射技术。1970年后出现了磁控溅射技术,1975年前后商品化的磁控溅射设备供应于世,大大地扩展了溅射技术应用的领域。到了80年代,溅射技术才从实验室应用技术真正地进入工业化大量生产的应用领域。最近15年来,进一步发展了一系列新的溅射技术,几乎到了目不暇接的程度。在21世纪来临的时刻,回顾一下溅射技术发展的历程,寻找其中某些规律性的思路,看来是有一定意义的。 1.最初溅射技术改革的原动力主要是围绕着提高辉光等离子体的离化率,增强离化的措施包括: [1]热电子发射增强—由原始的二极溅射演变出三极溅射。三极溅射应用的实际效果对离化率增强的幅度并不大,但是对溅射过程中,特别是在反应溅射过程中,工艺的可控性有明显地改善。 [2]电子束或电子弧柱增强—演变出四极溅射。Balzers一直抓住这条线,形成有其特色的产品系列,最近几年推出在中心设置一个强流热电子弧柱,配合上下两个调制线圈,再加上8对孪生靶,组合成新型纳米涂层工具镀膜机。是一个典型实例。 [3]磁控管模式的增强溅射—磁控溅射。利用磁控管的原理,将等离子体中原来分散的电子约束在特定的轨道内运转,局部强化电离,导致靶材表面局部强化的溅射效果。号称为“高速、低温”溅射技术。磁控溅射得到广泛应用的原因,除了效果明显之外,结构不复杂是一个重要的因数,大面积的溅射镀膜工艺得到推广。应该看到,靶面溅射不均匀导致靶材利用率低是其固有的缺点。 [4]最近有人推出离子束增强溅射模式。采用宽束强流离子源,配合磁场调制,与普通的二极溅射结合组成一种新的溅射模式。他不同于使用窄束高能离子束进行的离子束溅射(这种离子束溅射的溅射速率低),采用宽束强流离子源,配合磁场调制后,既有离子束溅射的效果,更重要的是具有直接向等离子体区域供应离子的增强溅射效果。同时还可以具有离子束辅助镀膜的效果。 2.1985年之后,溅射模式的变革增加了新的目标,除了继续追求高速率之外,追求反应溅射稳定运行的目标、追求离子辅助镀膜—获得高质量膜层的目标、等等综合优越性的追求目标日益增强。例如: [1]捷克人J.Musil在研究低压强溅射的工作中,在磁控溅射的基础上,重复使用各种原来在二极溅射增强溅射中使用过的手段。从“低压强溅射”一直发展到“自溅射”效应。其中大部分工作仍然处于实验室阶段。 [2]针对立体工件获得均匀涂层和色泽,Leybold推出对靶溅射运行模式。在随后不断改进的努力下,对靶溅射工艺仍然具有涂层质量优异的美名。 [3]针对膜层组分可随意调节的目标,推出非对称溅射的运行模式。我国清华大学范毓殿教授采用调节溅射靶磁场强度的方法,进行了类似的工作。 [4]推出非平衡溅射的运行模式最基本的目的是为了改善膜层质量,呈现离子辅助溅射的效果。后来,一些研究工作扩展磁场增强的布局,磁场在真空室内无处不在,看来效果并不理想,“非平衡”的热潮才逐渐降温。 [5]1996年Leybold 推出多年研发的成果:中频交流磁控溅射(孪生靶溅射)技术,消除了阳极”消失”效应和阴极“中毒”问题,大大提高了磁控溅射运行的稳定性,为化合物薄膜的工业化大规模生产奠定了基础。最近在中频电源上又提出短脉冲组合的中频双向供电模式,运行稳定性进一步提高。 [6]最近英国Plasma Quest Limited(PQL)公司推出S400型专利产品,名为“高密度等离子体发送系统”(High Plasma Launch System),属于上面提到的离子束增强二极溅射模式。其特点是:高成膜速率、

