高一数学函数的运用1

合集下载

三角函数的应用(一)课件-高一上学期数学人教A版(2019)必修第一册

三角函数的应用(一)课件-高一上学期数学人教A版(2019)必修第一册

根据已知数据作出散点图,如下图所示.
y
由数据表和散点图可 22
知,振子振动时位移的最 20
18
大值为20mm,因此A=20;16
14
振子振动的周期为0.6s,


即 = 0.6 解得ω= ;


再由初始状态(t=0)振子
的位移为-20,可得sinφ

=-1,因此φ =- .

所以振子位移关于时间
的函数解析式为

y=20sin( t

-

),

12
10
8
6
4
2
–2 O
–4
–6
–8
–10
–12
–14
–16
–18
–20
–22
t∈[0,+∞).
x
现实生活中存在大量类似弹簧振子的运动,如钟摆
的摆动,水中浮标的上下浮动,琴弦的振动,等等.这
些都是物体在某一中心位置附近循环往复的运动.
在物理学中,把物体受到的力(总是指向平衡位置)正
然后进行函数拟合获得具体的函数模型,最
后利用这个函数模型来解决相应的实际问
题.
实际问题通常涉及复杂的数据,因此往
往需要使用信息技术.
课堂
小结
1.知识清单:
(1)简谐运动.
(2)函数的“拟合”.
(3)三角函数在物理中的应用.
2.方法归纳:数学建模、数形结合.
3.常见误区:选择三角函数模型时,最后结果忘记回归
6
7
8
9
10
11

5.00 6.21 7.12 7.49 7.24 6.42 5.25 4.01 3.02 2.52 2.65 3.37

高一数学 必修一 函数的应用

高一数学 必修一 函数的应用

第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、基本初等函数的零点:① 正比例函数(0)y kx k =≠仅有一个零点。

② 反比例函数(0)k y k x =≠没有零点。

③ 一次函数(0)y kx b k =+≠仅有一个零点。

④ 二次函数)0(2≠++=a c bx ax y .(1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点.⑤ 指数函数(0,1)x y a a a =>≠且没有零点。

⑥ 对数函数log (0,1)a y x a a =>≠且仅有一个零点1.⑦ 幂函数y x α=,当0α>时,仅有一个零点0,当0α≤时,没有零点。

5、非基本初等函数(不可直接求出零点的较复杂的函数),先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这两个函数图像的交点个数就是函数()f x 零点的个数。

