浅谈过程控制与自动化仪表

合集下载

浅谈有色金属湿法冶炼工艺过程中的自动化仪表设计

浅谈有色金属湿法冶炼工艺过程中的自动化仪表设计

浅谈有色金属湿法冶炼工艺过程中的自动化仪表设计发布时间:2022-09-26T02:45:01.403Z 来源:《工程建设标准化》2022年37卷10期作者:舒强[导读] 当前,在经济的带动下,我国很多行业的生产技术都实现了革新的目标舒强深圳市中金岭南有色金属股份有限公司丹霞冶炼厂广东韶关512300摘要:当前,在经济的带动下,我国很多行业的生产技术都实现了革新的目标,在金属冶炼的过程中,技术人员可以通过自动化技术对加工流程进行管理和监督,大大提高了金属冶炼的工作效率,工业自动化仪表的研发达到了科学技术控制生产的标准,自动化仪表的合理分类,也满足了很多领域的使用要求。

因此,本文结合湿法炼钢加工的实际过程,对有色金属湿法冶炼工艺工业自动化仪表的设计进行了分析,并希望可以把研究成果应用在实践中,进一步提高工业生产的产量。

关键词:有色金属;湿法冶炼工艺;自动化仪表设计引言在信息快速发展的今天,在很多领域当中越来越广泛的应用到了工业自动化仪表,同时一些具有特色的新型仪表也出现了。

生产装置的高度自动化、连续化以及大型化现在已经完整呈现出现代工业当中,而要想使工业生产的高产量、高效率以及安全平稳运行得到有效保证,就必须要对自动化仪表进行充分的利用。

一、自动化仪表简述工业仪表最早是应用在化工产业,随着技术的发展,技术人员研发出了气动仪表,并在社会生产中统一使用压力仪表,这种仪表自身具备远程发送器,可以准确、及时的发出使用信号。

当半导体材料出现时,技术人员利用半导体和集成电路,设计出了自动化仪表,自动化仪表的体积比较小,具备较高的运转效率和性能,受到了工业生产加工的青睐。

随后出现的基地式仪表和单元组合仪表也促进了很多工业企业的生产,自动化仪表利用计算机技术对运行数据进行管理,仪表可以与自动化控制系统结合,这说明自动化仪表已经成功实现了数字化和智能化的转型。

工业自动化仪表可以简单分为检测仪表、控制仪表、显示仪表,工业生产可以结合具体的生产产品,对仪表类型进行选择,检测是了解工业生产内容的基本过程,合理掌握生产参数,才能进一步展现出自动化仪表的控制水平。

过程控制及自动化仪表总结

过程控制及自动化仪表总结

自动化仪表在制药行业中的应用如温度、压力、流量等参数的监测和控制。 自动化仪表在制药行业中的优势如提高生产效率、降低能耗、保证产品质量等。 自动化仪表在制药行业中的具体应用案例如某制药公司的生产流程控制、自动化配料系统等。 自动化仪表在制药行业中的未来发展趋势如智能化、网络化、高精度化等。
自动化仪表的分类 与特点
定义:温度仪表是用于测量温度的仪表通过热膨胀、热电阻、热电偶等原理实现温度的测量。
分类:温度仪表可分为接触式和非接触式两类。接触式温度仪表需要与被测物体直接接触而非接触 式温度仪表则通过红外线、微波等非接触方式测量温度。
特点:温度仪表具有测量精度高、稳定性好、可靠性高等特点广泛应用于工业生产、科研实验等领 域。
自动化仪表:用于自动 测量、显示、记录和控 制的仪表是实现过程控 制的重要工具。
分类:按测量参数可 分为温度、压力、流 量、液位等仪表;按 工作原理可分为电动 、气动、液压等类型 。
应用领域:石油、 化工、电力、冶金 、制药等工业生产 领域。
监测生产过程确保稳定运 行
提高生产效率降低能耗
及时发现异常预防事故发 生
添加项标题
连续控制系统:通过连续检测和调节实现控制稳定性好适用于 温度、压力等参数的控制
添加项标题
离散控制系统:采用离散的控制器或计算机实现控制精度高适 用于大规模、复杂的过程控制
添加项标题
分布式控制系统:采用多台计算机分别控制不同的设备和系统 具有较高的灵活性和可扩展性
添加项标题
集散控制系统:集中管理、分散控制通过通讯网络实现数据传 输和信息共享适用于大规模、复杂的工业自动化系统
优化工艺流程提升产品质 量
添加项标题
机械式仪表:早期的工业仪表采用机械结构实现测量和显示功 能。