树脂镜片镀膜

树脂镜片镀膜 一.镜片的材料特性 眼镜片的光学目的旨在通过配戴矫正镜片使屈光不正的眼睛恢复清晰视力,所以在选用镜片材料时需要考虑以下这些与镜片屈光作用密切相关的因素: 1、材料的几何特性:曲率半径、表面形状等; 2、材料的物理化学特性:折射率、阿贝数等。 镜片材料的研究发展主要是为了获取并控制这些相关因素,了解并掌握其特性,以使不断完善、发展镜片的光学矫正效果。 镜片材料的基本特性有: 1、光学性质,计算屈光作用和控制光学性能; 2、机械和热性质; 3、电性质材料; 4、化学性质通过外界所可能接触的化学物质了解材料的相应变化。 一、光学性质:光学性质是材料的基本性质,与镜片在日常生活中所见到的各种光学现象相符合,主要为光线在镜片表面的折射和反射、材料本身的吸收,以及散射和衍射现象。(1)光线折射:通过镜片的光线会在镜片的前后表面发生折射或偏离现象,光线的偏离幅度由材料的折射率和入射光线在镜片表面的入射角度决定。 1)折射率:透明媒质的折射率是光线在真空中的速度c与在媒质中的速度v的比值, n=c/v。该比值没有单位并且总是大于1。折射率反映媒质的折射能力,折射率越高,从空气进入该媒介的光束偏离得越多。从空气到折射率为n的透明媒质所发生的偏离或折射可以根据斯涅耳-笛卡尔定律(Snell-Descartes Law)进行计算,规定如下:折射光线与入射光线和法线位于同一平面入射角i和折射角r分别由法线与入射光线、折射光线构成。计算公式:sin i=n sin r 由于透明媒质的光速随着波长而变化,所以折射率的值总是参考某一特定波长 表示:在欧洲和日本,参考波长为e线546.07nm(汞--绿光谱线),但是在美国等其它 国家则是d线587.56nm(氦--黄光谱线)。但这个区别并没有造成实际影响,因为它的 区别仅仅反映在折射率值的第三位小数上。 目前市场所采用的镜片材料的折射率范围是从1.5--1.9。 2)色散系数:阿贝数。 由光波引起的折射率变化会使白光根据不同的折射产生色散现象。事实上,波长越短,折射率越高,可见光的折射从光谱的红光区延伸到蓝光区。材料的色散能力可以由阿贝数描述,在欧洲、日本规定用e线,在美国等其他国家规定使用d线。 阿贝数与材料的色散力成反比,镜片材料规定的范围通常从30-60,数值越大即表示色散越少。一般而言,折射率越高,色散力越大,而阿贝数就越低。尽管所有镜片都存在色散,但在镜片中心,这个因素可以被忽略,只有在用高色散材料制造的镜片周边部,色散现象才易被察觉。在这种情况下,色散现象所表现的是离轴物体边缘带有彩色条纹。 (2)光线反射 光线在镜片表面产生折射的同时,也会产生反射现象。光线反射会影响镜片的清晰度,而且在镜片表面会产生干扰性反射光。通常,镜片材料的折射率越高,因反射而损失的光线就越多。当然,对于干扰性反射光可以通过在镜片表面镀多层减反射膜而相应抵消。(3)光线吸收:材料的本身吸收光的特性会减少镜片的光线透过率,这部分的光量损失对于非染色眼镜片是可以忽略的,但如果为染色或变色镜片,光的吸收量会很大,这也是此类镜

溅射镀膜

溅射镀膜介绍 一: 溅射镀膜应用: 溅射镀膜主要用于半导体生产的金属薄膜的生长.如下图的金属层1到金属层6都是运用溅射镀膜所生产. 溅射镀膜到形成所需的金属线的过程为: 溅射镀膜--→光照显影--→蚀刻(形成金属连接线) 二: 溅射镀膜原理 溅射淀积(溅射)是另一种老工艺,能够适应现代半导体制造需要。它几乎可以在任何衬底上淀积任何材料,而且广泛应用在人造珠宝涂层,镜头和眼镜的光学涂层的制造。

在真空反应室中,由镀膜所需的金属构成的固态厚板被称为靶材(target)(图1),靶材接阴极,衬底接阳极并接地。首先将氩气充入室内,并且电离成正电荷。带正电荷的氩离子被不带电的靶吸引,加速冲向靶。在加速过程中这些离子受到引力作用,获得动量,轰击靶材。这样在靶上就会出现动量转移现象(momentum transfer)。正如在桌球,球杆把能量传递到其他球,使它们分散一样,氩离子轰击靶,引起其上的原子分散。被氩离子从靶上轰击出的原子和分子进入反应室。这就是溅射过程。从靶上轰击出原材料之后,氩离子、轰击出的原材料、气体原子和溅射工艺所产生的电子在靶前方形成一个等离子区域。等离子区是可见的,呈现紫色。而黑色区域将等离子区和靶分开,我们称之为暗区(dark space)。 图1 溅射工艺的原理 被轰击出的原子或分子散布在反应室中,其中一部分渐渐地停落在晶圆上,形成薄膜,溅射工艺的主要特征是淀积在晶圆上的靶材不发生化学或合成变化。形成薄膜的过程有如下几个过程(图2所示): 1长晶 2 晶粒成长 3 晶粒聚集 4 缝隙填补 5 沉积膜的成长

图2 溅射工艺的原理 三:溅射镀膜相对于真空蒸发优点: 1 靶材的成分不会改变。这种特征的直接益处就是有利于合金膜和绝缘膜的淀积。合金真空蒸发的问题在前一部分已作描述。对于溅射工艺来说,含有2%铜的铝靶材就可以在晶圆上生长出含有2%铜的铝薄膜。 2 阶梯覆盖度也可以通过溅射改良。蒸发来自于点源,而溅射来自平面源。因为金属微粒被从靶材各个点溅射出来的,所以在到达晶圆承载台时,它们可以从各个角度覆盖晶圆表面。阶梯覆盖度还可以通过旋转晶圆和加热晶圆,得到进一步的优化。 3溅射形成的薄膜对晶圆表面的粘附性也比蒸发工艺提高很多。首先,轰击出的原子在到达晶圆表面时的能量越高,因而所形成薄膜的粘附性就越强。其次,反应室中的等离子环境有“清洁”5晶圆表面的作用,从而增强了粘附性。因此在淀积薄膜之前,将晶圆承载台停止运动,对晶圆表面溅射一小段时间,可以提高粘附性和表面洁净度。在这种模式下,溅射系统所起的作用与在第十章介绍的离子刻蚀(溅射刻蚀,反溅射)设备一样。 4溅射最大的贡献恐怕就是对薄膜特性的控制了。这种控制是通过调节溅射参数达到的,包括压力、薄膜淀积速率和靶材。通过多种靶材的排列,一种工艺就可以溅射出像三明治一样的多层结构。 5清洁干燥的氩气(或氖气)可以保持薄膜的成分特征不变,而且低湿度可以阻止薄膜发生不必要的氧化。反应室装载晶圆之后,泵开始抽气(向外),将其压力减小到1×10-9托左右。然后充入氩气,并使其电离。要严格控制进入室内的氩气的量,因为氩气增多会造成室内压力升高。由于氩气和轰击出的原材料存在,室内压力将上升到大约10-3托。 四:溅射分类: 1直流溅射 在反应室中,靶接负电压呈阴极;而衬底呈阳极。带负电的靶驱逐电子,使其加速飞向阳极。在运动过程中,电子与氩原子碰撞,使氩原子电离成氩离子。具有正电性的氩离子加速飞向靶,开始溅射工艺。氩离子(+)和靶(-)形成了两极。