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

专题02函数的应用(知识梳理)第一节 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ>0Δ=0Δ<0图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数 21[小题体验]1.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案:B2.(教材习题改编)函数f (x )=ln x +2x -6的零点个数是______. 答案:13.函数f (x )=kx +1在[1,2]上有零点,则k 的取值范围是________. 答案:⎣⎡⎦⎤-1,-121.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.[小题纠偏]1.(2018·诸暨模拟)函数f(x)按照下述方法定义:当x≤2时,f(x)=-x2+2x;当x>2时,f(x)=12(x-2)2,则方程f(x)=12的所有实数根之和是()A.2 B.3 C.5 D.8解析:选C画出函数f(x)的图象,如图所示:结合图象x<2时,两根之和是2,x>2时,由12(x-2)2=12,解得x=3,故方程f(x)=12的所有实数根之和是5,故选C.2.给出下列命题:①函数f(x)=x2-1的零点是(-1,0)和(1,0);②函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则一定有f(a)·f(b)<0;③二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点;④若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.其中正确的是________(填序号).答案:③④考点一函数零点所在区间的判定基础送分型考点——自主练透[题组练透]1.已知实数a>1,0<b<1,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1) D.(1,2)解析:选B∵a>1,0<b<1,f(x)=a x+x-b,∴f(-1)=1a-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)解析:选B函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x +2图象交点的横坐标所在的范围.作出两函数大致图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.3.函数f(x)=x2-3x-18在区间[1,8]上______(填“存在”或“不存在”)零点.解析:法一:∵f(1)=12-3×1-18=-20<0,f(8)=82-3×8-18=22>0,∴f(1)·f(8)<0,又f(x)=x2-3x-18在区间[1,8]的图象是连续的,故f(x)=x2-3x-18在区间[1,8]上存在零点.法二:令f(x)=0,得x2-3x-18=0,∴(x-6)(x+3)=0.∵x=6∈[1,8],x=-3∉[1,8],∴f(x)=x2-3x-18在区间[1,8]上存在零点.答案:存在[谨记通法]确定函数f(x)的零点所在区间的2种常用方法(1)定义法:使用零点存在性定理,函数y=f(x)必须在区间[a,b]上是连续的,当f(a)·f(b)<0时,函数在区间(a,b)内至少有一个零点,如“题组练透”第1题.(2)图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如f(x)=g(x)-h(x),作出y=g(x)和y=h(x)的图象,其交点的横坐标即为函数f(x)的零点,如“题组练透”第2题.考点二判断函数零点个数重点保分型考点——师生共研[典例引领]1.函数f(x)=|x-2|-ln x在定义域内的零点的个数为()A.0B.1C.2 D.3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A 由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝⎛⎭⎫12=-1 得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f (f (x ))+1的零点的个数是4,故选A.[由题悟法]判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .4解析:选B 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标.如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.2.(2018·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,则函数g (x )=f (f (x ))-2在区间(-1,3]上的零点个数是( )A .1B .2C .3D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,∴当-1<x ≤1时,12<f (x )≤2,当1<x ≤3时,-1<x -2≤1,f (x )=f (x -2)+1=2x -2+1∈⎝⎛⎦⎤32,3; 设h (x )=f (f (x )),①当-1<x ≤0时,h (x )=22x ,2<h (x )≤2, ∴g (x )=h (x )-2有一个零点x =0; ②当0<x ≤1时,h (x )=22x -2+1,32<h (x )≤2,∴g (x )=h (x )-2有一个零点x =1; ③当1<x ≤3时,h (x )=22x -2+1-2+1, 22+1<h (x )≤3,g (x )有一个零点; 综上,函数g (x )在区间(-1,3]上有3个零点,故选C. 考点三 函数零点的应用重点保分型考点——师生共研[典例引领]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a |x -2|-a ,其中a >0,且为常数.若函数y =f (f (x ))有10个零点,则a 的取值范围是________.解析:当x ≥0时,令f (x )=0,得|x -2|=1, 即x =1或x =3.因为f (x )是定义在R 上的偶函数, 所以f (x )的零点为x =±1或x =±3. 令f (f (x ))=0, 则f (x )=±1或f (x )=±3.因为函数y =f (f (x ))有10个零点,所以函数y =f (x )的图象与直线y =±1和y =±3共有10个交点.由图可知1<a <3.答案:(1,3)[由题悟法]已知函数有零点(方程有根)求参数取值范围常用3方法 直接法 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围 分离参数法 先将参数分离,转化成求函数值域问题加以解决数形结合法 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解[即时应用]1.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 解析:∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝⎛⎭⎫2x -122-14, ∵x ∈[-1,1],∴2x ∈⎣⎡⎦⎤12,2, ∴⎝⎛⎭⎫2x -122-14∈⎣⎡⎦⎤-14,2. ∴实数a 的取值范围是⎣⎡⎦⎤-14,2. 答案:⎣⎡⎦⎤-14,2 2.(2018·浙江名校高考研究联盟联考)方程x 2+3x -2=0的解可视为函数y =x +3的图象与函数y =2x的图象交点的横坐标.若方程x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i (i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是________. 解析:由题意知,方程x 4+ax -4=0的实根是曲线y =x 3+a 与曲线y =4x 的交点的横坐标,而曲线y =x 3+a 是由函数y =x 3的图象向上或向下平移|a |个单位长度得到的.若方程x 4+ax -4=0的各个实数根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i(i =1,2,…,k )均在直线y =x 的同侧,如图,结合图象可得⎩⎪⎨⎪⎧ a >0,-23+a >-2或⎩⎪⎨⎪⎧a <0,23+a <2,解得a <-6或a >6,所以实数a 的取值范围是(-∞,-6)∪(6,+∞).答案:(-∞,-6)∪(6,+∞)第二节 函数模型及其应用1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函 数模型 f (x )=kx +b (k ,b 为常数且k ≠0) 二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax n +b (a ,b 为常数,a ≠0)函数 性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化随x 的增大 逐渐表现为 随x 的增大 逐渐表现为随n 值变化 而各有不同与y轴平行与x轴平行值的比较存在一个x0,当x>x0时,有log a x<x n<a x3.解函数应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论;(4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的()答案:B2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.答案:2001.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点答案:D2.据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.答案:y=-0.1x+1 200(0≤x≤4 000)考点一二次函数模型重点保分型考点——师生共研[典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.解:由题意,最高点为(2+h,4),(h≥1).设抛物线方程为y=a[x-(2+h)]2+4.(1)当h=1时,最高点为(3,4),方程为y=a(x-3)2+4.(*)将点A(2,3)代入(*)式得a=-1.即所求抛物线的方程为y=-x2+6x-5.(2)将点A(2,3)代入y=a[x-(2+h)]2+4,得ah2=-1.由题意,方程a[x-(2+h)]2+4=0在区间[5,6]内有一解.令f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎨⎧f 5=-1h 23-h 2+4≥0,f6=-1h24-h2+4≤0.解得1≤h ≤43.故达到比较好的训练效果时的h 的取值范围是⎣⎡⎦⎤1,43. [由题悟法]二次函数模型问题的3个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题.[即时应用]A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003. 故核电站建在距A 城1003 km 处,能使供电总费用y 最少.考点二 函数y =x +ax模型的应用重点保分型考点——师生共研[典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10). (2)f (x )=6x +10+8003x +5-10≥2 6x +10·f(8003x +5)-10=70(万元), 当且仅当6x +10=8003x +5, 即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.[由题悟法]应用函数y =x +a x模型的关键点 (1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的. (2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数关系式转化为f (x )=ax +b x的形式. (3)利用模型f (x )=ax +b x求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件. [即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C (x )=k 50x +250(x ≥0,k 为常数).记y 为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式并化简;(2)当x 为多少平方米时,y 取得最小值,最小值是多少万元?解:(1)C (0)表示不安装设备时每年缴纳的水费为4万元,∵C (0)=k 250=4, ∴k =1 000,∴y=0.2x+1 00050x+250×4=0.2x+80x+5(x≥0).(2)y=0.2(x+5)+80x+5-1≥20.2×80-1=7,当x+5=20,即x=15时,y min=7,∴当x为15平方米时,y取得最小值7万元.考点三指数函数与对数函数模型重点保分型考点——师生共研[典例引领](2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年解析:选B法一:设2015年后的第n年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得 1.12n>2013,两边取常用对数,得n>lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n≥4,∴从2019年开始,该公司全年投入的研发资金开始超过200万元.法二:根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n},其中,首项a1=130,公比q=1+12%=1.12,所以a n=130×1.12n-1.由130×1.12n-1>200,两边同时取常用对数,得n-1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.3-0.110.05=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解:(1)由题图,设y =⎩⎪⎨⎪⎧ kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1, 当t =1时,由y =4得k =4,由⎝⎛⎭⎫121-a =4得a =3.所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2)由y ≥0.25得⎩⎪⎨⎪⎧ 0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧ t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5. 因此服药一次后治疗疾病有效的时间是5-116=7916(小时).。

有关高一数学必修一函数知识点总结4篇

有关高一数学必修一函数知识点总结4篇

有关高一数学必修一函数知识点总结4篇有关高一数学必修一函数知识点总结4篇积累通识知识可以让我们对各种事物有更全面、更深刻的理解和把握。

积累专业知识可以让我们在自己的领域内成为专家,获得更高的社会地位和经济回报。

下面就让小编给大家带来高一数学必修一函数知识点总结,希望大家喜欢! 高一数学必修一函数知识点总结篇1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。

