代数系统部分作业 答案
最全线性代数习题及参考答案

第一章:一、填空题:1、若a a D ij n ==||,则=-=||ij a D ;解:a a a a a D aa a a a D n nnn nnnn nn )1(11111111-=----=∴==2、设321,,x x x 是方程03=++q px x 的三个根,则行列式132213321x x x x x x x x x = ; 解:方程023=+++d cx bx ax 的三个根与系数之间的关系为:a d x x x a c x x x x x x ab x x x ///321133221321-==++-=++所以方程03=++q px x 的三个根与系数之间的关系为:q x x x p x x x x x x x x x -==++=++3211332213210033)(3321221321333231132213321=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x3、行列式1000000019980001997002001000= ;解:原式按第1999行展开:原式=!19981998199721)1(0001998001997002001000219981999-=⨯⨯⨯-=+++4、四阶行列式4433221100000a b a b b a b a = ; 解:原式按第一行展开:原式=))(()()(000004141323243243214324321433221433221b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=-5、设四阶行列式cdb a a cbda dbcd c ba D =4,则44342414A A A A +++= ;解:44342414A A A A +++是D 4第4列的代数余子式,44342414A A A A +++=0111111111111==d a c d d c c a bd b a c bdd b c c ba6、在五阶行列式中3524415312a a a a a 的符号为 ;解:n 阶行列式可写成∑-=n np p p ta a aD 2211)1(,其中t 为p 1p 2…p n 的逆序数所以五阶行列式中3524415312a a a a a 的符号为5341352412a a a a a 的符号,为1)1()1(5)3,1,5,4,2(-=-=-t7、在函数xx x xxx f 21112)(---=中3x 的系数是 ; 解:根据行列式结构,可知3x 须由a 11=2x ,a 33=x 和第二行的一个元素构成,但此时第三个元素只能取a 22(行、列数均不可重复),所以此式为3332211)3,2,1(2)1(x a a a t -=-,系数为-2。
图论及代数系统答案A

计算机04级代数系统及图论试题(A )答案一、证明:(1) 由表1可得<{e,a},*>的运算表如下:(酌情给1~5分)由表可知,幺元为e ,a 的逆元为a ,显然运算满足封闭性、结合律,故<{e,a},*>是一个群。
(酌情给1~5分)(2) 设{e,a}=M ,则M 的所有左陪集有bM={a,b},cM={b,c},dM={c,e} (酌情给1~5分)若<G ,*>是群,则应满足 |M|⎢|G|,但|M|=2,|G|=5,故<G ,*>不是群。
(酌情给1~5分)二、证明:必要性设f 是入射。
因为f(e)=e ’,所以e ∈Ker(f)。
若另有a ∈G ,使得f(a)=e ’,则f(a)=f(e),由于f 是入射,故必有a=e ,因此Ker(f)={e}。
(酌情给1~5分)充分性设Ker(f)={e}。
对于a,b ∈G 1,如果f(a)=f(b),则有f(b*a -1)=f(b)∆f(a -1)=f(a)∆f(a -1)= f(a*a -1)=f(e)=e ’,故b*a -1∈Ker(f),所以b*a -1=e ,因此有(b*a -1)*a=e*a ,即b=a ,所以f 是入射。
(酌情给1~5分) 三、(a)不是格,(b),(c),(d)都是格;(酌情给1~4分)其中(b)是有界格、分配格;(c)是有界格、分配格、有补格;(d)是有界格、有补格。