(完整版)(整理)镜片镀膜技术原理

镜片镀膜技术原理 原理 内容: 一、耐磨损膜(硬膜)无论是无机材料还是有机材料制成的眼镜片,在日常的使用中,由于与灰尘或砂砾(氧化硅)的摩擦都会造成镜片磨损,在镜片表面产生划痕。与玻璃片相比,有机材料制成的硬性度比较低,更易产生划痕。通过显微镜,我们可以观察到镜片表面的划痕主要分为二种,一是由于砂砾产生的划痕,浅而细小,戴镜者不容易察觉;另一种是由较大砂砾产生的划痕,深且周边粗糙,处于中心区域则会影响视力。 (1)技术特征 1)第一代抗磨损膜技术 抗磨损膜始于20 世纪70 年代初,当时认为玻璃镜片不易磨制是因为其硬度高,而有机镜片则太软所以容易磨损。因此将石英材料于真空条件下镀在有机镜片表面,形成一层非常硬的抗磨损膜,但由于其热胀系数与片基材料的不匹配,很容易脱膜和膜层脆裂,因此抗磨损效果不理想。 2)第二代抗磨损膜技术 20 世纪80 年代以后,研究人员从理论上发现磨损产生的机理不仅仅与硬度相关,膜层材料具有“硬度/形变”的双重特性,即有些材料的硬度较高,但变形较小,而有些材料硬度较低,但变形较大。第二代的抗磨损膜技术就是通过浸泡工艺法在有机镜片的表面镀上一种硬度高且不易脆裂的材料。 3)第三代抗磨损膜技术第三代的抗磨损膜技术是20 世纪90 年代以后发展起来的,主要是为了解决有机镜片镀上减反射膜层后的耐磨性问题。由于有机镜片片基的硬度和减反射膜层的硬度有很大的差别,新的理论认为在两者之间需要有一层抗磨损膜层,使镜片在受到砂砾磨擦时能起缓冲作用,并而不容易产生划痕。第三代抗磨损膜层材料的硬度介于减反射膜和镜片片基的硬度之间,其磨擦系数低且不易脆裂。 4)第四代抗磨损膜技术第四代的抗膜技术是采用了硅原子,例如法国依视路公司的帝镀斯(TITUS )加硬液中既含有有机基质,又含有包括硅元素的无机超微粒物,使抗磨损膜具备韧性的同时又提高了硬度。现代的镀抗磨损膜技术最主要的是采用浸泡法,即镜片经过多道清洗后,浸入加硬液中,一定时间后,以一定的速度提起。这一速度与加硬液的黏度有关,并对抗磨损膜层的厚 度起决定作用。提起后在100 °C左右的烘箱中聚合4—5小时,镀层厚约 3 —5微米。 (2)测试方法判断和测试抗磨损膜耐磨性的最根本的方法是临床使用,让戴镜者配戴一段时间,然后 用显微镜观察并比镜片的磨损情况。当然,这通常是在这一新技术正式推广前所采用的方法,目前我们常用的较迅速、直观的测试方法是: 1 )磨砂试验将镜片置于盛有砂砾的宣传品内(规定了砂砾的粒度和硬度),在一定的控制 下作来回磨擦。结束后用雾度计测试镜片磨擦前后的光线漫反射量,并且与标准镜片作比较。 2)钢丝绒试验 用一种规定的钢丝绒,在一定的压力和速度下,在镜片表面上磨擦一珲的次数,然后用雾度计测试镜片磨擦前后的光线漫反射量,并且与标准镜片作比较。当然,我们也可以手工操作,对二片镜片用同样的压力磨擦同样的次数,然后用肉眼观察和比较。