函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。

所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

四、常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。

选择题、填空题和解答题都有,并且题目难度较大。

在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。

多考查函数的单调性、最值和图象等。

五、误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高一数学必修一函数知识点总结篇2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

高一数学必修一教案《函数模型及其应用》

高一数学必修一教案《函数模型及其应用》

高一数学必修一教案《函数模型及其运用》【导语】心无旁骛,全力以赴,争分夺秒,坚强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!作者高一频道为大家推荐《高一数学必修一教案《函数模型及其运用》》期望对你的学习有帮助!【篇一】【内容】建立函数模型刻画现实问题【内容解析】函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发觉或建立数学模型,并能体会数学在实际问题中的运用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。

在一个具体问题的解决进程中,学生可以从知道知识升华到熟练运用知识,使他们能辩证地看待知识知道与知识运用间的关系,与所学的函数知识前后牢牢相扣,相辅相成。

;另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正知道函数模型的运用和在运用进程中函数模型的建立与解决问题的进程,而从简单、典型、学生熟悉的函数模型中发掘、提炼出来的思想和方法,更容易被学生接受。

同时,应尽量让学生在简单的实例中学习并感受函数模型的挑选与建立。

由于建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和运算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析进程来挑选适当的函数模型和函数模型的构建进程。

在这个进程中,要使学生侧重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。

【教学目标】(1)体现建立函数模型刻画现实问题的基本进程.(2)了解函数模型的广泛运用(3)通过学生进行操作和探究提高学生发觉问题、分析问题、解决实际问题的能力(4)提高学生探究学习新知识的爱好,培养学生,勇于探索的科学态度【重点】了解并建立函数模型刻画现实问题的基本进程,了解函数模型的广泛运用【难点】建立函数模型刻画现实问题中数据的处理【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本进程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究进程中实现教学目标中对知识和能力的要求(目标1,2,3)在如何用函数建模刻画现实问题的基本进程中让学生亲身体验函数运用的广泛性,同时提高学生探究学习新知识的爱好,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标(目标4)【学生学习中预期的问题及解决方案预设】①描点的规范性;②实际操作的速度;③解析式的运算速度④运算终止后不进行检验针对上述可能显现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用运算器利用小组讨论来进行多人合作以期提高相应运算速度,在解析式得出后引导学生得出的标准应当是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行挑选从而引出检验.【教学用具】多媒体辅助教学(ppt、运算机)。

高一数学必修一 教案 3.4 函数的应用(一)

高一数学必修一 教案 3.4 函数的应用(一)

