【食品工艺学】干制

合集下载

食品加工工艺第五章食品的干制保藏技术

食品加工工艺第五章食品的干制保藏技术
5.食品的干制保藏技术
§1.2.2.湿物料的湿热传递过程
脱水的过程实质上是热量和水分的传递过程。
在蒸汽压差的作用下表面水分扩散到空气中
内部水分转移到表面
湿度梯度
温度梯度
热量由表面向内部传递
5.食品的干制保藏技术
§1.2.2.湿物料的湿热传递过程
食品表面
给湿过程
湿热传递过程
食品内部 导湿过程
5.食品的干制保藏技术
温度↑→夹持空气体积↑→压力↑→水分挤向低温处
❖ 水分迁移量
qm md 0 grad
qmθ: 水分湿热传导的流量密度(㎏·m-2·h-1)
δ :热湿传导系数(kg·kg-1·℃-1)
gradθ:温度梯度(℃·m-1)
5.食品的干制保藏技术
§1.2.2.2.导湿过程
❖B点是毛细管水和吸附水的分界点。
旋转式 雾化器
并流双流体 雾化器
喷泉式双流体 雾化器
5.食品的干制保藏技术
喷雾干燥原理示意图
1.空气过滤器 2.加热器 3.热风分配器 4.干燥室 5.过滤器 6.泵 7.离心喷头 8.旋风分离器 9.风机 10.料液槽
废气
5.食品的干制保藏技术
气流干燥
1.鼓风机 2.加热器 3.空气分配器 4.搅拌机 5.螺旋加料器 6.干燥器 7.分级器 8.旋风分离器 9.星型卸料器 10除尘器 11.引风机
5.食品的干制保藏技术
§1.2.湿物料在脱水过程中的湿热传递
§1.2.1影响湿热传递的因素
❖ 食品的表面积
表面积↑,传递速率↑
❖ 干燥介质的温度
温度↑,传递速率↑
❖ 空气流速
流速↑,传递速率↑
❖ 空气相对湿度

食品干制

食品干制

28.概念:平衡水分、自由水分、吸湿水分、干燥介质、干燥速度、水分率、干燥率、热、内、外扩散食品干制:指在尽可能不改变食品风味前提下,利用各种方法排除食品中水分的过程。

平衡水分:是指在干制过程中不被脱除的水分,具体是指被干燥物料同一定温度和湿度的干燥介质相接触,经过一定时间,物料排除的水分和吸入的水分相等时(物料所含水分相对不变),物料所含的水分。

(即在该干燥介质条件下物料的平衡水分(平衡湿度),只要干燥介质的条件(温度,湿度)不变,相对于这个条件下物料平衡水分就是这种物料的干燥极限,平衡水分的多少受干燥介质温度高低,湿度大小的影响。

)自由水分:是指在干制过程中被脱除的水分,其中绝大部分是游离水分,一小部分胶体结合水。

吸湿水分:由于平衡水分受到干燥介质温度和湿度的影响,所以当干制品脱离干燥条件时,如果贮存或包装不善,往往会发生吸湿使其水分含量升高,这种吸湿的程度就要达到与所处环境状态相适应的含水量,这时物料的水分为吸湿水分。

(吸湿水分的含量受其空气温度与湿度的影响,当物料的水分含量超过吸湿水分时则称为湿润水分。

)干燥介质:在脱除水分时,能吸收容纳水分的物质称为。

(在物料的干燥过程中,我们将带走水分,传递能量的物质称之为干燥介质。

)作用:带走水分,传递能量;常用:空气、惰性气体、过热蒸汽。

干燥速度:指单位时间内绝对含水量的下降值。

水分率:指一份干物质所具有的水的份数M(水分率)=m/100-m干燥率:表示生产一份干制品所需要的鲜原料的份数D=(100-m干)/(100-m鲜)热扩散:水分借助温度梯度沿着热流的方向移动扩散称之为水分的热扩散。

内扩散:当物料表层的水分由于外扩散的作用降低,内部的水分含量大于外部,在物料中就形成了一种“含水量梯度”或称“湿度梯度”这时的物料内部的水蒸气就大于外部的水蒸汽压,促使内层水分向外移动,我们把这种借助“湿度梯度”的作用是水分在物料内部移动的现象叫做水分的“内扩散”。

第四章食品的干制.

