概率论与数理统计(第三版)第七章习题ppt课件

合集下载

概率论与数理统计 第7章.ppt

概率论与数理统计 第7章.ppt

即 S 2是 2 的无偏估计,故通常取S 2作 2的估计量.
例3 设总体 X 服从参数为 的指数分布, 概率密度
x 1 e , f ( x; ) 0,
x 0, 其他.
其中参数 0, 又设 X 1 , X 2 ,, X n 是来自总体 X 的 样本, 试证 X 和 nZ n[min( X 1 , X 2 ,, X n )] 都是 的无偏估计.
行到其中有15只失效时结束试验, 测得失效时 间(小时)为115, 119, 131, 138, 142, 147, 148, 155,
158, 159, 163, 166, 167, 170, 172.
试求电池的平均寿命 的最大似然估计值 .

n 50, m 15,
s( t15 ) 115 119 170 172 (50 15) 172
总体 X 的 k 阶矩 k E ( X k )的相合估计量, 进而若待估参数 g( 1 , 2 ,, n ), 其中g 为连续 ˆ g( 函数, 则 的矩估计量 ˆ1 , ˆ 2 , , ˆ n ) g( A1 , A2 ,
, An ) 是 的相合估计量.
第三节
估计量的评选标准
一、问题的提出
二、无偏性 三、有效性 四、相合性 五、小结
一、问题的提出
从前一节可以看到, 对于同一个参数, 用不 同的估计方法求出的估计量可能不相同. 而且, 很明显, 原则上任何统计量都可以作为未知参数 的估计量. 问题 (1)对于同一个参数究竟采用哪一个估计量好? (2)评价估计量的标准是什么? 下面介绍几个常用标准.
如果不能得到完全样本, 就考虑截尾寿命试验.
3. 两种常见的截尾寿命试验

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

《概率论与数理统计》全套课件PPT(完整版)

《概率论与数理统计》全套课件PPT(完整版)
m?????若对于一随机试验每个样本点出现是等可能的样本空间所含的样本点个数为无穷多个且具有非零的有限的几何度量即则称这一随机试验是一几何概型的20义定义当随机试验的样本空间是某个区域并且任量意一点落在度量长度面积体积相同的子区域是等可能的则事件a的概率可定义为?mamap??说明当古典概型的试验结果为连续无穷多个时就归结为几何概率
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.

西北工业大学《概率论与数理统计》课件-第七章 假设检验

西北工业大学《概率论与数理统计》课件-第七章 假设检验
分析: 用 和 分别表示这一天袋
装糖重总体 X 的均值和标准差,
由长期实践可知, 标准差较稳定, 设 0.015,
则 X ~ N (, 0.0152 ), 其中 未知.
问题: 根据样本值判断 0.5 还是 0.5 ?
解 1º提出两个对立假设
H0 : 0 0.5 和 H1 : 0 . 2º X 是 的无偏估计量,
则我们拒绝 H0,
反之, 如果 u
x
/
0
n
u,则称 x 与0的差异是 2
不显著的, 则我们接受 H0,
上述关于 x 与 0 有无显著差异的判断是在显 著性水平 之下作出的.
2. 检验统计量
用于检验假设的统计量,称为检验统计量.
如:对于例2, 统计量 U X 0 / n
— 检验统计量.
3. 原假设与备择假设
1 假设 H0 : 0, H1 : 0 ;
2º取检验统计量
U X 0 ~ N (0,1), / n
(当H0为真时)
3º给定显著水平 ( 0< ≤ 0.05)
P{ U u }
2

(u
2
)
1
2
,查表可得
u
2
.
拒绝域: W1 {( x1, x2,, xn ) u u }, 2
u U ( x1, x2,, xn )
分析:从直观上分析,这批产品不能出厂. 因为抽样得到的次品率: 2 3% 10 然而,由于样本的随机性,如何才能根据抽
样结果判断总体(所有产品)的次品率是否≤3%?
解 用假设检验法,步骤:
1º提出假设 H0: p 0.03 其中 p为总体的次品率.
2º设
Xi
1, 0,