工业自动化仪表与过程控制分析

工业自动化仪表与过程控制分析

工业自动化仪表与过程控制分析摘要:现如今,我国工业自动化设备的不断发展,特别是随着信息技术的发展,自动化控制技术不断优化,广泛应用于工业、农业、日常生活等各个领域,极大地促进了相关产业的发展。

本文将以工业自动化仪表技术为基础,分析自动化控制技术在应用中的不足,分析自动化在工业中的未来应用和发展趋势。

因此,加强对自动化设备的研究具有重要的现实意义。

关键词:工业自动化仪表;过程控制;分析过程控制在工业自动化中扮演着重要的角色。

在制造业中利用过程控制技术,可以提高生产效率,让企业获得更高的经济效益,在节约资源和保护环境方面发挥重要作用。

1工业自动化仪表与过程控制1.1自动化设备的分类自动化工具可以简单地分为发现工具、管理工具、显示工具、执行器等,而工业自动化仪表包括信息采集、信息处理和信息应用。

为确保其安全稳定运行,须加强对自动化仪器进行科学的维护和诊断。

对于自动化仪表系统,诊断过程可分为制造过程诊断、制造设备诊断、自动化控制系统诊断和现场仪表分析诊断。

实际上,生产过程的诊断并不是自动化,而是在信息交互过程中,会影响自动化工具。

应根据设备本身的状况和现场情况来确定状态。

现场设备诊断应基于设备磨损和启动,并应制定适当的维护计划,以此进行养护。

1.2工业自动化仪表与过程控制存在的不足现如今,任何产品都需要一定的时间来应用和推广,这个规律也适用于自动化工具。

目前,自动化仪器在某些应用领域还存在不足。

第一个问题是自动化仪器的安全性。

只有在确保自动化设备的足够安全的前提下,才能保证自动化设备的正常运行。

其次是自动化工具的稳定性和兼容性。

生产的自动化工具必须准确可靠。

只有这样,才能获得最准确的信息,从而进行下一步操作,才能保证整个生产过程的安全。

最后是系统故障诊断信息的可靠性。

在系统发生故障时,必须保证诊断信息的准确性和可靠性,以保证机器的正常运行。

1.3自动化工具的优缺点其中气动控制装置使用的能源为压缩空气,结构简单,性能稳定,可靠性高,维修方便。

浅谈化工行业自动化仪表的常见种类与功能毕业论文

浅谈化工行业自动化仪表的常见种类与功能毕业论文

浅谈化工行业自动化仪表的常见种类与功能毕业论文现代科学技术的发展,给我们的生活、生产都带来了极大的改变,尤其是自动化技术的出现,更是极大的解放了劳动力,提高了生产的效率和质量,保障了生产的安全性。

从技术层面来讲,自动化生产的体系结构非常复杂,它需要依靠众多技术设备在空间和逻辑上的组合协调才能正常有效地运行,如监控传感技术设备、信息传输技术设备、控制技术设备等。

文章主要就化工行业自动化生产中的自动化仪表进行相关的分析与探讨。

自动化指机器设备、系统或是管理过程、生产过程等,在没有人或少有人直接参与的情况下,按照预先设定的计划,通过自动检测、信息处理、分析判断、操纵控制,来实现预期目标。