3.4 函数的应用(一)学习目标初步体会一次函数、二次函数、幂函数、分段函数模型的广泛应用,能运用函数思想处理现实生活中的简单应用问题.知识点一一次函数模型形如y=kx+b的函数为一次函数模型,其中k≠0.知识点二二次函数模型1.一般式:y=ax2+bx+c(a≠0).2.顶点式:y=a(x-h)2+k(a≠0).3.两点式:y=a(x-m)(x-n)(a≠0).知识点三幂函数模型1.解析式:y=axα+b(a,b,α为常数,a≠0).2.单调性:其增长情况由xα中的α的取值而定.预习小测自我检验1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )答案 C解析 由题意,先匀速行驶,位移时间图象应是直线,停留一段时间,应该是平行于x 轴的一段线段,之后加速,应该是上凸的曲线.2.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,且含氧量y (g/m 3)与大气压强x (kPa)成正比例函数关系.当x =36 kPa 时,y =108 g/m 3,则y 与x 的函数关系式为( )A .y =3x (x ≥0)B .y =3xC .y =13x (x ≥0)D .y =13x答案 A一、一次函数模型的应用实例例1 某报刊亭从报社买进报纸的价格是每份0.24元,卖出的价格是每份0.40元,卖不掉的报纸可以以每份0.08元的价格退回报社.在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的报纸份数必须相同,试问报刊亭摊主应该每天从报社买进多少份报纸,才能使每月所获利润最大. 解 设每天从报社买进x 份(250≤x ≤400)报纸;每月所获利润是y 元,则每月售出报纸共(20x +10×250)份; 每月退回报社报纸共10×(x -250)份.依题意得,y =(0.40-0.24)×(20x +10×250)-(0.24-0.08)×10(x -250). 即y =0.16(20x +2 500)-0.16(10x -2 500), 化简得y =1.6x +800,其中250≤x ≤400, 因为此一次函数(y =kx +b ,k ≠0)的k =1.6>0, 所以y 是一个单调增函数,再由250≤x ≤400知, 当x =400时,y 取得最大值, 此时y =1.6×400+800=1 440(元).所以买进400份所获利润最大,获利1 440元. 反思感悟 一次函数模型的特点和求解方法(1)一次函数模型的突出特点是其图象是一条直线.(2)解一次函数模型时,注意待定系数法的应用,主要步骤是:设元、列式、求解.跟踪训练1 某长途汽车客运公司规定旅客可随身携带一定质量的行李.若超过规定的质量,则需购买行李票,行李费用y (元)是行李质量x (kg)的一次函数,其图象如图所示.(1)根据图象数据,求y 与x 之间的函数关系式. (2)问旅客最多可免费携带行李的质量是多少? 解 (1)设y 与x 之间的函数关系式为y =kx +b . 由图象可知,当x =60时,y =6; 当x =80时,y =10.所以⎩⎪⎨⎪⎧60k +b =6 ,80k +b =10.解得k =15,b =-6.所以y 与x 之间的函数关系式为y =⎩⎪⎨⎪⎧15x -6,x >30,0,x ≤30.(2)根据题意,当y =0时,x ≤30.所以旅客最多可免费携带行李的质量为30 kg. 二、二次函数模型的应用实例例2 牧场中羊群的最大蓄养量为m 只,为保证羊群的生长空间,实际蓄养量不能达到最大蓄养量,必须留出适当的空闲率.已知羊群的年增长量y 只和实际蓄养量x 只与空闲率的乘积成正比,比例系数为k (k >0).(空闲率指空闲量与最大蓄养量的比值) (1)写出y 关于x 的函数关系式,并指出这个函数的定义域; (2)求羊群年增长量的最大值;(3)当羊群的年增长量达到最大值时,求k 的取值范围. 解 (1)根据题意,由于最大蓄养量为m 只,实际蓄养量为x 只,则蓄养率为x m ,故空闲率为1-x m,由此可得y =kx ⎝⎛⎭⎪⎫1-x m(0<x <m ).(2)对原二次函数配方,得y =-k m(x 2-mx )=-k m ⎝ ⎛⎭⎪⎫x -m 22+km4.即当x =m 2时,y 取得最大值km4.(3)由题意知为给羊群留有一定的生长空间, 则有实际蓄养量与年增长量的和小于最大蓄养量, 即0<x +y <m .因为当x =m 2时,y max =km4, 所以0<m 2+km4<m , 解得-2<k <2.又因为k >0,所以0<k <2.反思感悟 利用二次函数求最值的方法及注意点(1)方法:根据实际问题建立函数模型解析式后,可利用配方法、判别式法、换元法利用函数的单调性等方法求最值,从而解决实际问题中的利润最大、用料最省等最值问题. (2)注意:取得最值的自变量与实际意义是否相符.跟踪训练2 某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表所示.销售单价/元 6 7 8 9 10 11 12 日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润? 解 由表中数据可知,销售单价每增加1元,日均销售量就减少40桶,设在进价的基础上增加x 元后,日均销售利润为y 元, 在此情况下的日均销售量为480-40(x -1)=(520-40x )(桶). 令520-40x >0,则0<x <13.y =(520-40x )x -200=-40x 2+520x -200=-40(x -6.5)2+1 490,0<x <13. 易知,当x =6.5时,y 有最大值.所以只需将销售单价定为11.5元,就可获得最大利润. 三、幂函数与分段函数模型例3 (1)某药厂研制出一种新型药剂,投放市场后其广告投入x (万元)与药品利润y (万元)存在的关系为y =x α(α为常数),其中x 不超过5万元,已知去年投入广告费用为3万元时,药品利润为27万元,若今年广告费用投入5万元,预计今年药品利润为________万元. 答案 125解析 由已知投入广告费用为3万元时,药品利润为27万元,代入y =x α中,即3α=27,解得α=3,故函数解析式为y =x 3,所以当x =5时,y =125.(2)手机上网每月使用量在500分钟以下(包括500分钟)、60分钟以上(不包括60分钟)按30元计费,超过500分钟的部分按0.15元/分钟计费,假如上网时间过短,使用量在1分钟以下不计费,在1分钟以上(包括1分钟)按0.5元/分钟计费,手机上网不收通话费和漫游费. ①12月份小王手机上网使用量20小时,要付多少钱?②小舟10月份付了90元的手机上网费,那么他上网时间是多少? ③电脑上网费包月60元/月,根据时间长短,你会选择哪种方式上网呢?解 设上网时间为x 分钟,由已知条件知所付费用y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧0,0≤x <1,0.5x ,1≤x ≤60,30,60<x ≤500,30+0.15x -500,x >500.①当x =20×60=1 200,即x >500时,应付y =30+0.15×(1 200-500)=135(元).②90元已超过30元,所以上网时间超过500分钟,由30+0.15(x -500)=90可得,上网时间为900分钟.③令60=30+0.15(x -500), 解得x =700.故当一个月经常上网(一个月使用量超过700分钟)时选择电脑上网,而当短时间上网(一个月使用量不超过700分钟)时选择手机上网. 反思感悟 (1)处理幂函数模型的步骤 ①阅读理解、认真审题.