概率论与数理统计全套精品课件(PPT)

概率论与数理统计全套精品课件(PPT)
概率论与数理统计
河南工业大学理学院
教材:《概率论与数理统计》第三版 王松桂 等编 科学出版社
参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社
2. 《概率论与数理统计》 魏振军 编
中国统计出版社
序言
概率论是研究什么的?
人们所观察到的现象大体上分成两类: 1.确定性现象或必然现象 事前可以预知结果的:即在某些确定的条 件满足时,某一确定的现象必然会发生,或根 据它过去的状态,完全可以预知其将来的发展 状态。 2.偶然性现象或随机现象 事前不能预知结果:即在相同的条件下重 复进行试验时,每次所得到的结果未必相同, 或即使知道它过去的状态,也不能肯定它将来 的状态。
写出样本空间,指出哪些是基本事件,表示B ,C,D。
解: {1, 2,..., 6} Ai {i},i 1,..., 6 为基本事件
B {2, 4, 6} C {1,3,5} D {4,5, 6}
既然事件是一个集合,因此有关事件 间的关系、运算及运算规则也就按集合 间的关系、运算及运算规则来处理。
1.1.1 随机试验与事件
随机试验(试验)的特点: 1.可在相同条件下重复进行; 2.每次试验之前无法确定具体是哪种结果出 现,但能确定所有的可能结果。
试验常用“E”表示
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; E2 :工商管理部门抽查产品是否合格; E3: 观察某城市某个月内交通事故发生的次数; E4 :已知物体长度在a和b之间,测量其长度; E5: 对某只灯泡做试验,观察其使用寿命; E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。
样本空间:试验的所有可能结果所组成
的集合称为样本空间。记为:

概率论第七章 第三节.ppt

概率论第七章 第三节.ppt
取置信水平为0.95的置信区间。 解:
例题5:设总体 X~N(μσ2),其中参数均未知,设 X1,X2,…,Xn为来自总体的样本。求μ的置信水平为1-α的置 信区间的长度L的平方的数学期望与方差。 解:
从而得:
从而得:
正态总体方差的区间估计
Step1:由前面一章的定理可得样本方差构成的 随机变量W:
样本均值、样本方差
未知
设置信水平为α,试求σ12/σ22置信区间。 Step1:由前面一章的定理可得样本均值构成的随机变量W:
Step2:对所给的置信水 平α,有:
Step3: 从不等式中解出均值方差比得: 因此方差比的置信区间为:
例题:研究由机器A、B生产的钢管的内径,它们分别服从正态 分布(μ1,σ12),N(μ2,σ22).随机抽取机器A生产的钢管18只,测 得样本方差为0.34mm2;随机抽取机器B生产的钢管13只,测 得样本方差为0.29mm2;试问在置信水平0.90下方差是否有明 显区别?
解00110901查表得20051645zz再由样本可算出161116212516iinxx于是所求的置信区间为例题2设总体x服从正态分布n1252问抽取样本容量为多大的样本才能使总体均值的置信水平为095的置信区间的长度不大于049解1251095005查表得于是置信区间的长度为例题3设从总体x中抽取一个样本050125080200如果总体的函数ylnx服从正态分布n11求总体均值ex
区间估计
理解区间估计的概念,置信水平与置信区间 的概念。 会求正态总体的均值与方差的置信区间。
问题提法
这种形式的Leabharlann 数估计方法称为区间估计 .置信区间与置信水平
定义:设总体X的分布函数中含有一个未知参数θ,对 于给定的小数α(0<α<1),如果能由样本 X1,X2,…,Xn 确定两个统计量:

概率论第七章课件

概率论第七章课件
得否定域 W: |t |>4.0322
小概率事件在 一次试验中基 本上不会发生 .
19
得否定域
W: |t |>4.0322
第四步:
将样本值代入算出统计量 t 的实测值, | t |=2.997<4.0322
没有落入 拒绝域
故不能拒绝H0 .
这并不意味着H0一定对,只是差异 还不够显著, 不足以否定H0 .
2
假设检验的内容
参数检验 非参数检验 总体均值, 均值差的检验 总体分布已知, 检验关于未知 总体方差, 方差比的检验 参数的某个假设 分布拟合检验 总体分布未知时的 符号检验 假设检验问题 秩和检验
假设检验的理论依据
假设检验所以可行,其理论背景为 实际推断原理,即“小概率原理”
3
罐装可乐的容量按标准应在 350毫升和360毫升之间. 生产流水线上罐装可 乐不断地封装,然后装箱 外运. 怎么知道这批罐装 可乐的容量是否合格呢? 把每一罐都打开倒入量 杯, 看看容量是否合于标准? 这样做 显然不行!
1 0.083 0.04 12
若不采用假设检验, 按理不能够出厂.
28
例4某厂生产的螺钉,按标准强度为68/mm2, 而实际生产的强度X 服N(,3.62 ).若E(X) ==68,则认为这批螺钉符合要求,否则认为 不符合要求. 现从生产的螺钉中抽取容量 为36的样本,其均值为 x 68.5 ,问原假设 是否正确?
解 假设
H0 : = 68
H1 : 68
29
3.6 若原假设正确, 则 X ~ N (68 , ) 36
2
因而 E ( X ) 68 ,即 X 偏离68不应该太远, 偏离较远是小概率事件,由于

概率论和数理统计(第三学期)第7章数理统计的基本概念

概率论和数理统计(第三学期)第7章数理统计的基本概念

n i1
i
1 n
n
Ei
i1
D
D 1 n
n i 1
i
1 n2
n
Di
i 1
2
n
2
S~ 1 n
n i 1
i
2
1 n
n i 1
i2 2i
2
1 n
n
i2
i 1
2
n
i
i 1
n
2
1 n
n
i2
i 1
2
2
2
1 n
n
i2
i 1
2
E S~2
E
1 n
n
i2
i 1
23
.209
2
2 0.95
20

10
.851
当自由度n 45时,可用下面近似公式去求2 n:
x2 n
1 2
u
2
2n 1
例3

2 0.05
60 .

