立体几何中的轨迹问题(总结+讲义+练习)

合集下载

立体几何中的轨迹问题探索(教师讲义)

立体几何中的轨迹问题探索(教师讲义)

立体几何中的轨迹问题探索一、单选题1.如图为正方体1111ABCD A B C D -,动点M 从1B 点出发,在正方体表面沿逆时针方向运动一周后,再回到1B 的运动过程中,点M 与平面11A DC 的距离保持不变,运动的路程x 与11 l MA MC MD =++之间满足函数关系() l f x =,则此函数图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】先由题意,得到点M 在1B AC ∆的边上沿逆时针方向运动,设正方体1111ABCD A B C D -的棱长为1,取线段1B A 的中点为N ,根据题意确定当动点M 运动到点N 时,111 =++<==N A B C l NA NC ND l l l ,同理得到动点M 运动到线段AC 或1CB 的中点时,也符合上式,根据变化情况,结合选项,即可得出结果. 【详解】由题意可知:点M 在1B AC ∆的边上沿逆时针方向运动,设正方体1111ABCD A B C D -的棱长为1,取线段1B A 的中点为N , 则当动点M 运动到点N 时,111 22=++=<+===N A B C l NA NC ND l l l , 同理,当动点M 运动到线段AC 或1CB 的中点时,符合C选项的图像特征.故选:C【点睛】本题主要考查空间几何体中的轨迹问题,熟记空间几何体的结构特征即可,属于常考题型.EF=,长为4的线段AB的两端点分别在直线a、b上2.已知异面直线a、b成60°角,其公垂线段为EF,||2运动,则AB中点的轨迹为()A.椭圆B.双曲线C.圆D.以上都不是【答案】A【解析】【分析】AB EF的中点,O P所在的平面,建立合适坐标系,先根据余弦定理求出根据条件画出合适的示意图,确定,OM ON之间的关系,然后利用P的坐标形式表示出,OM ON之间的关系,由此得到对应的轨迹形状.,【详解】如图所示:M N,设EF的中点为O,过O作EF的垂面α,则AB的中点P必在平面α内,设,A B在平面内的射影点为,以MON ∠的角平分线为x 轴,O 为坐标原点建立平面直角坐标系如图所示:设OM m =,ON n =,由余弦定理可知:2220122cos60MN m n mn ==+-,所以2212m n mn +-=,又因为30MOx NOx ∠=∠=︒,设(),P x y,所以)()22122x m n y m n ⎧=+⎪⎪⎨⎪=-⎪⎩,所以223m x y n x y ⎧=+⎪⎪⎨⎪=-⎪⎩, 将上述结果代入等式2212m n mn +-=中化简可得:2219x y +=,故轨迹是椭圆.故选:A. 【点睛】本题考查立体几何中的轨迹问题,难度较难.处理立体几何中的轨迹问题的方法:首先根据空间中的点线面位置关系确定出线段的长度,然后将问题统一到一个平面中并在该平面中建立合适的平面直角坐标系,借用坐标表示线段间的长度关系,进而化简可得轨迹方程即可判断轨迹形状.3.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aCD.2【答案】D【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可. 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点, 则ABEG 四点共面, 且平面1//A BGE 平面1B HI , 又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==,即F 在侧面11CDD C . 故选:D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.4.已知直线a 平行于平面α,且它们的距离为2d ,我们把到直线a 与到平面α的距离都相等的点构成的集合定义为集合A ,那么集合A 中同属于某个平面的点构成的图形不可能是( ) A .椭圆 B .两条平行直线 C .一条直线 D .抛物线【答案】A 【解析】 【分析】把问题放在正方体ABCD -EFGH 中去,建立空间直角坐标系,找出关于,,x y z 的方程,通过方程判断可能的图形. 