②用数学符号表示相关量,列出函数解析式. ③根据幂函数的性质推导运算,求得结果. ④转化成具体问题,给出解答. (2)应用分段函数时的三个注意点①分段函数的“段”一定要分合理,不重不漏.②分段函数的定义域为对应每一段自变量取值范围的并集.③分段函数的值域求法为:逐段求函数值的范围,最后比较再下结论.跟踪训练3 经市场调查,某种商品在过去50天的销售量和价格均为销售时间t (天)的函数,且销售量近似地满足f (t )=-2t +200(1≤t ≤50,t ∈N ),前30天价格为g (t )=12t +30(1≤t ≤30,t ∈N ),后20天价格为g (t )=45(31≤t ≤50,t ∈N ). (1)写出该种商品的日销售额S 与时间t 的函数关系; (2)求日销售额S 的最大值. 解 (1)根据题意得S =⎩⎪⎨⎪⎧-2t +200⎝ ⎛⎭⎪⎫12t +30,1≤t ≤30,t ∈N ,45-2t +200,31≤t ≤50,t ∈N ,即S =⎩⎪⎨⎪⎧-t 2+40t +6 000,1≤t ≤30,t ∈N ,-90t +9 000,31≤t ≤50,t ∈N .(2)①当1≤t ≤30,t ∈N 时,S =-(t -20)2+6 400, 当t =20时,S 的最大值为6 400.②当31≤t≤50,t∈N时,S=-90t+9 000为减函数,当t=31时,S的最大值是6 210.因为6 210<6 400,所以当t=20时,日销售额S有最大值6 400.1.某厂日产手套总成本y(元)与手套日产量x(副)的函数解析式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )A.200副B.400副C.600副D.800副答案 D解析每天的利润W(x)=10x-y=10x-(5x+4 000)=5x-4 000.令W(x)≥0,∴5x-4 000≥0,解得x≥800.所以为了不亏本,日产手套至少为800副.2.一辆汽车在某段路程中的行驶速度v与时间t的关系图象如图所示,则当t=2时,汽车已行驶的路程为( )A.100 km B.125 kmC.150 km D.225 km答案 C解析t=2时,汽车行驶的路为s=50×0.5+75×1+100×0.5=25+75+50=150(km).3.按复利计算利率的储蓄,存入银行5万元,年息为6%,利息税为20%,4年后支取,可得利息税为人民币( ) A .5(1+0.06)4万元 B .(5+0.06)4万元 C .[(1+0.06)4-1]万元 D .[(1+0.06)3-1]万元 答案 C解析 由已知4年利息和为5×(1+6%)4-5,扣除20%的利息税,即得利息税为人民币5×[(1+6%)4-1]×20%=(1+6%)4-1=(1+0.06)4-1.4.用长度为24 m 的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为______ m. 答案 3解析 设隔墙的长为x m ,矩形面积为S m 2, 则S =x ·24-4x 2=x (12-2x )=-2x 2+12x=-2(x -3)2+18,0<x <6, 所以当x =3时,S 有最大值为18.5.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少? 解 设可获得总利润为R (x )万元, 则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680,0≤x ≤210.∵R (x )在[0,210]上是增函数, ∴当x =210时,R (x )max =-15(210-220)2+1 680=1 660(万元).∴年产量为210吨时,可获得最大利润1 660万元.1.知识清单:实际问题中四种函数模型:一次函数模型,二次函数模型,幂函数模型,分段函数模型.2.方法归纳:解函数应用题的基本步骤:审题,建模,求模,还原. 3.常见误区:函数的实际应用问题易忽视函数的定义域.1.据调查,某自行车存车处在某星期日的存车量为2 000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是( )A .y =0.3x +800(0≤x ≤2 000,x ∈N *) B .y =0.3x +1 600(0≤x ≤2 000,x ∈N *) C .y =-0.3x +800(0≤x ≤2 000,x ∈N *) D .y =-0.3x +1 600(0≤x ≤2 000,x ∈N *) 答案 D解析 由题意知,变速车存车数为(2 000-x )辆次, 则总收入y =0.5x +(2 000-x )×0.8 =0.5x +1 600-0.8x=-0.3x +1 600(0≤x ≤2 000,x ∈N *).2.一种新型电子产品计划投产两年后,使成本降36%,那么平均每年应降低成本( ) A .18% B .20% C .24% D .36%答案 B解析 设平均每年降低成本x , 则(1-x )2=0.64,得x =0.2=20%.3.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售量的收入是( )A .310元B .300元C .290元D .280元答案 B解析 设y =kx +b (k ≠0),代入(1,800)和(2,1 300),则⎩⎪⎨⎪⎧k +b =800,2k +b =1 300,得⎩⎪⎨⎪⎧k =500,b =300.所以y =500x +300,当x =0时,y =300.4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y =⎩⎪⎨⎪⎧4x ,1≤x <10,x ∈N *,2x +10,10≤x <100,x ∈N *,1.5x ,x ≥100,x ∈N *.其中,x 代表拟录用人数,y 代表面试人数,若应聘的面试人数为60,则该公司拟录用人数为( ) A .15 B .40 C .25 D .130 答案 C解析 令y =60,若4x =60,则x=15>10,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40<100,不合题意,故拟录用人数为25.5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与售价x(元)满足一次函数:m=162-3x,若要每天获得最大的销售利润,每件商品的售价应定为( )A.30元B.42元C.54元D.越高越好答案 B解析设当每件商品的售价为x元时,每天获得的销售利润为y元.由题意得,y=m(x-30)=(x-30)(162-3x).上式配方得y=-3(x-42)2+432.所以当x=42时,利润最大.6.生产某机器的总成本y(万元)与产量x(台)之间的函数关系式是y=x2-75x,若每台机器售价为25万元,则该厂获利润最大时应生产机器________台.答案50解析设安排生产x台,则获得利润f(x)=25x-y=-x2+100x=-(x-50)2+2 500.故当x=50台时,获利润最大.7.甲同学家到乙同学家的途中有一公园,甲同学家到公园的距离与乙同学家到公园的距离都是2 km.如图表示甲同学从家出发到乙同学家经过的路程y(km)与时间x(min)的关系,其中甲在公园休息的时间是10 min,那么y=f(x)的解析式为________________.答案 y =f (x )=⎩⎪⎨⎪⎧115x ,0≤x ≤30,2,30<x <40,110x -2,40≤x ≤60解析 由题图知所求函数是一个分段函数,且各段均是直线,可用待定系数法求得y =f (x )=⎩⎪⎨⎪⎧115x ,0≤x ≤30,2,30<x <40,110x -2,40≤x ≤60.8.