自动化是伴随多种现代科学技术发展而出现的,它对这些多种科学技术进行了整合,其中涉及到计算机技术、电子学技术、系统工程技术、控制技术、信息传输技术等。

如今,不论是生产领域还是交通运输、医疗、军事、家居等领域,都在向着自动化的方向发展。

因为自动化技术可以有效代替人的劳动力投入,使人可以更加专注于更有价值的事务,改善人们的生活、生产模式,提升人的创造力、创新力。

化工自动化生产是指通过对自动化技术的应用,实现自动化生产。

它是通过将若干的自动化技术设备在空间和逻辑上组合成一个系统,并直接作用于化工生产设备,以代替以往的人工操作,实现自动化的生产过程。

化工生产是非常重要而且对于当前的社会来说是不可缺少的,与其他的行业生产不同,化工生产具有一定的特殊性,如操作精准度要求高、生产环境封闭、危险性高等。

人工进行操作容易对工作人员的健康造成损害,而且较为容易出错,轻者会导致生产不合格,降低生产质量,重者会引起安全事故,造成人员伤亡。

而自动化技术在化工生产中的应用,则可以取代人的劳动,提高生产操作的精准度,严格控制生产工艺指标,确保生产效率、生产质量,同时有效保障人的安全。

自动化生产的体系结构非常复杂,需要依靠众多技术设备在空间和逻辑上的组合协调才能正常有效地运行。

过程控制与自动化仪表

过程控制与自动化仪表

第一章绪论1、过程控制概述过程控制是生产过程自动化的简称。

它泛指石油、化工、电力、冶金、核能等工业生产中连续的或按一定周期程序进行的生产过程自动控制,是自动化技术的重要组成部分。

在现代工业生产过程自动化中,过程控制技术可实现各种最优的技术经济指标、提高经济效益和劳动生产率、节约能源、改善劳动条件、保护环境卫生等方面起着越来越大的作用。

过程控制通常是对生产过程中的压力、液位、流量、温度、PH值、成分和物性等工艺参数进行控制,使其保持为定值或按一定规律变化,以确保产品质量和生产安全,并使生产过程按最优化目标自动尽行。

2、过程控制的特点(1)系统由被控过程和检测控制仪表组成;(2)被控过程复杂多样,通用控制系统难以设计;(3)控制方案丰富多彩,控制要求越来越高;(4)控制过程大多属于慢变过程与参量控制;(5)定值控制是过程控制的主要形式。

3、过程控制的要求与任务要求:(1)安全性:针对易燃易爆特点设计;参数越线报警、链锁保护;故障诊断,容错控制。

(2)稳定性:抑制外界干扰,保证正常运行。

(3)经济性:降低成本提高效率。

掌握工艺流程和被控对象静态、动态特性,运用控制理论和一定的技术手段(计算机、自动化仪表)设及合理系统。

任务:指在了解、掌握工艺流程和被控过程的静态与动态特性的基础上,应用控制理论分析和设计符合上述三项要求的过程控制系统,并采用适宜的技术手段(如自动化仪表和计算机)加以实现。

4、过程控制的功能测量变送与执行功能;操作安全与环境保护功能;常规控制与高级控制功能;实时优化功能;决策管理与计划调度功能。

5、过程控制系统的组成被控参数(亦称系统输出)y(t):被控过程内要求保持稳定的工艺参数;控制参数(亦称操作变量控制介质)q(t):使被控参数保持期望值的物料量或能量;干扰量f(t):作用于被控过程并引起被控参数变化的各种因数;设定值r(t):与被控参数相对应的设定值;反馈值z(t):被控参数经测量变送后的实际测量值;偏差e(t):设定值与反馈值之差;控制作用u(t):控制器的输出值。

过程控制与自动化仪表

过程控制与自动化仪表

过程控制与自动化仪表1. 引言过程控制与自动化仪表是现代工业生产中不可缺少的一部分,它们在监测、控制和优化工业过程中起着重要的作用。

过程控制与自动化仪表技术的应用可以提高工业生产的效率、质量和安全性,减少人力资源的消耗,实现工业自动化。

本文将介绍过程控制与自动化仪表的基本概念、发展历程以及在工业生产中的应用。

同时还会讨论一些常见的过程控制与自动化仪表的类型和工作原理,以及它们在不同行业中的具体应用案例。

2. 过程控制与自动化仪表基本概念过程控制与自动化仪表是指一系列用于监测、控制和调节工业过程的设备和系统。

它们可以通过测量和分析过程变量,控制工艺参数并实现自动化控制。

通过使用合适的传感器、执行器和控制算法,可以实现对工业过程的精密控制和优化。

过程控制与自动化仪表主要由以下几个组成部分构成:•传感器:用于测量各种物理量,如温度、压力、流量等;•控制器:根据传感器测量值和设定值进行逻辑运算,生成控制信号;•执行器:接收控制信号,并执行相应的动作,如开关、阀门等;•监控系统:用于监视和记录工业过程中的各种参数和状态;•人机界面:提供工业过程的可视化显示和人机交互界面。