【详解】棱长2d ,如图,建立空间直角坐标系,设点M (,,)x y z ,则点M 到平面α的距离为z ,(2,0,2),(0,0,2E d d H d ),(2,0,0),(,,2HE d HM x y z d ∴==-), |cos ,|2HE HM HE HM HE HMd ⋅∴<>==则sin ,1HE HM<>==点M 到直线a 的距离为:sin ,MH HEHM x ⋅<>==z ∴=整理得:22440y d dz +-=当z d =时,20y =,即0y =,一条直线,C 有可能;当z d >时,24()y d z d =-,即y =B 有可能; 当z 不取常数,为一个变量时,22440y d dz +-=是一个抛物线的方程,D 有可能;故选:A . 【点睛】本题考查利用空间直角坐标解决空间图形的轨迹问题,是一道难题.5.在正方体1111ABCD A B C D -的侧面11ABB A 内有一动点P 到直线11A B 与直线BC 的距离相等,则动点P 所在的曲线的形状为( )A .B .C .D .【答案】B 【解析】 【分析】由BC ⊥平面11ABB A 可知P 到直线BC 的距离即为P 到点B 的距离,从而可得其轨迹为抛物线的一部分且过点A ,依次判断各个选项即可. 【详解】BC ⊥平面11ABB A ,PB ⊂平面11ABB A P B B C∴⊥ P ∴到直线BC 的距离为PB ,即P 点到点B 的距离P ∴点轨迹是以B 为焦点,11A B 所在直线为准线的抛物线的一部分又P 在平面11ABB A 上,1AB AA = P ∴点轨迹过点A,A C 中轨迹不是抛物线,则,A C 错误;D 中轨迹不过A ,则D 错误.本题考查立体几何中点的轨迹的求解,关键是能够通过线面垂直关系确定动点轨迹为抛物线的一部分.6.给定正三棱锥P ABC -,点M 为底面正ABC ∆内(含边界)一点,且M 到三个侧面PAB ,,PBC PCA 的距离依次成等差数列,则点M 的轨迹为( ) A .椭圆的一部分 B .一条线段 C .双曲线的一部分 D .抛物线的一部分【答案】B 【解析】 【分析】根据M 到三个侧面PAB ,,PBC PCA 的距离依次成等差数列可设距离分别为,,d a d d a -+,根据等体积法可求得d 为常数。

专题22立体几何中的轨迹问题-1

专题22立体几何中的轨迹问题-1

专题22 立体几何中的轨迹问题【题型归纳目录】题型一:由动点保持平行求轨迹题型二:由动点保持垂直求轨迹题型三:由动点保持等距(或定长)求轨迹题型四:由动点保持等角(或定角)求轨迹题型五:投影求轨迹题型六:翻折与动点求轨迹【典例例题】题型一:由动点保持平行求轨迹例1.(多选题)(2022·广东梅州·高一期末)1.如图,已知正方体1111ABCD A B C D -的棱长为2,点M 为1CC 的中点,点P 为正方形1111D C B A 上的动点,则( )A .满足MP //平面1BDA 的点PB .满足MP AM ^的点PC .存在点P ,使得平面AMP 经过点BD .存在点P 满足5PA PM +=例2.(多选题)(2022·重庆南开中学模拟预测)2.已知正四棱锥P ABCD -的侧面是边长为6的正三角形,点M 在棱PD 上,且2PM MD =,点Q 在底面ABCD 及其边界上运动,且//MQ 面PAB ,则下列说法正确的是( )A .点Q 的轨迹为线段B .MQ 与CD 所成角的范围为,32ππ⎡⎤⎢⎣⎦C .MQD .二面角M AB Q --例3.(多选题)(2022·全国·高一单元测试)3.已知正方体1111ABCD A B C D -的边长为2,M 为1CC 的中点,P 为侧面11BCC B 上的动点,且满足//AM 平面1A BP ,则下列结论正确的是( )A .1AM B M^B .1//CD 平面1A BPC .AM 与11A B 所成角的余弦值为23D .动点P 例4.(多选题)(2022·江苏扬州·高一期末)4.如图,正方体1111ABCD A B C D -的棱长为2,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且满足1//B F 平面1A BE ,则下列结论中正确的是( )A .平面1A BE 截正方体1111ABCD ABCD -所得截面面积为92B .点F 的轨迹长度为4πC .存在点F ,使得11B F CD ^D .平面1A BE 与平面11CDDC 所成二面角的正弦值为13例5.(2022·湖南师大附中三模)5.已知棱长为3的正四面体ABCD ,E 为AD 的中点,动点P 满足2PA PD =,平面a 经过点D ,且平面//a 平面BCE ,则平面a 截点P 的轨迹所形成的图形的周长为 .例6.(2022·山西·太原五中高一阶段练习)6.如图,在正四棱锥S ABCD -中,E 是BC 的中点,P 点在侧面SCD V 内及其边界上运动,并且总是保持PE ∥平面SBD .则动点P 的轨迹与SCD V 组成的相关图形最有可能是图中的( )A .B .C .D .