第四章食品的干制.
蒸汽压差
同时,食品在热空气F中oo,d 食H品2表O 面受热高于它的中心,因 而在物料内部会建立一定的温度差,即温内度部梯水度分。转温移度到梯表面 度将ΔM促使水分(无论是液态还是气态)从高温向低温处转 移水。分这梯种度现象称为导湿温性。
2. 食品干制过程特性 (((123)干干线减随变够内中初不于在分))干制 燥 慢下着,快部的期变水降蒸干食燥过 时 ,降热此,转速食,分率发燥品曲程 , 随,量时从移率品即蒸干,速温线中 食 后当的为而到温加发燥则率度食 品 达达A传恒可表度热)阶食曲曲-品 水 到到B递率以面上转段品线线绝 分 平较热,干维的升化,温对在衡低力干燥持速,为温度水短水水平燥阶表率直水度逐分暂分分B内水可衡速段面大到分上渐和的。含〃部分以干平量率,水于最蒸升上-C迁从维制衡时很此分或高发,升〃C表于时后(移表持恒快时含等值所说。〃面水间,第到面表-率达水量于,吸明D跑分的出一表跑面干〃到分恒水整收水向补关现临降面向水燥最从定分个的分系快界干充率的干分阶高内 , 从 恒 潜 的曲速水燥到干速燥含段值部也表率热转线 下分空表燥率空量:,转就面干(移降)气面阶大气恒水然移是扩燥热来,,中的段于的定分后到说散阶量不几干的速:或速。从乎燥稳表水到段全及速率水等率时速食定面分空温部供率。分直率于,品不足从气度用水快从
湿等温线上寻找。
D 大气压力和真空度
气压下降,水的沸点也相应下降,所以气压愈 低,沸点也愈低,温度不变,气压降低则沸腾 愈加速
E 食品的表面积
操作条件对于干燥的影响
干燥条件 干燥恒率阶段 干燥降率阶 段
空气温度上升 干燥速率增加 干燥速率增 加
空气流速上升 干燥速率增加 无变化 相对湿度下降 干燥速率增加 无变化
合理选用干燥工艺的原则:

食品工艺学 2干制汇编

食品工艺学 2干制汇编
但是有些操作并不仅仅是为了去除水分, 应还有其他的作用,如油炸是为了脆,烤是为 了香脆或酥,因而人们不认为这些操作是食 品脱水的一种主要形式.
1.2 脱水加工的类型
依据脱水的程度,脱水加工可以分为两种类型: ➢产品是液态,其中水分含量较高>15% — —浓缩(concentration)。 如浓缩果汁40~70% ➢产品是固体,最终水分含量低<15% —— 干燥(drying) 。 如桔子粉,奶粉,粉状咖啡
第二章 食品的脱水加工
概述 第一节 食品干藏原理 第二节 食品干燥机制 第三节 干制对食品品质的影响 第四节 食品的干制方法 第五节 干制品的包装和贮藏
概述
1. 食品的脱水加工( dehydration)
1.1 脱水加工就是从食品中去除水分
日常生活中如日晒稻谷,风干鱼肉,油炸油 条,烤烧饼、面包等,这些加工都会使食品失 去水分,
特点是冷操作,蛋白质不会变性; 如从乳清中回收乳清蛋白;
在本章中所讨论的食品脱水加工是指:
在控制的条件下,通过加热蒸发脱 水的方法,几乎完全地除去食品中的 大部分水分,并尽量使食品的其他性质 在此过程中极小地发生变化,食品被 脱水后水分含量在15%以下,即干燥或 干制。
2. 干燥的目的
降低食品中水分含量; 一般由50~90%减为15%以 下
吸附等温线的加工意义
I单水分子层区和II多水分子层区是食品被 干燥后达到的最终平衡水分(一般在5%以 内);这也是干制食品的吸湿区;
III自由水层区,物料处于潮湿状态,高水 分含量,是脱水干制区
(2) 温度对水分吸附等温线的影响
同一原料随着温度的升高吸附等温曲线向水 分活度增加的方向抬升; 图2-4 (p28) 相同水分含量,水分活度随温度增高而增大 相同水分活度,水分含量随温度降低增大。