(酌情给1~6分) 四、证:设a 是L 中的任意一个元素,如果21,a a 都是a 的补元,则有)()()()()()()()(2112212221211211a a a a a a a a a a a a a a a a a a a a ∧=∧∨∧=∨∧=∧=∧∨∧=∨∧=故有21a a =。
(酌情给1~10分)其它正确的证明方法。
(酌情给1~10分) 五、解:G 与G 的并为完全图K n ,因为n 为奇数,所以K n 中每个顶点的度为n-1,为偶数。
代数系统基础习题及答案

习题71.有理数集Q 和Q 上定义的下列运算*是否构成一个代数系统。
(1)()1*2a b a b =+ (2)()2*a b a b =-(3)2*2a b b =+(4)*10a ba b +=解答:(1)是。
(2)否。
运算不封闭(3)否。
运算不封闭(4)是2.设集合{1,2,3,,10}A = ,判断下面定义的运算关于集合A 是否封闭。
(1)*max{,}x y x y = (2)*min{,}x y x y = (3)*gcd{,}x y x y =,即x y ,的最大公约数(4)*{,}x y lcm x y = ,即x y ,的最小公倍数解答:(1)封闭。
*运算满足交换律、结合律,单位元为10,零元为1。
(2)封闭。
*运算满足交换律、结合律,单位元为1,零元为10。
(3)封闭。
*运算满足交换律、结合律,单位元不存在,零元为1。
(4)不封闭。
3.设{1,2,3,4,6,12}A =,A 上的运算*定义为:*=a b a b - (1)写出二元运算*的运算表。
(2)A 和*能构成代数系统吗?为什么?解答:(1)运算表如下*12346121012351121012410321013943210286543206121110986(2)不能。
0,5,8,9,10,11不是A 中的元素,运算不封闭。
4.考虑有理数集Q ,设*是如下定义的Q 上的运算:*a b a b ab=+-(1)求3*4,2*(-5)和7*1/2。
(2)*在Q 上可结合吗?*在Q 上可交换吗?(3)求Q 上关于运算*的单位元。
(4)集合Q 上所有元素都有逆元吗?若有逆元,请求出。
解答:(1)3434125*=+-=-,2(5)25107*-=-+=,71271721*=+-=。
(2)()()a b c a b ab c a b c ab ac bc abc**=+-*=++---+()()a b c a b c bc a b c ab ac bc abc **=*+-=++---+即()()a b c a b c **=**。
离散数学——代数结构_作业部分答案

第四章代数结构(作业)作业:P86:4、7、94、(1)若a和b是整数,则a+b+ab也是整数,故a*b也是整数,所以运算*是封闭的。
(2)任选整数集合中的三个元素x,y和z。
则有:(x*y)*z = (x+y+xy)*z= (x+y+xy)+z+(x+y+xy)×z= x+y+z+xy+xz+yz+xyzx*(y*z) = x*(y+z+yz)= x+(y+z+yz)+x×(y+z+yz)= x+y+z+yz+xy+xz+xyz= (x*y)*z因此,*运算满足结合律。
(3)假设e为(Z,*)的幺元,则有:任选整数集中的一个元素x,都有0*x = 0+x+0×x=x且x*0 = x+0+x×0=x故0是(Z,*)的幺元。
7、N+上的所有元素都是(N+ ,*)等幂元;(N+ ,*)无幺元;(N+ ,*)的零元为1。
9、(A,*)中的等幂元:a、b、c、d;(A,*)中的幺元:b;(A,*)中的零元:c;a-1 = d,b-1 = b,c-1 不存在,d-1 = a,作业:P87:12、13、1812、(A,*)到(N4,⊕4)的同构映射f为:f(a)=0, f(b)=1, f(c)=2, f(d)=3;或者:f(a)=0, f(b)=3, f(c)=2, f(d)=1;13、同构映射f为:f(0)=∅, f(1)={a}, f(2)={b}, f(3)={a,b};或者:f(0)=∅, f(1)={b}, f(2)={a}, f(3)={a,b};18、任选a ∈N +,b ∈N +, 只需证明f(a+b)=f(a)+f(b)由f 的定义可知:f(a+b)=2a+2b=f(a)+f(b),故f 是(N +,+)到(E +,+)的同态映射。
作业:P96:3,P97:73、(1)显然,*运算对Z 是封闭的。