例7.(2022·安徽省宣城中学高二期末)7.已知正方体1111ABCD A B C D -的棱长为2,E F 、分别是棱1AA 、11A D 的中点,点P 为底面四边形ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A .2BCD .例8.(2022·河南安阳·高二期末(理))8.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1//A F 平面1AD E ,下面说法中正确的是 (将所有正确的序号都填上)①存在一点F ,使得11//A F D E ;②存在一点F ,使得1A F BE ^;③点F 的轨迹是一条直线;④三棱锥1F AD E -的体积是定值.【方法技巧与总结】(1)线面平行转化为面面平行得轨迹(2)平行时可利用法向量垂直关系求轨迹题型二:由动点保持垂直求轨迹例9.(2022·湖北·高一期末)9.直四棱柱1111ABCD A B C D -的底面是边长为13AA =,点M 为1CC 的中点,点O 为1A M 的中点,则点O 到底面ABCD 的距离为 ;若P 为底面ABCD 内的动点,且1A P PM ^,则动点P 的轨迹长度为 .例10.(2022·湖南·雅礼中学二模)10.已知菱形ABCD 的各边长为2,60D Ð=o .如图所示,将ACB △沿AC 折起,使得点D 到达点S 的位置,连接SB ,得到三棱锥S ABC -,此时3SB =.则三棱锥S ABC -的体积为,E 是线段SA 的中点,点F 在三棱锥S ABC -的外接球上运动,且始终保持EF AC ^,则点F 的轨迹的周长为.例11.(2022·四川雅安·高一期末)11.点M 是棱长为2的正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为BC 边上中点,若1AM B N ^,则动点M 的轨迹的长度为 .例12.(多选题)(2022·湖北孝感·高二期末)12.如图,已知正方体ABCD —1111D C B A 的棱长为1,P 为正方形底面ABCD 内一动点,则下列结论正确的有( )A .三棱锥1B -11A D P 的体积为定值B .存在点P ,使得11D P AD ^C .若11D P B D ^,则P 点在正方形底面ABCD 内的运动轨迹是线段ACD .若点P 是AD 的中点,点Q 是1BB 的中点,过P ,Q 作平面α垂直于平面11ACC A ,则平面α截正方体111ABCD A B C D -的截面周长为例13.(多选题)(2022·全国·高二专题练习)13.已知棱长为4的正方体1111ABCD A B C D -中,14AM AB =uuuu r uuu r ,点P 在正方体的表面上运动,且总满足0MP MC ⋅=uuu r uuu u r,则下列结论正确的是( )A .点P 的轨迹所围成图形的面积为5B .点P 的轨迹过棱11A D 上靠近1A 的四等分点C .点P 的轨迹上有且仅有两个点到点C 的距离为6D .直线11B C 与直线MP 所成角的余弦值的最大值为35例14.(2022·全国·高一专题练习)14.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,并且总保持1AP BD ^,则动点P 的轨迹是 ( )A .线段1BC B .线段1BC C .1BB 中点与1CC 中点连成的线段D .CB 中点与11B C 中点连成的线段例15.(2022·河南许昌·三模(文))15.如图,在体积为3的三棱锥P-ABC 中,PA ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ^,则点M 的轨迹长度的最大值为( )A .3B .6C .D .例16.(2022·浙江·杭州市富阳区场口中学高二期末)16.如图,在直三棱柱111ABC A B C -中,ABC V 是边长为2的正三角形,13AA =,N 为棱11A B 上的中点,M 为棱1CC 上的动点,过N 作平面ABM 的垂线段,垂足为点O ,当点M 从点C 运动到点1C 时,点O 的轨迹长度为( )A .π2B .πC .3π2D 例17.(2022·浙江·高二阶段练习)17.已知正四棱锥S ABCD -AC ,DB 交于点O ,SO ^平面ABCD ,1SO =,E 为BC 的中点,动点P 在该棱锥的侧面上运动,并且PE AC ^,则点P 轨迹长度为( )A .1B C D .2例18.(2022·云南·昆明一中高三阶段练习(理))18.