食品工艺学(干燥和杀菌)

食品工艺学(干燥和杀菌)

食品工艺学第三节干燥一、食品干制的基本原理1. 食品水分的吸收和解吸2. 食品干制过程特性(1)干燥曲线–干制过程中食品绝对水分和干制时间的关系曲线–干燥时,食品水分在短暂的平衡后,出现快速下降,几乎时直线下降,当达到较低水分含量时(第一临界水分),干燥速率减慢,随后达到平衡水分。

(2)干燥速率曲线–随着热量的传递,干燥速率很快达到最高值,然后稳定不变,此时为恒率干燥阶段,此时水分从内部转移到表面足够快,从而可以维持表面水分含量恒定,也就是说水分从内部转移到表面的速率大于或等于水分从表面扩散到空气中的速率(3)食品温度曲线–初期食品温度上升,直到最高值——湿球温度,整个恒率干燥阶段温度不变,即加热转化为水分蒸发所吸收的潜热(热量全部用于水分蒸发)–在降率干燥阶段,温度上升直到干球温度,说明水分的转移来不及供水分蒸发,则食品温度逐渐上升。

曲线特征的变化主要是内部水分扩散与表面水分蒸发或外部水分扩散所决定–食品干制过程特性总结:干制过程中食品内部水分扩散大于食品表面水分蒸发或外部水分扩散,则恒率阶段可以延长,若内部水分扩散速率低于表面水分扩散,就不存在恒率干燥阶段。

–外部很容易理解,取决于温度、空气、湿度、流速以及表面蒸发面积、形状等–那么内部水分扩散速率的影响因素或决定因素是什么呢?二、干燥机制温度梯度表面水分扩散到空气中内部水分转移到表面水分梯度 Food H2Oλ干制过程中潮湿食品食品表面水分受热后首先有液态转化为气态,即水分蒸发,而后,水蒸气从食品表面向周围介质扩散,此时表面湿含量比物料中心的湿含量低,出现水分含量的差异,即存在水分梯度。

水分扩散一般总是从高水分处向低水分处扩散,亦即是从内部不断向表面方向移动。

这种水分迁移现象称为导湿性。

λ同时,食品在热空气中,食品表面受热高于它的中心,因而在物料内部会建立一定的温度差,即温度梯度。

温度梯度将促使水分(无论是液态还是气态)从高温向低温处转移。

食品工艺学_干制

食品工艺学_干制

(刺孢曲霉、二孢红曲霉)
棉花糖、果冻、糖蜜、粗蔗糖、一些果干、坚果
微生物不增值
含约 15~20%水分的果干、一些太妃糖与焦糖;蜂蜜
微生物不增值
含约 12%水分的酱、含约 10%水分的调味料
微生物不增值
含约 5%水分的全蛋粉
微生物不增值
含约 3~5%水分的曲奇饼、脆饼干、面包硬皮等
微生物不增值
含约 2~3%水分的全脂奶粉、含约 5%水分的脱水蔬菜、
乳酸杆菌属、足球菌、一些霉菌、
55%(w/w)蔗糖或 12%氯化钠的食品
酵母(红酵母、毕赤氏酵母)
许多酵母(假丝酵母、球拟酵母、 发酵香肠(萨拉米)、松蛋糕、干的干酪、人造奶油、
汉逊酵母)、小球菌
含 65%(w/w)蔗糖(饱和)或 15%氯化钠的食品
大多数霉菌(产生毒素的青霉菌)、 大多数浓缩水果汁、甜炼乳、巧克力糖浆、槭糖浆和
水( III自由水或体相水)
(Ⅰ)单分子层水, 不能被冰冻,不能干 燥除去。水被牢固地 吸附着,它通过水离子或水-偶极相互 作用被吸附到食品可 接近的极性部位如多 糖的羟基、羰基、 NH2,氢键,当所有 的部位都被吸附水所 占有时,此时的水分 含量被称为单层水分 含量, -40℃不能冻 结,占总水量的极小 部分。
1.2 脱水加工的类型
依据脱水的程度,脱水加工可以分为两种类型: ➢产品是液态,其中水分含量较高>15% — —浓缩(concentration)。 如浓缩果汁40~70% ➢产品是固体,最终水分含量低<15% —— 干燥(drying) 。 如桔子粉,奶粉,粉状咖啡
•依据食品脱水的原理
食品脱水加工类型: 在常温下或真空下加热让水分蒸发,依据食
水是否被利用与水在食品中的存在状态有关。