3. 过程控制与自动化仪表的发展历程过程控制与自动化仪表的发展可以追溯到工业革命时期。

在工业革命之前,工业生产主要依靠人工操作,效率低下且易出错。

随着机械设备和工业化的发展,工业生产越来越复杂,对自动化控制的需求也越来越迫切。

20世纪初,工程师们开始研究和开发过程控制与自动化仪表技术。

最早的控制系统是基于机械和电气设备的。

随着电子技术的发展,电子仪表逐渐取代了机械仪表,实现了对工业过程更加精确的控制。

到了20世纪中叶,随着计算机技术的进一步发展,数字化控制系统开始应用于工业生产。

数字化控制系统通过采集和处理大量数据,实现了对工业过程的智能化控制,并提高了系统的可靠性和稳定性。

近年来,随着互联网和物联网技术的快速发展,过程控制与自动化仪表也越来越趋向于网络化和智能化。

浅谈仪表自动化应用发展趋势及建议

浅谈仪表自动化应用发展趋势及建议

浅谈仪表自动化应用发展趋势及建议摘要本文以探讨自动化仪表的发展现状为出发点,介绍了自动化仪表的相关概念及其分类,对仪表自动化应用的主要发展趋势进行探讨,分别从改良仪表自动化中使用的传感器技术、不断增进智能仪表调节阀的应用、科学有效的应用可编程序逻辑控制器这三个方面,提出了仪表自动化应用发展的相关建议,并总结了研究仪表自动化应用发展的重要意义,以完成对仪表自动化应用发展趋势及建议的研究。

关键词:仪表自动化应用发展趋势发展建议仪表是电气系统工作运转的体现,电气工程师通过仪表的显示可以准确的把握电气系统的工作运转情况,仪表自动化可以在电气系统出现非正常运转时及时采取安全保障措施,通过自动闭合开关、切断电气回路等确保电气系统的安全性能。

仪表自动化发展进程在很大程度上体现着我国电气系统的安全发展水平,为了更好的提升我国电气系统使用的安全可靠性,就必须对仪表自动化应用发展趋势以及相应发展建议进行研究。

一、自动化仪表的相关概念及其分类仪表的发展初期形式主要为机械式仪表以及液动式仪表,通过相互作用力以及大气压强原理,简单的反应工业系统运转中的工作压强和相关部分的控制功能,随着电子信息技术以及半导体集成电路的不断发展,仪表得到了不断的改善,逐渐走向数学化、信息集成化、生产规模扩大化,呈现出外观尺寸下、电路高度集成、计算精度高等特点。

凭借计算机信息技术的飞速发展,仪表得到了逐步完善和改良,进而逐渐呈现出仪表自动化特征。

七十年代末,微型处理器的出现极大的推进了仪表向数字化、自动化方向发展,自动化仪表通过结合数电、模电的电工电子技术,不断丰富自动化信息处理体系,至今为止,自动化仪表得到了不断的完善和改良,并在自动化、模块化、集成化的发展道路上越走越好。

现有仪表多种多样,且分类标准各不相同,若根据仪表的用途对其进行划分,现今使用的仪表可大致分为以下四类:压力仪表、温度仪表、物位仪表、流量流速仪表。

其中压力仪表(压力变送器,差压变送器)主要是指对工业生产的压力进行测量的仪表,由于工业生产需要一定的压力改变原材料的外貌以及形状,准确掌握这一生产过程中的压力浮动对工业工艺生产具有重要意义,除此之外,还可以确保生产工作过程中工人的人身安全。