树脂镜片的镀膜技术

树脂镜片的镀膜技术 大约1970年,树脂材料开始尝试作为眼镜片的新材料,自此,视光技术迅速发展,CR39,PMMA,PC这些折射率在1.52-1.65的材料开始用于眼镜基片,眼镜已不仅仅作为视力较正的工具,更成为一种装饰品来表达个性。 1. 玻璃镜片 近年为,由于树脂镜片的引进,玻璃镜片的重要性及销售量大大地减少,但即使今日,玻璃镜片也有一些树脂无法比拟的优点,如 l 硬度 l 方便擦洗 l 热稳定性 l 可镀性 玻璃比树脂有好的可镀性,玻璃镜片可加热到300度(而树脂只能加热到80度)所以很容易在玻璃片上镀上硬且牢固的增透膜,而且膜料更容易选择。为了取得最好的增透效果,最外面的膜层(与空气接触的一层)的折射率越低越好,通常玻璃镜片的最外层选用折射率1.38的氟化镁,在大于250度的情况下,氟化镁膜层非常牢固,而且其是目前可选择的最低折射率膜料。而树脂眼镜只能加热到80度,所以必须选择更高折射率的膜料,现在市场上主要使用折射率1.46的二氧化硅膜料。这也是为什么玻璃镜片比树脂镜片有更好的透过率。目前在美国,日本树脂片市场占有率大于90%,欧州约50%,而在欠发达国家玻璃镜片仍然占有绝大部分市场。目前中国眼镜市场正由玻璃向树脂过渡。 2.树脂镜片 虽然树脂有差的可镀性,但其优点也非常突出 l 不易碎 l 轻 l 易加工 当然其缺陷也众所周知:镜片软,抗刮能力低。但由于视光技术的日益近步,目前通过适当的镀膜工艺可以弥补这些缺点。 尽管镀膜本身与树脂镜片有一些难以调和的矛盾,如热敏感性,热膨胀系数,这些性质使基片与膜层之前有非常大的内应力,膜层易碎。为了得到最好的膜层,目前树脂镀膜由四部分组成, l 交联层 l 加硬(如果用浸入式加硬,可以使交联与加硬一次完成) l 增透膜 l 防水膜 3.联结层 树脂镜片出厂后,他们将面对不同厂家的生产条件,如不可控的潮湿度,过长或不正确的包装等。没有镀膜的镜片有不同的表面结构,而且要经过多次清洗,腐蚀和污染。为了向客户提供高度一致性的基片,所以要在基片上镀一层联结层,通常用铬,三氧化二铬,二氧化硅,一氧化硅和其它特别材料。 联结层必须很薄(2-5nm),否则就会应力或影响光学性质。 4.硬膜

眼镜镜片知识必备知识大全

眼镜镜片知识必备知识大全 1、镜片材料有哪几种? 天然材科:水晶石,硬度高、不易研磨,能透过紫外线,有双折射作用。 人工材料:包括无机玻璃、有机玻璃和光学树脂等。 ①无机玻璃:是由二氧化硅、钙、铝、钠、钾等冶炼而成,透明度好。 ②有机玻璃:化学成分为聚甲基丙烯酸甲脂。 ③光学树脂:化学成分是丙烯基二甘醇碳酸脂。优点是,重量轻,耐冲击,浇铸成型,易染色。 2、树脂镜片的优缺点? 优点:重量轻,不易碎,碎了也无棱角,安全 缺点:不耐磨镜片厚价格稍高

3、玻璃镜片的优缺点? 优点:耐磨镜片薄光学性能好价格低 缺点:重易碎不安全 4、树脂与比玻璃片二者的区别? 选材工艺不一样,树脂片是一种特殊材料—聚碳酸脂制成的,材料造价也不一样,所以树脂镜片价位高一点。二者区别在于树脂镜片的工艺比玻璃的高,树脂轻、不易碎,阻挡紫外线、透光度好、易染色,比玻璃安全、美观;玻璃镜片重、易碎,比树脂片薄,耐高温。树脂片没有玻璃片硬度高,易划伤。二者各有特点,各有所长。儿童、青少年建议配树脂片。 5、镜片安全中心厚度(国际的)? 树脂 1.0MM 玻璃0.7MM 6、阿贝数同色散、折射率的关系? 阿贝数同色散是反比关系通常来说阿贝数同折射率也是反比关系 7、树脂镜片有哪些折射率? 1.499 1.56 1.61 1.67 1.701 1.74 8、不同折射率的镜片我该选哪种? 500度以内1.56/1.61,500-800度建议1.61-1.67,800度以上建议1.67-1.74。 9、何为光学中心? 镜片上光线通过,而不改变自身方向的点。

10、什么叫双光镜片? 同一镜片具有二个光度,上光为远用区域,下光为近用区域。 11、多焦点镜片有何特点? 一副眼镜看远中近距离,无缝隙,美观,对于青少年能控制近视,中老年老花眼患者可以使生活更便捷。 12、何为加硬镜片? 加硬,顾名思义,就是镜片比普通镜片更硬,加硬片具有超强耐磨的特性,原理就是在镜片的表面镀有特殊的超微粒加硬处理,增强镜片的抗磨损耐力,延长使用寿命。 13、什么是PC片,适合哪些人群? 俗称太空片,宇宙片。适合青少年,危险作业者,低度数配无框架者。14、天然水晶片与合成水晶片有何区别?怎样鉴别? 天然水晶是一种然透明的石英结晶体,合成水晶是经过人为加工的,含杂质少。要到专门的珠宝鉴定部门用专门的仪器才能鉴别。但真正的天然水晶都应有宝石鉴定部门盖章认可的鉴定书,而合成的则没有。两者色泽不同,天然水晶有棉状或冰冻花纹等。 15、有人讲水晶镜片可以养目,这种说法对吗? 错,天然水晶包含很多杂质且光学性能差,安全性能弱,不阻挡红外线和紫外线。