(2) (a*b)*c = (3(a+b+2)+ab)*c= 3((3(a+b+2)+ab)+c+2)+(3(a+b+2)+ab)×c = 3(3a+3b+c+ab+8+ac+bc+2c)+abc = 3(3a+3b+3c+ab+ac+bc+8)+abca*(b*c) = a*(3(b+c+2)+bc)= 3(a+(3(b+c+2)+bc)+2)+a(3(b+c+2)+bc) = 3(a+3b+3c+bc+8+ab+ac+2a)+abc = 3(3a+3b+3c+ab+ac+bc+8)+abc= (a*b)*c故*运算满足结合律。
离散数学章节练习4

离散数学章节练习4K E Y(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除离散数学 章节练习 4范围:代数系统一、单项选择题 1. <G,*>是群,则对* ( A ) A 、有单位元,可结合 B 、满足结合律、交换律 C 、有单位元、可交换 D 、有逆元、可交换2. 设N 和Z 分别表示自然数和整数集合,则对减法运算封闭的是 ( B )A 、NB 、{x ÷2|x ∈Z}C 、{x|x ∈N 且x 是素数}D 、{2x+1| x ∈Z }3. 设Z 为整数集,A 为集合,A 的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是群的代数系统的有 ( B ) A.〈Z ,+,÷〉 B.〈Z ,÷〉 C.〈Z ,-,÷〉 D.〈P(A),⋂〉 4. 设S={0,1},*为普通乘法,则< S , * >是 ( B ) A 、半群,但不是独异点; B 、只是独异点,但不是群; C 、群; D 、环,但不是群。
5. 设f 是由群<G,☆>到群<G ',*>的同态映射,则ker (f)是 ( B ) A 、G '的子群 B 、G 的子群 C 、包含G ' D 、包含G 6. 在整数集Z 上,下列哪种运算不是封闭的 ( C ) A + B - C ÷ D X 7. 设S={0,1},*为普通乘法,则< S , * >是 ( B )A 、半群,但不是独异点;B 、只是独异点,但不是群;C 、群;D 、环,但不是群。
8. 设R 是实数集合,“⨯”为普通乘法,则代数系统<R ,×> 是( A )。
A .群; B .环; C .半群 D.都不是 9. 设︒是集合S 上的二元运算,如果集合S 中的某元素eL,对∀x ∈S 都有 eL ︒x=x ,则称eL 为 ( C ) A 、右单位元 B 、右零元 C 、左单位元 D 、左零元 10. <Z,+> 整数集上的加法系统中0是 ( A ) A 单位元 B 逆元 C 零元 D 陪集 11. 若V=<S,︒>是半群,则它具有下列那些性质 ( A ) A 、封闭性、结合性 B 、封闭性、交换性 C 、有单位元 D 、有零元 二、判断题 1.若半群<S,*>含有零元,则称为独异点。
第8章习题答案

习题81.设S={a,b},试问S上总共可定义多少个二元运算?解由于S是n元集,则S×S应有n2个元素,S上的一个二元运算就是S×S到S的函数,这样的函数有个2n n,因此S={a,b}上的二元运算有222=16个。
2.分别给出满足下列条件的代数系统。
(1)有幺元。
(2)有零元。
(3)同时有幺元和零元(代数系统元素个数大于1)。
(4)有幺元,但无零元。
(5)有零元,但无幺元。
(6)运算不可交换。
(7)运算不可结合。
(8)有左零元,无右零元。
(9)有右幺元,无左幺元。
(10)有幺元,每个元素有逆元。
解给出的例子如下所示:(1)、(2)、(10) (3) (4) (5)、3.S=Q×Q S<a,b b>。
(1)运算*是否满足交换律和结合律?是否满足幂等律?(2)关于运算*是否有幺元和零元?如果有,请指出,并求S中所有可逆元素的逆元。
解 (1)因为<0,0>*<1,1>=<0,0>,<1,1>*<0,0>=<0,1>,则有<0,0>*<1,1>≠<1,1>*<0,0>,所以运算*不满足交换律。
因为(<a,b>*<x,y>)*<u,w>=<ax,ay+b>*<u,w>=<axu,axw+ay+b>,<a,b>*(<x,y>*<u,w>)=<a,b>*<xu,xw+y>=<axu,axw+ay+b>,所运算*满足结合律。
因为<1,1>*<1,1>=<1,2>≠<1,1>,所以运算*不满足幂等律。
(2)因为<a,b>*<1,0>=<a,b>,<1,0>*<a,b>=<a,b>,所以关于运算*存在幺元<1,0>。