某电脑公司2019年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2021年经营总收入要达到1 690万元,且计划从2019年到2021年每年经营总收入的年增长率相同,则2020年预计经营总收入为________万元. 答案 1 300解析 设从2019年到2021年每年经营总收入的年增长率为x . 由题意,得2019年经营总收入为40040%=1 000(万元),则有1 000(1+x )2=1 690. 解得x =0.3,故2020年预计经营总收入为 1 000(1+0.3)=1 300(万元).9.某游乐场每天的盈利额y 元与售出的门票张数x 之间的函数关系如图所示,试由图象解决下列问题:(1)求y 关于x 的函数解析式;(2)要使该游乐场每天的盈利额超过1 000元,每天至少卖出多少张门票? 解 (1)由图象知,当x ∈[0,200]时,可设y =kx +b , 代入点(0,-1 000)和(200,1 000), 解得k =10,b =-1 000, 从而y =10x -1 000,x ∈[0,200].当x ∈(200,300]时,代入点(200,500)和(300,2 000), 解得k =15,b =-2 500,x ∈(200,300]. 从而y =15x -2 500,所以y =⎩⎪⎨⎪⎧10x -1 000,x ∈[0,200],15x -2 500,x ∈200,300].(2)每天的盈利额超过1 000元,则x ∈(200,300], 由15x -2 500>1 000得,x >7003,故每天至少需要卖出234张门票.10.某电脑公司在甲、乙两地各有一个分公司,甲分公司有电脑6台,乙分公司现有同一型号的电脑12台.现A 地某单位向该公司购买该型号的电脑10台,B 地某单位向该公司购买该型号的电脑8台.已知从甲地运往A ,B 两地每台电脑的运费分别是40元和30元,从乙地运往A ,B 两地每台电脑的运费分别是80元和50元.(1)设甲地调运x 台至B 地,该公司运往A ,B 两地的总运费为y 元,求y 关于x 的函数解析式; (2)若总运费不超过1 000元,问能有几种调运方案? 解 (1)甲地调运x 台到B 地, 则剩下(6-x )台电脑调运到A 地;乙地应调运(8-x )台电脑至B 地,运往A 地12-(8-x )=(x +4)台电脑(0≤x ≤6,x ∈N ),则总运费y=30x+40(6-x)+50(8-x)+80(x+4)=20x+960,所以y=20x+960(x∈N,且0≤x≤6).(2)若使y≤1 000,即20x+960≤1 000,得x≤2.又0≤x≤6,x∈N,所以0≤x≤2,x∈N.所以x=0,1,2,即有3种调运方案.11.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0时到6时,该水池的蓄水量如图丙所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的是( )A.①B.①②C.①③D.①②③答案 A解析由甲乙两图知,出水的速度是进水的2倍,所以0点到3点只进水不出水,3点到4点水量减少,则一个进水口进水,另一个关闭,出水口出水;4点到6点水量不变,可能是不进水不出水或两个进水口进水,一个出水口出水,所以只有①正确,故选A.12.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡?( ) A .3人 B .4人 C .5人 D .6人答案 B解析 水箱内水量y =200+2t 2-34t , 当t =172时,y 有最小值,此时共放水34×172=289(升),28965≈4.4,故至多可供4人洗澡.13.某厂有许多形状为直角梯形的铁皮边角料,如图所示,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形的两边长x ,y 应分别为________.答案 15,12解析 由题干图知x ,y 满足关系式x 20=24-y16,即y =24-45x ,矩形的面积S =xy =x ⎝ ⎛⎭⎪⎫24-45x =-45(x -15)2+180,故x =15,y =12时,S 取最大值.14.某市出租车收费标准如下:起步价为8元,起步里程为3千米(不超过3千米按起步价付费);超过3千米但不超过8千米时,超过部分按每千米2.15元收费;超过8千米时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.若某人乘坐出租车行驶了5.6千米,则需付车费________元,若某人乘坐一次出租车付费22.6元,则此出租车行驶了________千米. 答案 14.59 9解析 设出租车行驶x 千米时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+ 2.15x -3+1,3<x ≤8,8+2.15×5+ 2.85x -8+1,x >8,当x =5.6时,y =8+2.15×2.6+1=14.59(元). 由y =22.6,知x >8,由8+2.15×5+2.85(x -8)+1=22.6, 解得x =9.15.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +110x 2,Q =a +xb,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有( )A .a =45,b =-30B .a =30,b =-45C .a =-30,b =45D .a =-45,b =-30答案 A解析 设生产x 吨产品全部卖出,获利润为y 元, 则y =xQ -P =x ⎝ ⎛⎭⎪⎫a +x b -⎝ ⎛⎭⎪⎫1 000+5x +110x 2=⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.所以⎩⎨⎧-a -52⎝ ⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎪⎨⎪⎧a =45,b =-30.16.国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,飞机票价格为900元;若旅行团人数多于30人,则给予优惠:每多1人,飞机票价格就减少10元,直到达到规定人数75人为止.旅行团乘飞机,旅行社需付给航空公司包机费15 000元. (1)写出飞机票的价格关于人数的函数;(2)旅行团人数为多少时,旅行社可获得最大利润? 解 (1)设旅行团人数为x ,飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,x ∈N *,900-10x -30,30<x ≤75,x ∈N *,即y =⎩⎪⎨⎪⎧900,0<x ≤30,x ∈N *,1 200-10x ,30<x ≤ 75,x ∈N *.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,x ∈N *,x 1 200-10x -15 000,30<x ≤75,x ∈N *.即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,x ∈N *,-10x -602+21 000,30<x ≤75,x ∈N *.因为S =900x -15 000在区间(0,30]上单调递增, 当x =30时,S 取最大值12 000.又S =-10(x -60)2+21 000在区间(30,75]上的对称轴为x =60, 当x =60时,S 取最大值21 000. 故当x =60时,旅行社可获得最大利润.。