自动化仪表与过程控制技术

自动化仪表与过程控制技术

自动化仪表与过程控制技术自动化仪表与过程控制技术是现代工业领域中不可或缺的重要组成部分。

它通过使用各种传感器、控制器和执行器,实现对工业过程的自动监测和控制。

本文将探讨自动化仪表与过程控制技术的发展历程、应用领域和未来发展趋势。

通过对这些方面的探讨,我们可以更好地理解自动化仪表与过程控制技术在工业中的作用和优势。

一、发展历程自动化仪表与过程控制技术随着现代工业的发展而逐渐兴起。

早期的工业生产方式大多依赖于人工操作,劳动力的消耗较大且容易出现人为失误。

为了提高工业生产的效率和质量,人们开始探索自动化的可能性。

自动化仪表与过程控制技术的发展可以追溯到19世纪末和20世纪初的工业革命时期。

当时,蒸汽机、电力和石油化工等行业的兴起为自动化仪表与过程控制技术的发展提供了契机。

随着计算机技术的进步,自动化仪表与过程控制技术得到了进一步的发展和应用。

计算机的出现使得工业过程的自动化程度大大提高。

传感器的应用进一步改善了对工业过程的监测能力,而控制器的发展则实现了对工业过程的精确控制。

现代自动化仪表与过程控制技术已经广泛应用于化工、电力、机械、石油、制药等行业,并持续推动着工业的发展。

二、应用领域自动化仪表与过程控制技术在各个行业中都有广泛的应用。

以化工工业为例,自动化仪表与过程控制技术在化工生产过程中起到了至关重要的作用。

通过使用传感器对温度、压力、流量等参数进行实时监测,工程师可以及时了解生产过程中的变化并做出相应调整。

同时,通过控制器和执行器的配合,工厂可以实现对生产过程的自动化控制,提高生产效率和产品质量。

在电力行业,自动化仪表与过程控制技术也发挥着重要作用。

电力系统的稳定运行需要进行精确的监测和控制。

自动化仪表通过对电流、电压、频率等参数的实时监测,可以帮助工程师及时发现和解决问题。

同时,通过控制器对发电机组、输电线路等设备进行自动化控制,可以提高电力系统的运行效率和稳定性。

除了化工和电力行业,自动化仪表与过程控制技术在机械、石油、制药等行业也有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈过程控制与自动化仪表摘要随着自动化仪表的更新换代,现代科学技术的发展需要自动化仪表和过程控制提供技术保障,要不断地改进生产技术,使其朝着智能化、网络化、开放性发展。

关键词自动化仪表;自动化技术;过程控制1 引言过程控制泛指石油、化工、电力、冶金、核能等工业生产中连续的或按一定周期程序进行的生产过程自动控制,其被控量通常为压力、液位、流量、温度、PH值等过程变量,是自动化技术的重要组成部分。

其作用体现在现代工业生产过程自动化中,过程控制技术可实现各种最优的技术经济指标、提高经济效益和劳动生产率、节约能源、改善劳动条件、保护环境卫生等方面起着越来越大的作用。

自动化仪表是用于生产过程自动化的仪器或设备,是实现工业企业自动化的必要手段和技术工具。

其特点是兼容性、统一标准。

2 过程控制概述2.1 过程控制的特点、要求及任务、功能结构过程控制的特点:系统由被控过程和检测控制仪表组成;被控过程的多样性;控制方案的多样性;控制过程大多属于慢变过程与参量控制;定值控制是过程控制的主要形式。

生产过程对控制最主要的要求可以归结为三个方面,即:安全性、稳定性和经济性。

过程控制的任务,就是在了解、掌握工艺流程和生产过程的各种特性的基础上,根据工艺生产提出的要求,应用控制理论对控制系统进行分析、设计和综合,并采用相应的自动化装置和适宜的控制手段加以实现,最终达到优质、高产、低耗的控制目标。

图1过程控制的功能结构图过程控制的功能结构:测量变送与执行,由测量变送装置与执行装置实现;操作安全与环保,保证生产安全、满足环保要求的设备(独立运行);常规与高级控制,实现对过程参数的控制,满足控制要求;实时优化,实现最优操作工况(时间,成本,设备损耗)而设计的方案;决策与计划调度,对整个过程进行合理计划调度和正确决策,使企业利益最大化。

2.2 过程控制的分类按照被控变量的给定值分类,可分成以下三类:1. 定值控制系统,是一种被控变量的给定值始终固定不变的控制系统。

如:液位控制系统;2. 随动控制系统随动控制系统是一种被控变量的给定值随时间不断变化的控制系统,例如:锅炉的燃烧控制系统;3. 程序控制系统(又称顺序控制系统)程序控制系统是被控变量的给定值按预定的时间程序来变化的控制系统。