真空蒸发和离子溅射镀膜

实验一 真空蒸发和离子溅射镀膜 随着材料科学的发展,近年来薄膜材料作为其中的一个重要分支从过去体材料一统天下的局面中脱赢而出。如过去需要众多材料组合才能实现的功能,现在仅需数几个器件或一块集成电路板就能完成,薄膜技术正是实现器件和系统微型化的最有效的技术手段。薄膜技术还可以将各种不同的材料灵活的复合在一起,构成具有优异特性的复杂材料体系,发挥每种材料各自的优势,避免单一材料的局限性。薄膜的应用围越来越宽,按其用途可分为光学薄膜、微电子学薄膜、光电子学薄膜、集成光学薄膜、信息存储薄膜、防护功能薄膜等。目前,薄膜材料在科学技术和社会经济各个领域发挥着越来越重要的作用。因此薄膜材料的制备和研究就显得非常重要。 薄膜的制备方法可分为物理法、化学法和物理化学综合法三大类。物理法主要指物理气相沉积技术(Physical Vapor Deposition,简称PVD),即在真空条件下,采用各种物理方法将固态的镀膜材料转化为原子、分子或离子态的气相物质后再沉积于基体表面,从而形成固体薄膜的一类薄膜制备方法。物理气相沉积过程可概括为三个阶段:1.从源材料中发射出粒子;2.粒子输运到基片;3.粒子在基片上凝结、成核、长大、成膜。由于粒子发射可以采用不同的方式,因而物理气相沉积技术呈现出各种不同形式,主要有真空蒸发镀膜、溅射镀膜和离子镀膜三种主要形式。在这三种PVD 基本镀膜方法中,气相原子、分子和离子所产生的方式和具有的能量各不相同,由此衍生出种类繁多的薄膜制备技术。本实验主要介绍了真空蒸发和离子溅射两种镀膜技术。在薄膜生长过程中,膜的质量与真空度、基片温度、基片清洁度、蒸发器的清洁度、蒸发材料的纯度、蒸发速度等有关。在溅射薄膜的生长过程中,气体流量(压力)也会对形成的薄膜的性质产生影响。通过改变镀膜条件,即可得到性质炯异的薄膜材料。 对制备的薄膜材料,可通过X 射线衍射、电子显微镜(扫描电镜、透射电镜等)、扫描探针(扫描隧道显微镜、原子力显微镜等)以及光电子能谱、红外光谱等技术来进行分析和表征,还可通过其它现代分析技术测试薄膜的各种相应特性等。 【实验目的】 1.掌握溅射的基本概念,学习直流辉光放电的产生过程和原理; 2.掌握几种主要溅射镀膜法基本原理及其特点,掌握真空镀膜原理; 3.掌握真空镀膜和溅射镀膜的基本方法; 4.熟悉金属和玻璃片的一般清洗技术,学习薄膜厚度的测量方法; 5.了解真空度、基片温度、基片清洁度、蒸发器的清洁度、蒸发材料的纯度、蒸发速度等因素,在薄膜生长过程中对形成薄膜性质的影响。 【实验原理】 一 真空蒸发镀膜原理 任何物质在一定温度下,总有一些分子从凝聚态(固态,液态)变成为气态离开物质表面,但固体在常温常压下,这种蒸发量是极微小的。如果将固体材料置于真空中加热至此材料蒸发温度时,在气化热作用下材料的分子或原子具有足够的热震动能量去克服固体表面原子间的吸引力,并以一定速度逸出变成气态分子或原子向四周迅速蒸发散射。当真空度高,分子平均自由程λ远大于蒸发器到被镀物的距离d 时(一般要求()d 3~2λ=),材料的蒸气分子在散射途中才能无阻当地直线达到被镀物和真空室表面。在化学吸附(化学键力引起