高一数学必修一中的函数极值与最值应用

高一数学必修一中的函数极值与最值应用

高一数学必修一中的函数极值与最值应用在高一数学必修一的学习中,函数极值与最值是非常重要的概念,它们在解决实际问题和数学理论中都有着广泛的应用。

首先,我们来明确一下函数极值和最值的定义。

函数的极值是指在函数定义域内的某个局部范围内,函数取得的最大值或最小值。

而函数的最值则是指在整个定义域内,函数所取得的最大值或最小值。

那么,如何求函数的极值和最值呢?这就需要用到导数这个工具。

对于一个可导函数,如果在某一点处导数为零,且在该点两侧导数的符号发生变化,那么这个点就是函数的极值点。

当导数从负变为正时,这个极值点是极小值点;当导数从正变为负时,这个极值点是极大值点。

在实际应用中,函数极值和最值有着诸多方面的体现。

比如在经济领域,企业常常需要考虑成本和利润的问题。

假设一家企业生产某种产品,其成本函数为 C(x),收入函数为 R(x),那么利润函数 P(x) = R(x) C(x)。

通过求利润函数的极值和最值,企业可以确定最优的生产数量,以实现利润的最大化。

再比如在物理问题中,常常会涉及到能量的变化。

例如一个物体在重力作用下自由下落,其高度与时间的关系可以用一个函数来表示。

通过求这个函数的极值和最值,可以确定物体下落的最大速度、最大高度等关键物理量。

在几何问题中,也经常会用到函数的极值和最值。

比如要在一个给定的矩形材料上剪出一个最大的圆形,就需要建立矩形边长与圆的半径之间的函数关系,然后求出这个函数的最值,从而确定圆的最大半径。

让我们通过一些具体的例子来更深入地理解函数极值与最值的应用。

例 1:某工厂生产一种产品,其成本 C 与产量 x 之间的函数关系为C(x) = 2x^2 10x + 50。

求当产量为多少时,平均成本最低?首先,平均成本函数为 C(x)/x = 2x 10 + 50/x 。

对其求导,得到导数为 2 50/x^2 。

令导数等于 0 ,解得 x = 5 。

当 x < 5 时,导数小于 0 ,函数单调递减;当 x > 5 时,导数大于 0 ,函数单调递增。

高一数学函数题型及解题技巧总结

高一数学函数题型及解题技巧总结

高一数学函数题型及解题技巧总结1. 函数概述在高一数学学习中,函数是一个重要的概念。

函数描述了自变量和因变量之间的关系,并在各个数学领域中被广泛应用。

通过掌握各种函数题型及解题技巧,我们能够更好地理解和运用函数,提升数学解题能力。

2. 一次函数一次函数是最基础的函数之一,形式为y=ax+b。

其中a表示直线的斜率,b表示直线在y轴上的截距。

在解一次函数的题目时,可以利用函数的定义、斜率和截距等性质来求解。

此外,还需要注意直线与x轴和y轴的交点,以及直线与其他线段的关系。

3. 二次函数二次函数是一个抛物线,通常由形式为y=ax^2+bx+c的方程表示,其中a、b、c为常数且a≠0。

解题时需要掌握二次函数的性质和基本特征。

例如,抛物线的开口方向由a的正负确定,顶点的坐标可以通过求解x的值来确定。

4. 指数函数和对数函数指数函数和对数函数是一对互为反函数的特殊函数。

指数函数形式为y=a^x,其中a为底数,x为指数。

对数函数形式为y=loga(x),表示以a为底,x的对数。

在解题时,需要掌握指数函数和对数函数的定义、性质和常用公式。

例如,指数函数与对数函数之间的关系可以帮助我们快速求解方程。

5. 三角函数三角函数是解析几何和三角学的重要内容。

常见的三角函数包括正弦函数、余弦函数和正切函数等。

在解题时,需要熟悉三角函数的周期性、正负性和基本关系。

例如,利用正弦函数和余弦函数的和差化积公式可以简化复杂的三角函数表达式。

6. 分段函数分段函数在解决实际问题和图像绘制中起到重要作用。

分段函数由多个不同的函数组成,每个函数在一定的区间内有效。

解题时需要找到各个区间的特点,并且针对不同区间使用相应的函数表达式。

7. 综合题型高一数学中的函数题往往是综合性的,要求综合运用多个函数的知识和技巧进行分析和求解。

这种题型常常需要从不同的角度考虑问题,运用多种函数的特性及相关知识,找到问题的关键点并进行适当的变换和求解。

总结:在高一数学学习中,函数题型及解题技巧是数学学习的核心内容之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fra bibliotekg线上电子游艺
[单选]关于卵巢赘生性囊肿的描述哪个不对()A.表面光滑者多为良性B.囊性者多为良性C.可为双侧D.实性、活动受限者多为恶性E.恶性者表面多规则 [单选]质量管理体系的现场审核的实施中,要举行首次会议该由()来主持。A.审核委托方B.审核组长C.一般审核员D.向导 [单选]一般来说,寻求与价格之间是()。A.正相关关系B.负相关关系C.没有明显关系D.彼此间存在不确定的影响 [单选]根据支付结算法律制度的规定,下列票据当事人中,应在票据和粘单的粘接处签章的是()。A.粘单上第一手背书的背书人B.票据上最后一手背书的背书人C.票据上第一手背书的背书人D.粘单上第一手背书的被背书人 [单选,A1型题]一般婴儿添加辅食的时间是()A.出生后4~6个月B.出生后3~4个月C.出生6个月以后D.只要母乳不足,随时可以添加E.以上都不对 [单选]当路堤基底横坡陡于()时,基底坡面应挖成台阶。A.1:0.5B.1:1.5C.1:5D.1:10 [单选,A2型题,A1/A2型题]冲突人际关系观点建立于()A.20世纪40~70年代B.20世纪40~60年代C.20世纪40~50年代D.20世纪30~40年代E.20世纪20~30年代 [单选]哲学上的第二个伟大时期是()。A、十一世纪起至十四世纪为止B、十世纪起至十三世纪为止C、十二世纪起至十五世纪为止 [单选]有关窗技术的理解,下列哪个不妥()A.