例如:冶金工业中的金属热处理的温度控制。

2.3 过程控制发展概况20世纪40年代前后(手工阶段):手工操作状态,凭经验人工控制生产过程,劳动生产率很低;20世纪50年代前后(仪表化与局部自动化阶段):过程控制发展的第一个阶段,实现了仪表化和局部自动化;20世纪60年代(综合自动化阶段):检测和控制仪表-----采用单元组合仪表(气动、电动)和组装仪表,实现直接数字控制(DDC)和设定值控制(SPC);过程控制系统结构------多变量系统,各种复杂控制系统,如串级、比值、均匀控制、前馈、选择性控制系统,控制目的------提高控制质量或实现特殊要求;20世纪70年代以来(全盘自动化阶段):发展到现代过程控制的新阶段,这是过程控制发展的第三个阶段。

3 自动化仪表概述自动化仪表是用于过程自动化的仪器或设备,过程控制系统是实现生产过程自动化的平台,而自动化仪表与装置是过程控制系统不可缺少的重要组成部分。

3.1 自动化仪表的分类(1) 按照安装场地分现场仪表(一次仪表)、控制室仪表(二次仪表);(2) 按能源形式分①气动控制仪表:以压缩空气为能源。

优点:结构简单,性能稳定,可靠性高,易于维修,天然防爆;缺点:气动信号传输速度极限=声速340 s,体积庞大。

②电动控制仪表优点:信号快速,远距离传输:易于实现复杂规律的信号处理,易于与其他装置相连,供电用电方便,无需空压机和油泵、水泵;缺点:不天然防爆;易受电磁干扰;功率不易大,近年的电动仪表多采用了安全防爆措施,应用更加广泛。

③液动仪表(以高压油和高压水为能源)优点:工作可靠,结构简单,功率大,防爆;缺点:速度传送慢。

(3) 按信号形式分模拟式控制仪表、数字式控制仪表、基地式控制仪表、单元组合控制仪表。

3.2 自动化仪表的信号制模拟仪表的信号可分为气动仪表的模拟信号与电动仪表的模拟信号。

模拟仪表的信号制:直流电流信号为4-20mA,负载电阻为250 Ω,直流电压信号为1-5V。

电流信号优于电压信号,因为电流信号可远距离传输(线路电阻上压降太多,则信号耗损)。

数字式仪表的通信标准:数字或智能仪表与计算机之间采用数字通讯模式多种,如RS232、RS485、USB、PROFIBUS、Control Net、CAN、Hart、Modbus。

而且数字比模拟信号的优势在于:提高信号传输精度,抗干扰能力强;传输信息丰富,可传测量值及厂家信息;减少布线复杂性和费用。

3.3安全防爆仪表与防爆系统仪表的防爆性能:本质安全防爆性能与非本质安全防爆性能,气动仪表本质上是防爆的,因为它不会产生电火花。

电动仪表防爆方案有结构型防爆和安全火花型防爆,前者在结构上隔离产生火花的电路和爆炸气体(类型有充油型、充气型、隔爆型),后者则把仪表电路在短路、断路及误操作各种状态下可能产生的火花限制在爆炸气体的点火能量之下(具有本质安全防爆性能)。

安全火花型防爆等级:电压30V DC时, 不同爆性物最小引爆电流见表1。

表1安全火花型防爆等级级别最小引爆电流(mA) 爆炸性混合物种类I i>120 甲烷,乙烷,汽油,甲醇,乙醇,丙酮,氨,一氧化碳等II 70<i≤120 乙烯,乙醚,丙烯腈等III i≤70 氢,乙炔,二硫化碳,市用煤气,水煤气等4 过程控制系统4.1 集中型计算机控制系统(见图2)图2集中型计算机控制系统优势性:从表面上看---信息集中,集中型计算机控制可以实现各种更复杂控制功能;便于实现优化控制和优化生产;劣势性:由于当时计算机总体性能低,容量小,容易出现负荷过载,控制集中直接导致危险集中,高度集中使系统变得十分“脆弱”。

4.2 集散控制系统DCS集散控制系统DCS是集计算机技术、控制技术、通信技术和图形显示技术为一体的装置。

系统在结构上是分散的(生产过程是分散系统),但是过程控制的监视、管理是集中的,其优点在于将计算机分布到车间或装置,使系统的危险分散,提高系统的可靠性,方便灵活地实现各种新型的控制规律与算法,实现最佳管理。