眼镜片的镀膜工艺

一、耐磨损膜(硬膜) 无论是无机材料还是有机材料制成的眼镜片,在日常的使用中,由于与灰尘或砂砾(氧化硅)的摩擦都会造成镜片磨损,在镜片表面产生划痕。我们可以观察到镜片表面的划痕主要分为二种,一是由小砂砾产生的划痕,深且周边粗糙,处于中心区域则会影响视力。 (1)技术特征 1)第一代抗磨损膜技术 抗磨损膜始于20世纪70年代初,当时认为玻璃镜片不易磨损是因为其硬度高,而有机镜片则太软所以容易磨损。因此将石英材料于真空条件下镀在有机镜片表面,形成一层非常硬的抗磨损膜,但由于其热胀系数与片基材料的不匹配,很容易脱膜和膜层脆裂,因此抗磨损效果不理想。 2)第二代抗磨损膜技术 20世纪80年代以后,研究人员理论上发现磨损产生的机理不仅仅与硬度相关,膜层材料具有“硬度/形变”的双重特征,即有些材料的硬度较高,但变形较小,而有些材料硬度较低,但变形较大。第二代的抗磨损膜技术就是通过浸泡工艺法在有机镜片的表面镀上一种硬度高且不易脆裂的材料。 3)第三代抗磨损膜技术 第三代的抗磨损膜技术是20世纪90年代以后发展起来的,主要是为了解决有机镜片镀上减反射膜层后的耐磨性问题。由于有机镜片基的硬度和减反射膜层的硬度有很大的差别,新的理论认为在两者之间需要有一层抗磨膜层,使镜片在受到砂砾磨擦时能起缓冲作用,并而不容易产生划痕。第三代抗磨损膜层材料的硬度介于减反射膜和镜片片基的硬度之间,其摩擦系数且不易脆裂。 4)第四代抗磨损膜技术 第四代的抗磨损膜技术是采用了硅原子,在加硬液中既含有机基质,又含有包括硅元素的无机超微粒物,使抗磨损膜具备韧性的同时又提高了硬度。现代的镀抗磨损膜技术最主要的是采用浸泡法,即镜片经过多道清洗后,浸入加硬液中,一定时间后,以一定的速度提起。这一速度与硬液的黏度有关,并对抗磨损膜层的厚度起决定作用。提起后在100℃左右的烘箱中聚合4-5小时,镀层厚约3-5微米(图11) (2)测试方法 判断和测试抗磨损膜耐磨性的最根本的方法是临床使用,让戴镜者配戴一段时间,然后用显微镜观察并比较镜片的磨损情况。当然,这通常是在这一新技术正式推广前所采用的方法,目前我们常用的较迅速、直观的测试方法是:1)磨砂试验 将镜片置于盛有砾的容器内(规定了砂砾的粒度和硬度),在一定的控制下作来回摩擦。结束后用雾度计测试镜片摩擦前后的光线漫反射量,并且与标准镜片作比较。 2)钢丝绒试验 用一种规定的纲丝绒,在一定的压力和速度下,在镜片表面上磨擦一定的次数,然后用雾度计测试镜片摩擦前后的光线漫反射量,并且与标准镜片作比较。当然,我们也可以手工操作,对二片镜片用同样的压力摩擦同样的次数,然后用肉眼观察和比较。 上述两种测试方法和结果与戴镜者长期配戴的临床结果比较接近。 3)减反射膜和抗磨损膜的关系

眼镜镜片知识

眼镜镜片知识 59、镜片材料有哪几种? 天然材科:水晶石,硬度高、不易研磨,能透过紫外线,有双折射作用。 人工材料:包括无机玻璃、有机玻璃和光学树脂等。 ①无机玻璃:是由二氧化硅、钙、铝、钠、钾等冶炼而成,透明度好。 ②有机玻璃:化学成分为聚甲基丙烯酸甲脂。 ③光学树脂:化学成分是丙烯基二甘醇碳酸脂。优点是,重量轻,耐冲击,浇铸成型,易染色。 60、树脂镜片的优缺点? 优点:重量轻,不易碎,碎了也无棱角,安全 缺点:不耐磨镜片厚价格稍高 61、玻璃镜片的优缺点? 优点:耐磨镜片薄光学性能好价格低 缺点:重易碎不安全 62、树脂与比玻璃片二者的区别? 选材工艺不一样,树脂片是一种特殊材料—聚碳酸脂制成的,材料造价也不一样,所以树脂镜片价位高一点。二者区别在于树脂镜片的工艺比玻璃的高,树脂轻、不易碎,阻挡紫外线、透光度好、易染色,比玻璃安全、美观;玻璃镜片重、易碎,比树脂片薄,耐高温。树脂片没有玻璃片硬度高,易划伤。二者各有特点,各有所长。儿童、青少年建议配树脂片。

63、镜片安全中心厚度(国际的)? 树脂 1.0MM 玻璃0.7MM 64、阿贝数同色散、折射率的关系? 阿贝数同色散是反比关系通常来说阿贝数同折射率也是反比关系 65、树脂镜片有哪些折射率? 1.499 1.56 1.61 1.67 1.701 1.74 66、不同折射率的镜片我该选哪种? 500度以内1.56/1.61,500-800度建议1.61-1.67,800度以上建议1.67-1.74。 67、何为光学中心? 镜片上光线通过,而不改变自身方向的点。 68、什么叫双光镜片? 同一镜片具有二个光度,上光为远用区域,下光为近用区域。 69、多焦点镜片有何特点? 一副眼镜看远中近距离,无缝隙,美观,对于青少年能控制近视,中老年老花眼患者可以使生活更便捷。 70、何为加硬镜片? 加硬,顾名思义,就是镜片比普通镜片更硬,加硬片具有超强耐磨的特性,原理就是在镜片的表面镀有特殊的超微粒加硬处理,增强镜片的抗磨损耐力,延长使用寿命。

溅射镀膜技术

溅射镀膜技术 薄膜是一种特殊的物质形态,由于其在厚度这一特定方向上尺寸很小,只是微观可测的量,而且在厚度方向上由于表面、界面的存在,使物质连续性发生中断,由此使得薄膜材料产生了与块状材料不同的独特性能。薄膜的制备方法很多,如气相生长法、液相生长法(或气、液相外延法)、氧化法、扩散与涂布法、电镀法等等,而每一种制膜方法中又可分为若干种方法。薄膜技术涉及的范围很广,它包括以物理气相沉积和化学气相沉积为代表的成膜技术,以离子束刻蚀为代表的微细加工技术,成膜、刻蚀过程的监控技术,薄膜分析、评价与检测技术等等。现在薄膜技术在电子元器件、集成光学、电子技术、红外技术、激光技术以及航天技术和光学仪器等各个领域都得到了广泛的应用,它们不仅成为一间独立的应用技术,而且成为材料表面改性和提高某些工艺水平的重要手段。 溅射是薄膜淀积到基板上的主要方法。溅射镀膜是指在真空室中,利用荷能粒子轰击镀料表面,使被轰击出的粒子在基片上沉积的技术。 一.溅射工艺原理 溅射镀膜有两类:离子束溅射和气体放电溅射 1. 离子束溅射:在真空室中,利用离子束轰击靶表面,使溅射出的粒子在基片