已知四面体ABCD ,2AB BC CD DA BD =====,二面角A BD C --为60°,E 为棱AD 中点,F 为四面体ABCD 表面上一动点,且总满足BD EF ^,则点F 轨迹的长度为.【方法技巧与总结】(1)可利用线线线面垂直,转化为面面垂直,得交线求轨迹(2)利用空间坐标运算求轨迹(3)利用垂直关系转化为平行关系求轨迹题型三:由动点保持等距(或定长)求轨迹例19.(2022·四川成都·高二期中(理))19.如图,已知棱长为2的正方体A ′B ′C ′D ′-ABCD ,M 是正方形BB ′C ′C 的中心,P 是△A ′C ′D 内(包括边界)的动点,满足PM =PD ,则点P 的轨迹长度为 .例20.(多选题)(2022·山东·模拟预测)20.如图,正方体1111ABCD A B C D -的棱长为2,点M 是其侧面11ADD A 上的一个动点(含边界),点P 是线段1CC 上的动点,则下列结论正确的是( )A .存在点P ,M ,使得平面11B D M 与平面PBD 平行B .存在点P ,M ,使得二面角--M DC P 大小为23πC .当P 为棱1CC 的中点且PM =时,则点M 的轨迹长度为23πD .当M 为1A D 中点时,四棱锥M ABCD -例21.(多选题)(2022·福建·莆田二中模拟预测)21.在棱长为1的正方体1111ABCD A B C D -中,点M 是11A D 的中点,点P ,Q ,R 在底面四边形ABCD 内(包括边界),1PB ∥平面1MC D R 到平面11ABB A 的距离等于它到点D 的距离,则( )A .点PB .点QC .PQ 12-D .PR 例22.(2022·江西·模拟预测(理))22.已知正方体1111ABCD A B C D -的棱长为3,点P 在11A C B △的内部及其边界上运动,且DP P 的轨迹长度为( )AB .2πC .D .3π例23.(多选题)(2022·辽宁·高一期末)23.如图,正方体1111ABCD A B C D -棱长为2,点M 是其侧面11ADD A 上的动点(含边界),点P 是线段1CC 上的动点,下列结论正确的是( )A .存在点P ,M ,使得平面11B D M 与平面PBD 平行B .当点P 为1CC 中点时,过1A PD ,,点的平面截该正方体所得的截面是梯形C .过点A ,P ,M 的平面截该正方体所得的截面图形不可能为五边形D .当P 为棱1CC 的中点且PM =时,则点M 的轨迹长度为2π3例24.(2022·河南安阳·模拟预测(文))24.在四边形ABCD 中,//BC AD ,12AB BC CD AD ===,P 为空间中的动点,2PA PB AB ===,E 为PD 的中点,则动点E 的轨迹长度为( )A B C D 例25.(2022·四川达州·高二期末(理))25.正方体1111ABCD A B C D -的棱长为1,点P 在正方体内部及表面上运动,下列结论错误的是( )A .若点P 在线段1D C 上运动,则AP 与1AB 所成角的范围为ππ,32⎡⎤⎢⎥⎣⎦B .若点P 在矩形11BDD B 内部及边界上运动,则AP 与平面11BDD B 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦C .若点P 在11D B C △内部及边界上运动,则AP D .若点P 满足1AP =,则点P 轨迹的面积为π2例26.(2022·江西省乐平中学高一期末)26.已知正方体1111ABCD A B C D -1,,B D C 的平面为a ,点P 是平面a内的动点,1A P =P 的轨迹长度等于( )A .πB C D .2π【方法技巧与总结】(1)距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹(2)利用空间坐标计算求轨迹参考答案:1.AD【分析】利用线面平行的判定定理可以证得点P 的轨迹,进而判断A ;建立空间直角坐标系,得到(2,0,0)A ,(0,2,1)M ,P 为正方形1111D C B A 上的点,可设(,,2)P x y ,且02x ££,02y ££,进而对BCD 各个选项进行计算验证即可判断并得到答案.