2 0.05
60
1 2
u0.05
2
2 60 1
1 1.645
2
119 78.798
2
3、t分布的上侧分位点
对于给定的α(0<α<1),使
2
e
xi 2 2
2
(2
) e 2
n 2
1
2 2
n i1
xi 2
在数理统计中,总体的分布往往是未知的,需 要通过样本找到一个分布来近似代替总体分布。
§7.3 分布的估计
频率分布 例 某炼钢厂生产的钢由于各种因素的影响,各炉
钢的含硅量可以看作是一个随机变量,现记录了 120炉钢的含硅量百分数,求出这个样本的频数分 布与频率分布。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20. 设两位化验员A,B独立地对某种聚合物含氯量用相同的方法 各作10次测定,其测定值的样本方差依次为sA2=0.5419, sB2=0.6065, 设 A2, B2分别为A,B所测定的测定值总体的方差,设总体均为正态的, 设两样本独立,求方差比A2/B2的置信水平为0.95的置信区间.
解 两正态总体均值未知,方差比A2/B2的一个置信水平为1- 的 置信区间为 (S S B A 2 2F /2 (n 1 1 1 ,n 2 1 ),S S B A 2 2F 1 /2 (n 1 1 1 ,n 2 1 ))
E ( T 2 ) 1 5 [ E ( X 1 ) 2 E ( X 2 ) 3 E ( X 3 ) 4 E ( X 4 ) 1 5 ] ( 1 2 3 4 ) 2
E ( T 3 ) 1 4 [ E ( X 1 ) E ( X 2 ) E ( X 3 ) E ( X 4 ) 1 4 ] ( 1 1 1 1 )
3
的一个置信水平为0.95 的置信.区间为(5.558, 6.442).
9
16.随机地取某种炮弹9发做试验,得炮口速度的样本标准差s=11(m/s). 设炮口速度服从正态分布.求这种炮弹的炮口速度的标准差的置信 水平为0.95 的置信区间.
解 未知,的置信水平为1-的置信区间为 ( n1S , n1S ) 2/2(n1) 12/2(n1)
是两总体公共方差2的无偏估计量(SW2称为2的合并估计). 证 两正态总体N(1, 12 ) ,N(2, 22 )中, 12=22=2
而不管总体X服从什么分布,都有E(S2)=D(X), 因此E(S12)= E(S22)= 2,
E(S w 2n )1 E n 1 (2 ( n1 2 [1 n n )( 1 1 S 1 21 n )2 E (n (2 S 21 2 ) 1 )S (2 2 n 2 ) 1 )E (S 2 2 ) ]2
因此T1,T3是的无偏估计量.
(2) X1,X2,X3,X4相互独立 D ( T 1 ) 3 1 [ D ( X 6 1 ) D ( X 2 ) 1 9 ] [ D ( X 3 ) D ( X 4 ) 2 ] 2 ( 3 1 1 9 ) 6 1 5 2 8
D ( T 3 ) 1 1 [ D ( X 6 1 ) D ( X 2 ) D ( X 3 ) D ( X 4 ) 1 1 ] ( 1 1 6 1 1 ) 2 2 5 2
1E (X ) x(x f)d.x
0 1xd x1x 11 01
解出 ( 1 )2 1 1
将总体一阶矩1换成样本一阶矩A1=X ,
得到参数的矩估计量
矩估计值
(
X
)2
1 X .
(
x
)2
1 x
2
3. 求1题中各未知参数的最大似然估计值和估计量.
(1) f(x)0c,x(1)其 ,x它 c 其中c>0为已知,>1,为未知参数.
3 的一个置信水平为0.95 的置信区间为(5.608, 6.392).
(2)
2未知,的置信水平为1-
的置信区间为
X
Snt/2(n1)
n=9, 1-=0.95, =0.05, t /2(n-1)=t 0.025(8)= 2.3060
s=0.5745, 60.57 42.3 50 66 00.442
18. 随机地从A批导线中抽取4根,又从B批导线中抽取5根,测得电
阻(欧)为
A批导线:0.143 0.142 0.143 0.137
B批导线:0.140 0.142 0.136 0.138 0.140
设测定数据分别来自分布N(1,2),N(2,2),且两样本相互独立.又1, 2,2均为未知.试求1 -2的置信水平为0.95 的置信区间.
i 1
i 1 i 1
i 1 i 1 i 1
10.设X1,X2,X3,X4是来自均值为的指数分布总体的样本,其中未知.
设有估计量 T 11 6(X 1X 2)1 3(X 3X 4) T2=(X1+2X2+3X3+4X4)/5, T3=(X1+X2+X3+X4)/4 . (1)指出T1,T2,T3中哪几个是的无偏估计量;
解 似然函数
L (,x 1 ,x 2 ,,x n ) nf(x i,) i n 1c x i ( 1 ) (c )n (i n 1 x i) ( 1 ) x i c ,i 1 ,2 , ,n
i 1
0
其它