食品工艺学 第一章 食品干燥保藏

食品工艺学 第一章 食品干燥保藏

喷雾干燥器由 以下部件组成
❖ 干燥室 ❖ 供料系统 ❖ 热空气干燥系统 ❖ 制品捕集系统
六、冷冻干燥
又称:真空冷冻干燥 升华干燥 冷冻升华干燥 分子干燥
真空冷冻干燥的理论基础
冷冻干燥法和其它干燥法相比具有以下 特点:
❖能较好地保持食品原来的形状 ❖减少食品色、香、味及营养成分的损失,减 少了食品中脂质的氧化。 ❖冻干制品具有多孔结构、速溶性和快速复水 性很好。 ❖在升华过程中溶于水的可溶性物质就地析出。 ❖溶于水的无机盐还均匀地存在。
第一章 食品干燥保藏
几个概念: 1. 食品干藏 脱水制品在它的水分降低到足以防止腐
败变质的水平后,始终保持低水分进行长期贮藏的 过程。 2. 干燥 是在自然条件或人工控制条件下促使食品中 水分蒸发的工艺过程。 3. 脱水 是为保证食品品质变化最小,在人工控制条 件下促使食品水分蒸发的工艺过程。
发展历史
五、喷雾干燥
喷雾干噪是将液态或浆状食品喷成雾状液滴,悬浮 在热空气气流中进行脱水干燥的过程。干燥机塔内保持 真空状态,当细雾与热空气接触时,水分闪蒸悼而食品 变成微粒下落,湿热空气由风机排出。因雾滴具有极大 的表而积,传热传质速度极快,因此下燥时间极短,一 般在2—10s内完成;物科温度低,受热损害小,适宜 于迅敏食品的干燥。
加料方式
四、真空干燥
▪ 真空干燥是利用低压下水的沸点降低的原理,干燥在
高温下易氧化变质、风味易变化的热敏食品。
▪ 真空干燥制品的结构疏松,容易复水。 ▪ 真空干燥分为间歇式和连续式,最简单的是真空盘架
式干燥,物料在加热板上传导受热。水分蒸发后被真 空泵或蒸汽喷射器排出,如果蒸汽含有有价值而需要 回收的物质如香精,则必须采用间壁式冷凝器。
1%以下,酶的活性才完全消失。 结论: 干制品在干燥前需要钝化酶。

食品工艺学:食品的干制保藏

食品工艺学:食品的干制保藏

(一)、水分活度与微生物的关系
水分活度(Aw):食品在密闭容器内测 得的蒸汽压(p)与同温下测得的纯水蒸汽压 (p0)之比。 Aw值的范围在0—1之间。
Aw值反映了水分与食品结合的强弱及被
微生物利用的有效性。
(一)、水分活度与微生物的关系 1.水分活度与微生物生长的关系 一般情况下,每种微生物均有最适的水分活度 不同微生物耐受的最低Aw值:
小,可以显著地节省包装、储藏和运输费用,并且 便于携带和储运;
第一节、概
1、干燥目的:

干制食品常常是救急、救灾和战备用的重要物质。


2、食品干燥相关概念:
食品干藏 :脱水制品在它的水分降低到足以防止腐败 干燥:是在自然条件或人工控制条件下促使食品中水分 脱水: 是为保证食品品质变化最小,在人工控制条件下 浓缩(concentration)——产品是液态,水分含量
食品工艺学导论
第四章 食品的干制保藏
食 品 的干 燥
1、概述 2、食品干燥保藏的原理
3、干 燥 理 论 基 础
4、常见的干燥方法和技术
5、食品干燥过程中的变化
6、干燥产品包装和贮藏
7、干制品的干燥比和复水性
8、中间水分食品
第一节、概 1、干燥目的:

延长贮藏期 -- 经干燥的食品,其水分活性较
中微生物总数会稳步
下降。
2.水分活度与微生物的耐热性 微生物的耐热性与其所处环境的水分活度 有一定的关系。 一般情况下,降低水分活度将使微生物的 耐热性增强。
(二)、水分活度与酶的关系 通常水分活度在 0.75~0.95 的范围内酶活性 达到最大。 水分减少时,酶的活性也就下降。只有在 水分降低到1%以下时,酶的活性才会完全消 失。 水分含量越高、酶的失活温度越低。酶在 湿热条件下易钝化。为了控制干制品中酶的 活动,就有必要在干制前对食品进行湿热或 化学钝化处理,以达到酶失去活性为度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(Ⅱ)多层水,主要 通过水-水和水-溶质 氢键同相邻分子缔合,
为可溶性组分的溶液, 大部分多层水在-40℃ 不被冻结,I+II的水 占5%以下
(Ⅲ)自由水或体相水,是食 品中结合的最弱,流动性最大 的水,主要是在细胞体系或凝 胶中被毛细管液面表面张力或 被物理性截留的水,这种水很 易通过干燥除去或易结冰,可 作为溶剂,容易被酶和微生物 利用,食品容易腐败,通常占 95%以上;
水( III自由水或体相水)
(Ⅰ)单分子层水, 不能被冰冻,不能干 燥除去。水被牢固地 吸附着,它通过水离子或水-偶极相互 作用被吸附到食品可 接近的极性部位如多 糖的羟基、羰基、 NH2,氢键,当所有 的部位都被吸附水所 占有时,此时的水分 含量被称为单层水分 含量, -40℃不能冻 结,占总水量的极小 部分。
吸附等温线的加工意义
I单水分子层区和II多水分子层区是食品被 干燥后达到的最终平衡水分(一般在5%以 内);这也是干制食品的吸湿区;
III自由水层区,物料处于潮湿状态,高水 分含量,是脱水干制区
(2) 温度对水分吸附等温线的影响
同一原料随着温度的升高吸附等温曲线向水 分活度增加的方向抬升; 图2-4 (p28) 相同水分含量,水分活度随温度增高而增大 相同水分活度,水分含量随温度降低增大。
表2-2 常见食品中水分含量与水分活度的关系
Food Ice 0℃ Ice -10℃ Ice -20℃ Ice -50℃ Fresh meat
Bread
Marmalade Wheat flour
Raisin Macaroni
Boiled sweets
Biscuuits Dried milk
Potato crisps
减小食品体积和重量; 一般重量变为原来的 1/8~1/2左右,节省包装、贮藏和运输费用,带来 了方便性;
为了食品的贮藏和延长保藏期;这就是干燥保藏 例如奶粉、粮食干燥、许多著名的土特产如红枣、 柿饼、葡萄干、金花菜、香菇、笋干等都是干制 品
3. 食品干燥保藏
是指在自然条件或人工控制条件下,使食品 中的水分降低到足以防止腐败变质的水平后 并始终保持低水分可进行长期贮藏的方法。