【详解】对于A ,取11B C 的中点Q ,11D C 的中点N ,又点M 为1CC 的中点,由正方体的性质知1//MQ A D ,//NQ BD ,MQ NQ Q =I ,1A D BD D Ç=,所以平面//MQN 平面1BDA ,又MP Ì平面MQN ,MP \∥平面1BDA ,故点P 的轨迹为线段NQ ==A 正确;对B ,方法一:在平面11BCC B 中过M 作ME AM ^,交11B C 于E ,设1C E x =,则3AM =,ME =,AE ==由222AM ME AE +=,可解得12x =,同理,在平面11DCC D 中过M 作MF AM ^,交11D C 于F ,可得112C F =,因为ME MF M =I ,所以AM ^平面MEF ,因为MP AM ^,所以MP Ì平面MEF ,所以点P 的轨迹为线段EF ,故B 不正确;方法二:以D 为原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则(2,0,0)A ,(0,2,1)M ,设(,,2)P x y ,且02x ££,02y ££,(2,,2)AP x y =-uuu r ,(,2,1)MP x y =-uuu r ,(2,2,1)AM =-uuuu r ()22212230AM MP x y x y ⋅=-+-+=-+-=uuuu r uuu r ,即32y x =+,又02x ££,02y ££,则点P 的轨迹为线段EF ,30,,22E æöç÷èø,1,2,22F æöç÷èø且EF ==B 错误;对于C ,方法一:取1DD 中点G ,连接,AG MG ,正方体中,易得//AB MG ,所以平面ABM 截正方体的截面为平面ABMG ,显然P Ï平面ABMG ,故不存在点P ,使得平面AMP 经过点B ,故C 错误;方法二:设(,,2)P x y ,且02x ££,02y ££,若平面AMP 经过点B ,则DP aDA bDB cDM =++uuu r uuu r uuu r uuuu r ,且1a b c ++=,又(,,2),(2,0,0),(2,2,0),(0,2,1)DP x y DA DB DM ====uuu r uuu r uuu r uuuu r ,所以()()()(),,22,0,02,2,00,2,1x y a b c =++,即()(),,222,22,x y a b b c c =++,因此222221x a b y b c c a b c =+ìï=+ïí=ïï++=î,从而2x =-,不合题意,所以不存在点P ,使得平面AMP 经过点B ,故C 错误;对于D ,方法一:延长1CC 至M ¢,令11C M C M ¢=,则MP M P ¢=,所以PA PM PA PM AM ¢¢+=+³,因为4AM ¢==>,所以存在点P 满足5PA PM +=,故D 正确.方法二:点M 关于平面1111D C B A 的对称点的为(0,2,3)M ¢,三点共线时线段和最短,故4PA PM AM ==¢³>+,故存在点P 满足5PA PM +=,故D 正确.故选:AD.2.ACD【分析】作出与面PAB 平行且过MQ 的平面,即可得出点Q 的轨迹判断A ,当点Q 在E 处时,异面直线所成角小于3π可判断B ,当MQ NE ^时求出MQ 可判断C ,作出二面角的平面角求正切值判断D 即可.【详解】对于A ,取点N ,E ,使得2AN ND =,2BE EC =,连接,ME NE ,MN ,如图,由线段成比例可得//,//MN PA NE AB ,PA Ì平面PAB ,MN Ë平面PAB ,所以//MN 平面PAB ,同理可得//NE 平面PAB ,又,NE MN Ì平面MNE ,MN NE N Ç=,所以平面//MNE 平面PAB ,故当点Q ME Î时,总有//MQ 面PAB ,所以点Q 的轨迹为线段,故A 正确;对于B ,由//CD NE 知MQ 与CD 所成角即为MQ 与NE 所成角,在MEN V 中,1π2,6,33MN PA NE AB MNE PAB ====Ð=Ð=,由余弦定理可得ME =1cos 2MEN Ð==>,可知π3MEN Ð<,即Q 运动到E 点时,异面直线所成的角小于π3,故B 错误;对于C ,当MQ NE ^时,MQ 最小,此时πsin 23MQ MN =⋅==C 正确;对于D ,二面角M AB Q --即平面MAB 与底面ABCD 所成的锐角,连接,AC BD 相交于O ,连接PO ,取点H ,使得2OH HD =,连接MH ,过H 作HG AB ^于G ,连接MG ,如图,由正四棱锥可知,^PO 面ABCD ,由2OH HD =,2PM MD =知//MH PO,1133MH PO \==´HG AB ^可得//HG AD ,556GH AD \==,MH ^Q 面ABCD ,AB MH \^,又HG AB ^,HG MH H =I ,AB \^平面MHG ,AB MG \^,MGH \Ð即为二面角的平面角,tan MH MGH GH \Ð==故D 正确.故选:ACD3.BCD 【分析】建立空间直角坐标系,利用空间夹角公式、空间向量数量积的运算性质逐一判断即可.