xi>c ( i =1,2,…,n)时,取对数得
ln L n ln n ln c ( 1 ) nln x i
0.54191 0.22,20.54194.033.60,1
0.60654.03
0.6065
A2/B2的一个置信水平为0.95的置信区间为(0.222, 3.601).
.
12
22(2) 求18题中1 -2的置信水平为0.95 的单侧置信下限.
解 (x1Sw x2)n11(1n1 2 2)~t(n1n22) Sw 2(n 11 n )1 S 1 2 n 2 (n 22 1)S2 2,SwSw 2.
4
i1
i1
4.(2) 设X1,X2,…,Xn是来自参数为的泊松分布总体的一个样本,试
求解的最泊大松似分然布估的计分量布及律矩为估P 计{X 量 . x}xe, x0,1,2,,
x!
总体一阶矩1=E(X)=, 将总体一阶矩1换成样本一阶矩A1=X ,
得到参数的矩估计量 X
设似x然1,x函2,…数,xn为L(相x1应,x的2, 样本,x值n,, )i n1xx i!i een n(i nx 1xii!)
n=9, 1-=0.95, =0.05, 2 /2 (n-1)=2 0.025(8)= 17.535
2 1-/2 (n-1)=2 0.975(8)= 2.18, 又s=11,
811 7.4, 17.535
81121.1, 2.18
标准差的置信水平为0.95 的置信区间为(7.4, 21.1).
.
10
x i 1 )n /2 (nx i) 1,0 x i 1 ,i 1 ,2 , ,n
i 1
0
其它
0xi1 令
(
i =1,2,…,n)时,取对数得 lnLnln(
2
ddlnL2n 21i n1lnxi 0
n
1)lnxi
i1
得到的最大似然估计值
的最大似然估计量
n2
n2
n
n
( ln xi )2
.
( ln X i )2
故 E(Y)=aE(X1)+bE(X2)=(a+b)=, (a+b=1)
所以,对于任意常数,a,b(a+b=1), Y=aX1+bX2都是的无偏估计.
由于两样本独立,故两样本均值X1和X2独立,所以
D (Y)a2D (X 1)b2D (X 2)[a n 1 2b n 2 2]2[an12
(1a)2]2
按照t分布的上 分位点的定义
P{(x1 Sw x2)n 1 1( 1 n 1 22)t(n1n22)}1
即 P {1 2 x 1 x 2 t(n 1 n 2 2 )S wn 1 1 n 1 2 } 1
令 d d ln Lnnln ci n 1ln xi0 i 1
得到的最大似然估计值
的最大似然估计量
n
n
ln xi nlnc
i1
n
n
.
lnXi nlnc
3
i1
3.(2)
f(x)
x 1,0x1
0, 其它
其中>0,为未知参数.
解 似然函数
L (,x 1 ,x 2 ,,x n ) i n 1f(x i,) i n 1 (
x1=0.14125, x2=0.1392, s12=8.2510-6 , s22=5.210-6,
sw 3 8 .2 5 1 6 0 7 4 5 .2 1 6 0 2 .5 5 1 3 0
( 0 . 1 4 0 . 1 1 3 2 . 3 2 9 2 6 . 5 2 1 4 5 3 1 4 0 6 1 5 ) ( 0 . 0 0 0 . 0 )2 0 1 -2的一个置信水平为0.95 的置. 信区间为(-0.002, 0.006). 11
由于D(T1)>D(T3),所以T3比T1较. 为有效.
7
12.设从均值为,方差为2>0的总体中,分别抽取容量为n1,n2的两独 立样本.X1和X2分别是两样本的均值.试证,对于任意常数,a,b(a+b=1),
Y=aX1+bX2都是的无偏估计,并确定常数a,b使D(Y)达到最小.
解 由p168(2.19)得 E(X1)=E(X2)=, D(X1)=2/n1, D(X2)=2/n2 .
nA=10,nB=10,1-=0.95, =0.05,F /2(nA-1,nB-1)=F0.025(9,9)= 4.03
F 1 /2 (n A 1 ,n B 1 ) F 0 .9( 7 9 ,9 5 ) F 0 .01 ( 2 9 ,9 5 ) 4 .1 03
sA2=0.5419,sB2=0.6065,
Hale Waihona Puke (2)在上述的无偏估计量中指出哪一个较为有效.
解 Xi ( i =1,2,3,4) 服从均值为的指数分布,故 E(Xi)=, D(Xi)=2 ,
(1) E ( T 1 ) 1 6 [ E ( X 1 ) E ( X 2 ) 1 3 ] [ E ( X 3 ) E ( X 4 ) 2 ]( 1 6 1 3 )
解 两正态总体相互独立, 方差相等,但方差未知, 其均值差1 -2的 一个置信水平为1- 的置信区间为
(x1x2t/2(n1n22)sw n 1 1n 12)Sw 2(n 11 n )1 S 1 2 n 2 (n 22 1)S2 2,SwSw 2.
相关文档
最新文档