0.2
0.4 Aw 0.6
0.8
呈倒S型,开始随水分活度增大上升迅速,到0.3左右后
变得比较平缓,当水分活度上升到0.6以后,随水分活度
的增大而迅速提高。Aw<0.15才能抑制酶活性
(3)水分活度对氧化反应的影响
0.2
0.4 Aw
0.6
0.8
Aw在0.4左右时,氧化反应较低,这部分水被认为能结合氢过氧化物,干扰 了它们的分解,于是阻碍了氧化的进行。另外这部分水能同催化氧化的金属 离子发生水化作用,从而显著地降低了金属离子的催化效率。当水分超过0.4 时,氧化速度增加。认为加入的水增加了氧的溶解度和使大分子溶胀,暴露 更多的催化部位,从而加速了氧化。
贺氏菌属、克霍伯氏菌属、芽孢杆 鱼以及牛乳;熟香肠和面包;含有约 40%(w/w)蔗
菌、产气荚膜梭状芽孢杆菌、一些
糖或 7%氯化钠的食品
酵母
沙门氏杆菌属、溶副血红蛋白弧菌、 一些干酪(英国切达、瑞士、法国明斯达、意大利菠
肉毒梭状芽孢杆菌、沙雷氏杆菌、 萝伏洛)、腌制肉(火腿)、一些水果汁浓缩物;含有
金黄色葡萄球菌、大多数酵母菌属 水果糖浆、面粉、米、含有 15~17%水分的豆类食物、
(拜耳酵母)SPP、德巴利氏酵母菌 水果蛋糕、家庭自制火腿、微晶糖膏、重油蛋糕
嗜旱霉菌(谢瓦曲霉、白曲霉、 果酱、加柑橘皮丝的果冻、杏仁酥糖、糖渍水果、一
Wallemia Sebi)、二孢酵母
些棉花糖
耐渗透压酵母(鲁酵母)、少数霉菌 含有约 10%水分的燕麦片、颗粒牛扎糖、砂性软糖、
(3)不同食品吸附等温曲线形状不同
食品的组分或成分不同,会影响水分含量和水 分活度之间的关系 图1-3-1
(4) 加工对食品水分吸附等温线的影响
食品在脱水过程中水分含量和水分活度之间的关系 就是水分解吸的过程,为解吸的吸附等温线;
Moisture content (%) Water activity
100
1.00
100
0.91
100
0.82
100
0.62
70
0.985
40
0.96
35
0.86
14.5
0.72
27
0.60
10
0.45
3.0
0.30
5.0
0.20
3.5
0.11
1.5
0.08
2. 水分活度对食品保藏性的影响
(1)水分活度和微生物生长活动的关系 (2)水分活度对酶活力的影响 (3)水分活度对化学反应的影响
含约 5%水分的玉米片、家庭自制的曲奇饼、脆饼干
水分活度对细菌生长及毒素的产生的影响
Aw<0.85微生物生长受抑制。水分活度较 高的情况下微生物繁殖迅速,
水分活度对霉菌生长的影响
0.2
0.4 Aw 0.6
0.8
1.0
Aw<0.65霉菌被抑制,在0.9左右霉菌生长最 旺盛。
(2)水分活度对酶活力的影响
第二章 食品的脱水加工
概述 第一节 食品干藏原理 第二节 食品干燥机制 第三节 干制对食品品质的影响 第四节 食品的干制方法 第五节 干制品的包装和贮藏
概述
1. 食品的脱水加工( dehydration)
1.1 脱水加工就是从食品中去除水分
日常生活中如日晒稻谷,风干鱼肉,油炸油 条,烤烧饼、面包等,这些加工都会使食品失 去水分,
水分活度对褐变反应的影响
0.2
0.4
0.6
0.8
Aw
3 食品中水分含量(M)与 水分活度Aw之间的关系
食品中水分含量(M)与水分活度之间的关系曲线 称为该食品的吸附等温线
(1)水分吸附等温线,BET吸附等温线,S形,
第一转折点前(水分含量< 5%),单分子层吸附水( I 单层水分); 第一转折点与第二转折点之间,多分子层吸附水( II多层水分); 第二转折点之后,在食品内部的毛细管内或间隙内凝结的游离