表面成膜。 特点:①离子束由特制的离子源产生 ②离子源结构复杂,价格昂贵 ③用于分析技术和制取特殊薄膜 2. 气体放电溅射:利用低压气体放电现象,产生等离子体,产生的正离子,被电场加速为高能粒子,撞击固体(靶)表面进行能量和动量交换后,将被轰击固体表面的原子或分子溅射出来,沉积在衬底材料上成膜的过程。 二. 工艺特点 1.整个过程仅进行动量转换,无相变 2.沉积粒子能量大,沉积过程带有清洗作用,薄膜附着性好 3.薄膜密度高,杂质少 4.膜厚可控性、重现性好 5.可制备大面积薄膜 6.设备复杂,沉积速率低。 三.溅射的物理基础——辉光放电 溅射镀膜基于高能粒子轰击靶材时的溅射效应。整个溅射过程是建立在辉光放电的基础上,使气体放电产生正离子,并被加速后轰击靶材的离子离开靶,沉积成膜的过程。 不同的溅射技术采用不同的辉光放电方式,包括:直流辉光放电—直流溅射、射频辉光放电—射频溅射和磁场中的气体放电—磁控溅射 1. 直流辉光放电指在两电极间加一定直流电压时,两电极间的稀薄气体(真空度约为13.3-133Pa)产生的放电现象。 2. 射频辉光放电指通过电容耦合在两电极之间加上射频电压,而在电极之间产生的放电现象。电子在变化的电场中振荡从而获得能量,并且与原子碰撞产生离子和更多的电子。 3. 电磁场中的气体放电在放电电场空间加上磁场,放电空间中的电子就要围绕磁力线作回旋运动,其回旋半径为eB/mv,磁场对放电的影响效果,因电场

EMI溅射镀膜的原理 - 硬件和射频工程师

什么是EMI 电磁兼容性(Electro magnetic Compatibility)缩写EMC,就是指某电子设备既不干扰其它设备,同时也不受其它设备的影响。电磁兼容性和我们所熟悉的安全性一样,是产品质量最重要的指标之一。安全性涉及人身和财产,而电磁兼容性则涉及人身和环境保护。 电磁波会与电子元件作用,产生干扰现象,称为EMI(Electromagnetic Interference)。例如,TV 荧光屏上常见的“雪花”便表示接受到的讯号被干扰。 为什么要做EMI镀膜 一. 技术驱动力 设备的小型化使源与敏感器靠得很近。这使传播路径缩短,增加了干扰的机会。器件的小型化增加了它们对干扰的敏感度。由于设备越来越小并且便于携带,象汽车电话、膝上计算机等设备随处可用,而不一定局限于办公室那样的受控环境。这也带来了兼容性问题。例如,许多汽车装有包括防抱死控制系统在内的大量的电子电路,如果汽车电话与这个控制系统不兼容,则会引起误动作。 互联技术的发展降低了电磁干扰的阈值。例如,大规模集成电路芯片较低的供电电压降低了内部噪声门限,而它们精细的几何尺寸的较低的电平下就受到电弧损坏。它们更快的同步操作产生更尖的电流脉冲,这会带来从I/O端口产生宽带发射的问题。一般来说,高速数字电路比传统的模拟电路产生更多的干扰。 传统上,电子线路装在金属盒内,这种金属盒能够通过切断电磁能量的传插路径来提供屏蔽作用。现在,为了减轻重量、降低成本,越来越多地采用塑料机箱。塑料机箱对与电磁干扰是透明的,因此敏感器件处于无保护的状态。 法律的变化也是驱动力之一。控制电磁发射和敏感度的强制标准的实施,迫使制造商们实施EMC计划。产品可靠性的法规将使可靠性成为头等重要的事项,因为一旦设备由于干扰而产生误动作造成伤害,制造商要承担法律责任。这对于医疗设备特别重要。 在竞争日益激烈的工业中,可靠性已经成为电子设备的一个重要市场特征。自动化设备,特别是医疗设备,必须连续工作,这时设备内的EMI屏蔽技术提高了设备的可靠性。 对于数据保密的要求是屏蔽市场发展的一个重要动力。已有报道揭露美国驻莫斯科使馆追究中的信息已被前苏联窃取到,这是通过接收使馆内设备产生的电磁能量来实现的。同样的技术也被用来截获密码,然后攻击银行计算机系统。通过屏蔽,设备的电磁发射能够减小,提高系统的安全性。 现在,人们越来越开始注意各种辐射对健康的影响。过量的X射线和紫外线照射的危险已经被充分证明了。现在讨论的焦点是微波和射频显示单元产生的辐射对妇女健康的伤害,因为已经有充分的证据说明在高压线附近生活会患疾病。 二. 法规和标准 现在有许多关于产品辐射和传导发射限制的国家标准和国际标准。有些还规定了对各种干扰的最低敏感度要求。通常,对于不同类型的电子设备有不同的标准。虽然一个产品要获得市场的成功,满足这些标准是必要的,但符合这些标准是自愿的。 但是,有些国家给出的是规范,而不是标准,因此要在这些国家销售产品,符合标准是强制性的。有些规范不仅规定了标准,还赋予当局罚没不符合产品的权力。 三. 市场因素 笔记本电脑,ADSL和移动电话等3C产品都会因高频电磁波干扰产生杂讯,影响通讯品质。另若人体长期暴露于强力电磁场下,则可能易患癌症病变。因此防电磁波干扰已是必备而且势在必行的制程。 怎么做EMI防护