4.3 现场总线控制系统FCS是连接智能现场装置和自动化系统的数字式双向传输、多分支结构的通信网络。

支持双向、多节点、总线式的全数字通讯,双向数据通信能力避免了反复进行MD、D/A的转换把控制任务下移到现场设备,以实现测量控制一体化全分散。

设计步骤:①确定控制目标热油出口温度稳定:出口温度与烟道气含氧量稳定,温度稳定与热效率最高;②选择被控参数直接参数(油出口温度、烟道气含氧量、燃油压力)间接参数(热效率);③选择控制量燃料油流量还是冷油流量→出口温度,挡板开度还是送风挡板→含氧量;④确定控制方案控制精度和干扰决定→系统的简单与复杂,温度、效率、含氧量等多于一个要求→多输入/多输出;如果温度、含氧量定值控制,还要求效率→最优控制;⑤选择控制策略多数采用→P ID;复杂过程→高级过程控制;⑥选择执行器气动与电动,执行期特性与过程特性匹配;⑦设计报警与联锁保护系统高、低限值,加热炉停车程序:停燃油泵→关燃油阀→停引风机→切断热油阀;⑧工程化设计设计图样资料和文件资料→表达设计思想→主管部门审批→施工单位;⑨系统投运、调试和整定参数4.4 单回路控制系统的工程设计实例4.4.1 喷雾式干燥设备控制系统设计图3牛奶的干燥过程流程4.4.2 被控参数与控制参数选择选取采样周期时,一般应考虑下列几个因素:(1)被控参数选择选干燥器的温度为被控参数(间接参数);(2)控制参数选择影响干燥器温度的因素有乳液流量、旁路空气量、热蒸汽b)c)图4 干燥设备控制方案比较示意图;(a)乳液流量f1(t)作控制参数,(b)风量f2(t)作控制参数,(c)蒸汽量f3(t)作控制参数4.4.3 过程检测、控制设备的选用根据生产工艺和用户的要求,选用电动单元组合仪表:(1) 测温元件及变送器:为提高检测精度应用三线制接发,并配用温度变送器;(2) 调节阀:根据过程特性与控制要求选用对数流量特性的调节阀;(3) 调节器:根据过程特性与工艺要求,可选用PI或PID控制规律;根据构成系统负反馈的原则,确定调节器正、反作用方向。

4.5 贮槽液位控制系统设计图5贮槽4.5.1被控参数与控制参数选择(1) 选择被控参数根据工艺可知,贮槽的液位要求维持在某给定值上下,所以直接选取液位为被控参数;(2) 选择控制参数从生产过程看,影响液位有两个量,流入贮槽量和流出贮槽量;构成液位系统控制的就有两种控制方案。

a) b)图6液位控制系统;(a)调流入量q,(b)调流出量q14.5.2 选用过程检测控制设备(1) 选用DDC系统(2) 选用DDZ-Ⅲ型变差器(3) 根据生产工艺安全原则选择调节阀:贮槽具有单容特性,所以选用对数流量特性的调节阀(4) 控制规律选择5 结语过程控制系统是实现生产过程自动化的平台,而自动化仪表与装置是过程控制系统不可缺少的重要组成部分。

要保证过程控制的安全稳定性、安全性、稳定性、经济性要自确保动化仪表的正常运行。

通过《过程控制与自动化仪表》这门课的学习,对过程控制和自动化仪表有了更深入的了解,同时也发现了这门课与检测技术、计算机控制系统、自动控制原理等课程紧密联系。

以喷雾式干燥设备控制系统、贮槽液位控制系统设计为例,对单回路控制系统的工程设计实例做了一些概述,对被控参数与控制参数选择、过程检测控制设备的选用也有了进一步的认识。

参考文献[1] 杨丽明, 张光新. 化工自动化及仪表[M]. : 化学工业出版社, 2004,pp.142--245.[2] 潘永湘. 过程控制与自动化仪表第2版[M]. : 机械工业出版社, 2007,pp.12--234.[3] 施仁. 自动化仪表与过程控制[M]. : 电子工业出版社, 2003, pp.34--233.。

相关文档
最新文档