利用窗技术,将人体组织分为的2000个分度,调整到人眼所能辨别的16个灰阶中B.窗位是指窗宽上限、下限CT值的平均数C.窗位、窗中心是指一个概念D.为显示不同组织影像,应在规范的范围调整E.窗口技术调整的目的,是为了拍摄出一张对比良好的 [单选,A1型题]应用随机效应模型进行加权合并各个研究结果的前提条件是()A.异质性检验得P&gt;aB.异质性检验得P&le;aC.卡方检验P&gt;&alpha;D.卡方检验P&le;&alpha;E.正态性检验P&gt;&alpha; [填空题]废石场的潜在危害主要来自以下两方面:其一是由于废石场()所引发的废石场变形、滑坡及废石场泥石流;其二是废石场所造成的(),其污染形式有粉尘、毒气和酸雨。 [单选]党的十六大报告指出()是我国21世纪的一项重大战略举措。A.以信息化促进工业化B.用工业化带动信息化C.以工业化促进信息化D.用信息化带动工业化 [单选]下列卵巢皮样囊肿声像图的表现,哪一项是错误的A.脂液分层征B.面团征C.瀑布征D.杂乱结构征E.实性团块征 [单选,A1型题]抗绿脓杆菌作用最强的抗生素是()。A.头孢他定B.头孢拉定C.头孢孟多D.磺苄西林E.羧苄西林 [单选]下列资产中,属于不可确指的资产的是()。A.商标B.专利C.商誉D.土地使用权 [填空题]石料磨光值越高,()越好,()越好。 [单选,A1型题]关于纯母乳喂养的定义是()A.除母乳外,还给婴儿吃维生素、果汁,但每日不超过1~2口B.除母乳外,不给婴儿吃其他任何液体或固体食物C.指母乳占全部婴儿食物的80%及以上的喂养D.除母乳外,只给婴儿喝点水E.指母乳占全部婴儿食物的90%及以上的喂养 [名词解释]525R型水泥 [单选]建设单位申请领取施工许可证必须有已经落实的建设资金。建设工期不足一年的,到位资金原则上不得少于工程合同价的()。A.20%B.30%C.40%D.50% [填空题]复发性口疮主要分为轻型、()()3型。 [问答题,简答题]口罩的应用指征 [单选,A1型题]以下表示疾病严重程度的统计指标是()。A.2周每千人患病人数及患病次数B.健康者占总人口百分数C.每千人患慢性病者人数及患病次数D.患病者人数占总人口百分数E.2周每千人因病休工(学)人数及天数 [单选]货币存量主要有五个层次,其中属于M2的是()。A.旅行支票B.活期存款C.其他支票存款D.储蓄存款 [单选]下列哪项不是母乳喂养的好处()。A.营养价值高B.增加新生儿对疾病的免疫力C.增进母婴感情D.预防母亲乳腺癌的发生E.降低母亲子宫肌瘤的发病率 [单选]风湿性心脏瓣膜病二尖瓣狭窄不可能有下列哪项心电图改变().A.左房增大,P波增宽超过0.11s,有切迹B.心房颤动C.右室肥厚的心电图图形D.左室肥厚的心电图图形E.右束支传导阻滞 [单选]材料与硬的颗粒或与偶合件表面硬的突出物作相对运动时所造成的材料移动或分离叫做()。A、粘着磨损B、磨粒磨损C、腐蚀磨损D、疲劳磨损 [单选]下列哪种情况下,测深辨位可得出比较准确的结果()。A.计划航线与等深线平行,等深线稀疏B.计划航线与等深线垂直,等深线稀疏C.计划航线与等深线平行,等深线密集D.计划航线与等深线垂直,等深线密集 [单选]天线安装应不符合要求的是()。A.天线的安装的高度方向和安装方式应符合设计要求B.天线馈电点应朝下护套顶端应与支架主杆顶部齐平或略高出支架主杆顶部C.跳线与天线接头时应制作滴水弯并进行防水密封D.天馈线驻波比应不小于1.5d [单选,A4型题,A3/A4型题]成年患者,热烧伤10%Ⅲ度,伤后10天,创面溶痂,有脓性分泌物并伴有创缘炎性反应,体温39℃,伴有寒战,创面分泌物细菌培养为耐甲氧西林金黄色葡萄球菌,痂下组织细菌计数&gt;10CFU/g,血培养(-)。在应用抗生素治疗时,从下列药物中首选哪一种()A.万古霉 [单选,A2型题,A1/A2型题]道德最显著的特征是()A.继承性B.实践性C.自律性D.他律性E.客观性 [单选]关于咳嗽,描述正确的是()A.干咳仅见于肺癌早期B.只有在呼吸道感染时才能引起咳嗽C.中枢神经因素引起的咳嗽,是从脑桥发出冲动所致D.支气管扩张症咳嗽往往于清晨或夜间变动体位时加重,并伴咳痰E.感染时引起的咳嗽较重,非感染因素引起的咳嗽较轻 [单选]建筑施工企业确定后,在建筑工程开工前,建设单位应当按照国家有关规定向工程所在地县级以上人民政府建设行政主管部门中请领取()。A.建设用地规划许可证B.建设工程规划许可证C.施工许可证D.安全生产许可证 [单选]我国《农村土地承包法》于()正式实施。A.1998年10月1日B.2002年8月92日C.2003年3月1日D.2004年9月2日 [单选]风湿性心脏病二尖瓣狭窄除心尖区听到舒张期隆隆样杂音外,另一具有诊断意义的体征是().A.心尖区粗糙的收缩期吹风样杂音B.肺动脉瓣区第二心音亢进和分裂C.胸骨右缘第2肋间收缩期杂音并向颈部传导D.心尖区舒张期震颤E.胸骨左缘第3~4肋间闻及舒张期吹风样杂音 [填空题]在钢轨超声波探伤中,凡发现接头有可疑波形,而探伤人员又无法拆检的应()拆检或监视。 [单选]定额计算法的公式中R代表()。ABCD [单选]关机及不可及转移的编码操作方式是()?A.**21*DN#发送键;B.**62*DN#发送键;C.**67*DN#发送键;D.**61*DN#发送键。 [单选]症状性癫痫的定义是指()。A.临床上不能分类的癫痫B.从婴儿起始的癫痫C.抗癫痫药物无法控制的癫痫D.脑部无病损或代谢异常的癫痫E.脑部有病损或代谢异常的癫痫 [判断题]生产函数指的是要素投入量和最大产出之间的一种函数关系,通常分为固定比例生产函数和可变比例生产函数两种类型。A.正确B.错误 [单选,A1型题]房间隔缺损特征性的改变是()A.生长发育延迟、乏力、心悸B.心前区可听到粗糙收缩期杂音C.有肺动脉高压时,可出现青紫D.肺动脉瓣区第2音亢进并固定性分裂E.X线可见心房心室的扩大及肺门&quot;舞蹈&quot;
相关文档
最新文档