(1)水分活度和微生物生长活动的关系
大多数新鲜食品的水分活 度在0.98以上,适合各种微 生物生长(易腐食品)。大 多数重要的食品腐败细菌所 需的最低aw都在0.9以上, 肉毒杆菌在低于0.95就不能 生长。只有当水分活度降到 0.75以下,食品的腐败变质 才显著减慢;若将水分降到 0.65,能生长的微生物极少。 一般认为,水分活度降到 0.7以下物料才能在室温下 进行较长时间的贮存。
•依据食品脱水的原理
食品脱水加工类型: 在常温下或真空下加热让水分蒸发,依据食
品组分的蒸汽压不同而分离去除水分至固体 或半固体; 如干燥或干制 依据食品分子大小不同,用膜来分离水分; 如超滤、反渗透等, 主要是用于浓缩
超滤浓缩原理
分子筛的原理:不同大小的分子对具有一定 孔径大小的膜其通透性不同,小分子比大分 子更容易通过膜,水分子是食品中最小的分 子之一,用适当孔径的膜在外加压力下,就 可以实现浓缩,
但是有些操作并不仅仅是为了去除水分, 应还有其他的作用,如油炸是为了脆,烤是为 了香脆或酥,因而人们不认为这些操作是食 品脱水的一种主要形式.
1.2 脱水加工的类型
依据脱水的程度,脱水加工可以分为两种类型: ➢产品是液态,其中水分含量较高>15% — —浓缩(concentration)。 如浓缩果汁40~70% ➢产品是固体,最终水分含量低<15% —— 干燥(drying) 。 如桔子粉,奶粉,粉状咖啡
食品中水分活度与微生物生长关系(表)
范围 aw
1.0~0.95
0.95~0.91
0.91~0.87 0.87~0.80
0.80~0.75 0.75~0.65 0.65~0.60
0.5 0.4 0.3 0.2
在此范围内的最低水分活度一般所
在此水分活度范围的食品
能抑制的微生物
假单胞菌、大肠杆菌变形杆菌、志 极易腐败变质(新鲜)食品、罐头水果、蔬菜、肉、
这样的干制食品在室温下一般可达到一 年或一年以上
这种方法是从自然界各种现象中认识和从实 践中得到的,如稻谷、 麦子、玉米、豆类、 水果、蔬菜等。
4. 食品干藏的历史
是一种最古老的食品保藏方法。
我国北魏在《齐民要术》一书中记载用阴干 加工肉脯的方法。
在《本草纲目》中,用晒干制桃干的方法。 大批量生产的干制方法是在1795年法国,将
片状蔬菜堆放在室内,通入40℃热空气进行 干燥,这就是早期的干燥保藏方法,差不多 与罐头食品生产技术(1810年)同时出现。
5.食品干藏的特点
自然干制,简单易行、因陋就简、生产费用 低;但时间长、受气候条件影响;
人工干制,不受气候条件限制,操作易于控 制,干制时间显著缩短,产品质量显著提高; 但需要专用设备,能耗大,干制费用大;
乳酸杆菌属、足球菌、一些霉菌、
55%(w/w)蔗糖或 12%氯化钠的食品
酵母(红酵母、毕赤氏酵母)
许多酵母(假丝酵母、球拟酵母、 发酵香肠(萨拉米)、松蛋糕、干的干酪、人造奶油、
汉逊酵母)、小球菌
含 65%(w/w)蔗糖(饱和)或 15%氯化钠的食品
大多数霉菌(产生毒素的青霉菌)、 大多数浓缩水果汁、甜炼乳、巧克力糖浆、槭糖浆和
我们把食品中水的逸度与纯水的逸度 之比称为水分活度 AW(water activity)
1. 水分活度
f
—— 食品中水的逸度
Aw = ——
f0
—— 纯水的逸度
水分逃逸的趋势通常可以近似地用水的蒸汽
压来表示,在常压(低压)或室温时,f/f0 和P/P0之差非常小(<1%),故用P/P0来定 义AW是合理的。
相关文档
最新文档