离散习题代数系统部分答案

离散习题代数系统部分答案1(共3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《离散数学》代数系统1.以下集合和运算是否构成代数系统如果构成,说明该系统是否满足结合律、交换律求出该运算的幺元、零元和所有可逆元素的逆元.1)P(B)关于对称差运算⊕,其中P(B)为幂集.构成代数系统;满足结合律、交换律;幺元φ;无零元;逆元为自身。
2)A={a,b,c},*运算如下表所示:构成代数系统;满足结合律、交换律;无幺元;无逆元;零元b.2.设集合A={a,b},那么(1)在A上可以定义多少不同的二元运算(2)在A上可以定义多少不同的具有交换律的二元运算24个不同的二元运算;23个不同的具有交换律的二元运算3.设A={1,2},B是A上的等价关系的集合.1)列出B的元素.2元集合上只有2种划分,因此只有2个等价关系,即B={I A,E A}2)给出代数系统V=<B,∩>的运算表.3)求出V的幺元、零元和所有可逆元素的逆元.幺元E A、零元I A;只有E A可逆,其逆元为E A.4)说明V是否为半群、独异点和群V是为半群、独异点,不是群4.设A={a,b,c},构造A上的二元运算*,使得a*b=c,c*b=b,且*运算满足幂等律、交换律.1)给出关于*运算的一个运算表.其中表中位置可以是a、b、c。
2)*运算是否满足结合律,为什么不满足结合律;a*(b*b)=c ≠(a*b)*b=b5.设<R,*>是一个代数系统。
*是R上的一个二元运算,使得对于R(实数集合)中的任意元素a,b都有a*b=a+b+a·b(·和+为数集上的乘法和加法).证明::<R,*> 是独异点.6.如果<S,*>是半群,且*是可交换的.证明:如果S中有元素a,b,使得a*a=a和b*b=b,则(a*b)*(a*b)=a*b.(a*b)*(a*b)= a*(b*a)*b 结合律= a*( a*b)*b 交换律= (a* a)*(b*b)= a*b.7.设<G,·,–1,e>是一个群,则a,b,c∈S。
离散数学第二版答案(6-7章)

离散数学第二版答案(6-7章)LT第六章 代数系统6.1第129页1. 证明:任取,x y I ∈,(,)*(,)g y x y x y x yx x y xy g x y ==+-=+-=,因此,二元运算*是可交换的; 任取,,x y z I ∈,(,(,))*(*)*()()g x g y z x y z x y z yz x y z yz x y z yz x y z xy xz yz xyz==+-=++--+-=++---+((,),)(*)*()*()(,(,))g g x y z x y z x y xy zx y xy z x y xy z x y z xy xz yz xyz g x g y z ==+-=+-+-+-=++---+=因此,运算*是可结合的。
该运算的么元是0,0的逆元是0,2的逆元是2,其余元素没有逆元。
2.证明:任取,,x y N x y ∈≠,由*,*x y x y x y x ==≠知,**y x x y ≠,*运算不是可交换的。
任取,,x y z N ∈,由(*)**x y z x z x ==,*(*)*x y z x y x ==知,(*)**(*)x y z x y z =,*运算是可结合的。
任取x N ∈,*x x x =,可知N 中的所有元素都是等幂的。
*运算有右么元,任取,x y N ∈,*x y x =,知N 中的所有元素都是右么元。
*运算没有左么元。
证明:采用反证法。
假定e 为*运算的左么元,取,b N b e ∈≠,由*的运算公式知*e b e =,由么元的性质知,*e b b =,得e b =,这与b e ≠相矛盾,因此,*运算没有左么元。
3.解: ① 任取y x I y x ≠∈,,的最小公倍数和y x y x =*的最小公倍数和的最小公倍数和y x x y x y ==*因此对于任意的y x I y x ≠∈,,都有x y y x **=,即二元运算*是可交换的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数系统部分作业 (答案)
要求:请用A4纸双面打印作业试题后,手写答题,并写清个人姓名学号等信息
姓名: 班级: 学号: 班级序号:
一. 填空