磁控溅射镀膜的简介及其实际操作

磁控溅射镀膜的简介及其实际操作 作者:徐超群 作者单位:乐山师范学院物理与电子工程系 【摘要】溅射技术的最新成就之一是磁控溅射。对于二级溅射、偏压溅射、三级或四级溅射和射频溅射而言。它们的缺点是沉积速率较低,特别是阴极溅射。因为它们在放电过程中只有大约0.3~0.5%的气体分子被电离。为了在低气压下进行高速溅射,必须有效的提高气体的离化率。由于在磁控溅 射中引入了正交电磁场使离化率提高到5~6%。于是溅射速率比三级溅射提高10倍左右,对许多材料,溅射速率达到了电子束蒸发的水平。 【关键字】溅射电子电场磁场高速 1.磁控溅射的工作原理: 电子e在电厂E的作用下在飞向基板的过程中与Ar原子发生碰撞使其电离Ar+和一个新的电子e,电子飞向基片,Ar+在电场的作用下加速飞向阴极靶,并以高能能量轰击靶表面使靶材发生溅射,在溅射粒子中,中性的靶原子或分子则由于不显电性而直接沉积在基片上形成薄膜。二次电子e一旦离开了靶面,就会同时受到电场和磁场的作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。 综上所述:磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。

眼镜片镀膜及镜片制造

眼镜片镀膜及镜片制造 《眼镜片镀膜及镜片制造》 类别: 行业科普 作者/编辑部: 8127眼镜科技热线 摘要/简介: 内容: 第一章镜片材料特性 眼镜片的光学目的旨在通过配戴矫正镜片使屈光不正的眼睛恢复清晰视力,所以在选用镜片材料时需要考虑以下这些与镜片屈光作用密切相关的因素: 1、材料的几何特性:曲率半径、表面形状等; 2、材料的物理化学特性:折射率、阿贝数等。 镜片材料的研究发展主要是为了获取并控制这些相关因素,了解并掌握其特性,以使不断完善、发展镜片的光学矫正效果。 镜片材料的基本特性有: 1、光学性质,计算屈光作用和控制光学性能; 2、机械和热性质; 3、电性质材料; 4、化学性质通过外界所可能接触的化学物质了解材料的相应变化。 一、光学性质:光学性质是材料的基本性质,与镜片在日常生活中所见到的各种光学现象相符合,主要为光线在镜片表面的折射和反射、材料本身的吸收,以及散射和衍射现象。 (1)光线折射:通过镜片的光线会在镜片的前后表面发生折射或偏离现象,光线的偏离幅度由材料的折射率和入射光线在镜片表面的入射角度决定。

1)折射率:透明媒质的折射率是光线在真空中的速度c与在媒质中的速度v的比值, n=c/v。该比值没有单位并且总是大于1。折射率反映媒质的折射能力,折射率越高,从空气进入该媒介的光束偏离得越多。从空气到折射率为n的透明媒质所发生的偏离或折射可以根据斯涅耳-笛卡尔定律(Snell-Descartes Law)进行计算,规定如下:折射光线与入射光线和法线位于同一平面入射角i和折射角r分别由法线与入射光线、折射光线构成。计算公式: sin i=n sin r 由于透明媒质的光速随着波长而变化,所以折射率的值总是参考某一特定波长表示:在欧洲和日本,参考波长为e线546.07nm(汞--绿光谱线),但是在美国等其它国家则是d线587.56nm(氦--黄光谱线)。但这个区别并没有造成实际影响,因为它的区别仅仅反映在折射率值的第三位小数上。 目前市场所采用的镜片材料的折射率范围是从1.5--1.9。 2)色散系数:阿贝数。 由光波引起的折射率变化会使白光根据不同的折射产生色散现象。事实上,波长越短,折射率越高,可见光的折射从光谱的红光区延伸到蓝光区。材料的色散能力可以由阿贝数描述,在欧洲、日本规定用e线,在美国等其他国家规定使用d 线。 阿贝数与材料的色散力成反比,镜片材料规定的范围通常从30-60,数值越大即表示色散越少。一般而言,折射率越高,色散力越大,而阿贝数就越低。尽管所有镜片都存在色散,但在镜片中心,这个因素可以被忽略,只有在用高色散材料制造的镜片周边部,色散现象才易被察觉。在这种情况下,色散现象所表现的是离轴物体边缘带有彩色条纹。 (2)光线反射 光线在镜片表面产生折射的同时,也会产生反射现象。光线反射会影响镜片的清晰度,而且在镜片表面会产生干扰性反射光。通常,镜片材料的折射率越高,因

相关文档
最新文档