1. 令4{0,1,2,3}Z =,+4表示模4加法,则在模4加群44,Z <+>中, 2的阶数是 2 , 3的阶数是 4 。
2. 设A ={a ,b ,c ,d} ,A 上二元运算如下: *
a b c d a
b
c
d a b c d b c d a c d a b d a b c
那么代数系统,A <*>的幺元是 a ,b 的逆元为 d ,c 的逆元为 c 。
3. 以下两个置换是5S 中的置换,其中
1234524513α⎛⎫= ⎪⎝⎭,1234554231β⎛⎫= ⎪⎝⎭
α表示成不交的轮换之积为α= (124) (35) ,
以不交的轮换之积形式写出αβ = (13452) 。
4. 下列说法错误的是 C E 。
A. 在群中消去率成立;
B. 域一定是整环;
C. ,,Z <+⨯>是域,其中Z 是整数集;
D. 设S ={1,2},则S 在普通加法和普通乘法运算下都不封闭;
E. 阶数大于1的群中可能存在零元。
5. 设S 是非负整数集,⨯是关于数的普通乘法运算,则 B 。
A .,S <⨯>是群;
B .,S <⨯>是有幺元的半群;
C .,S <⨯>是无幺元的半群;
D .,S <⨯>不是群,也不是半群。
6. 在S 3中,元素123321a ⎛⎫= ⎪⎝⎭
的阶数是 2 。
二. 证明与解答
1. 设6{0,1,2,3,4,5}Z =,+6为模6加法运算。
证明:6Z 与+6运算构成群。
证明:
(1) 6,a b Z ∀∈,66a b Z +∈,所以运算+6在集合6Z 上是封闭的。
(2) 6,,a b c Z ∀∈,有6666()()a b c a b c ++=++,故运算+6是可结合的。
(3) 6a Z ∀∈, 6600a a a +=+=,故0是幺元。
(4) 0的逆元是0,对于除0外任一元素6a Z ∈,因为66(6)(6)0a a a a +-=-+=,
因此6a -是a 的逆元。
由此可知6Z 与+6运算构成群。
2. (8分)设Z 为整数集合,,V Z =<*>,*是二元运算,定义为对任意的,x y Z ∈,有2x y x y *=+-。
请证明:V 是群。
证明:(1)因为对于Z 中的任意两个元素x 与y ,满足2x y x y Z *=+-∈,即*运算在Z 上封闭;
(2)*运算可结合,对任意x 、y 、z ∈Z
x*(y*z ) = x*(y+z-2) = x+y+z -2-2=x+y+z-4
(x*y )*z = (x+y-2)*z = x+y -2+z -2= x+y+z-4
所以x*(y*z )= (x*y )*z ;
(3)对Z 中的任意元素x ,因为2*x =2+x -2=x ,x*2=x+2-2=x ,所以*运算的幺元是2;
(4)任意x ∈Z ,x *(4-x )= (4-x )*x =2,所以x 的逆元为4-x 。
由上述可知,,V Z =<*>是群。
3. 66,Z <+>是一个群,这里+6是模6加法,6{0,1,2,3,4,5}Z =,试求出66,Z <+>的所有子群及其相应陪集。
解: 取6Z 的子集1{0}S =,2{0,3}S =,3{0,2,4}S =,46{0,1,2,3,4,5}S Z ==
子群有6{0},<+>;6{0,3},<+>;6{0,2,4},<+>;6{0,1,2,3,4,5},<+>
6{0},<+>的陪集:{0};{1};{2};{3};{4};{5}
6{0,3},<+>的陪集:{0,3};{1,4};{2,5}
6{0,2,4},<+>的陪集:{0,2,4};{1,3,5}
6{0,1,2,3,4,5},<+>}的陪集:{0,1,2,3,4,5}
4. 设Z 为整数集合,,V Z =<*>,*是二元运算,定义为:x y x y xy *=+-.请证明:V 是含幺半群而不是群。
证明:(1)*运算在Z 上封闭;
(2)*运算可结合,对任意a 、b 、c ∈Z
a*(b*c ) = a*(b+c-bc ) = a+b+c-bc-a (b+c-bc ) = a+b+c-ab-ac-bc+abc
(a*b )*c = (a+b-ab )*c = a+b-ab+c-(a+b-ab )c = a+b+c-ab-ac-bc+abc
所以a*(b*c ) = (a*b )*c ;
(3)*运算的幺元是0;
(4)任意x ∈Z ,x *1=1*x =1,所以1是零元,它没有逆元。
由上述可知,故,V Z =<*>是含幺半群而不是群。