【详解】如图建立空间直角坐标系,设正方体棱长为2,则1(0,0,2),(0,2,2),(0,0,0),(2,1,0),(,,0)A A B M P x y ,所以1(0,2,2),(,,0),(2,1,2)A B BP x y AM =--==-uuur uuu r uuuu r ,由//AM 平面1A BP ,得1AM a A B bBP =+uuuu r uuur uuu r ,即022122bx a by a +=ìï-+=íï-=-î,化简可得:320x y -=,所以动点P 在直线320x y -=上,对于选项A :11(2,1,2),(2,1,0),221(1)(2)030AM B M AM B M =-=-⋅=´+´-+-´=¹uuuu r uuuu r uuuu r uuuu r ,所以AM uuuu r 与1B M uuuur 不垂直,所以A 选项错误;对于选项B :111//,CD A B A B Ì平面11,A BP CD Ë平面1A BP ,所以1//CD 平面1A BP ,B 选项正确;对于选项C:11112(0,0,2),cos ,3A B AM A B >=-<==uuuu r uuuu r uuuu r ,C 选项正确;对于选项D :动点P 在直线320x y -=上,且P 为侧面11BCC B 上的动点,则P 在线段1PB 上,14,2,03P æöç÷èø,所以1PB ==D 选项正确;故选:BCD.4.AC【分析】取CD 中点G ,连接BG 、EG ,计算截面1A EGB 的面积后判断A 的正误,取11C D 中点M ,1CC 中点N ,则点F 的运动轨迹为线段MN ,故可判断B 的正误,取MN 的中点F ,则可判断11B F CD ^,故可判断C 的正误,而11B FC Ð即为平面1B MN 与平面1,CDD C 所成二面角,计算其正弦值后可判断D 的正误.【详解】取CD 中点G ,连接BG 、EG ,则等腰梯形1A EGB 为截面,而1A E GB ==,1A B EG ==故梯形1A EGB92=,A 正确;取11C D 中点M ,1CC 中点N ,连接11,,,,B M B N MN NE MG ,则1111//,=NE A B NE A B ,故四边形11A B NE 为平行四边形,则得11//B N A E ,而1B N Ë平面1A BE ,1A E Ì平面1A BE ,故1B N //平面1A BE ,同理1//B M 平面1A BE ,而111=B N B M B I ,11,B N B M Ì平面1B MN ,故平面1//B MN 平面1A BE ,∴点F 的运动轨迹为线段MNB 错误;取MN 的中点F,则11B N B M ==,∴1B F MN ^,∵1//MN CD ,∴11B F CD ^,C 正确;因为平面1//B MN 平面1A BE 且1MN C F ^,1MN B F ^,∴11B FC Ð即为平面1B MN 与平面1CDDC所成二面角,11111sin B C B FC B F Ð===,D 错误.故选:AC.5.【分析】设BCD △的外心为O ,以O 为坐标原点可建立空间直角坐标系,设(),,P x y z ,根据2PA PD =可求得P点轨迹是以G æççè为球心,2为半径的球;延长,,AB AF AC 到点,,M Q N ,使得AB BM =,AF FQ =,AC CN =,由面面平行的判定可证得平面//BCE 平面MND ,则平面MND 为平面a ,可知点G 到平面DMN 的距离d 即为点G 到直线DQ 的距离,由向量坐标运算可知DG DQ ^,得到1d =,由此可求得截面圆半径,利用圆周长的求法可求得结果.【详解】设BCD △的外心为O ,BC 的中点为F ,过O 作BC 的平行线,则以O 为坐标原点,可建立如图所示空间直角坐标系,BCD QV 为等边三角形,3BC =,23OD DF \==OA \=,(A \,()D,0,F æöç÷ç÷èø,设(),,P x y z ,由2PA PD =得:((2222224x y z x y z ⎡⎤++=++⎢⎥⎣⎦,整理可得:2224x y z ææ++=ççççèè,\动点P的轨迹是以G æççè为球心,2为半径的球;延长,,AB AF AC 到点,,M Q N ,使得AB BM =,AF FQ =,AC CN =,则//CE DN ,//BE MD ,又,DN MD Ì平面MND ,,CE BE Ë平面MND ,//CE \平面MND ,//BE 平面MND ,由CE BE E =∩,,CE BE Ì平面BCE ,\平面//BCE 平面MND ,即平面MND 为平面a ,则点G 到平面DMN 的距离d 即为点G 到直线DQ的距离,DG æ=ççèuuur Q,(0,DQ =-uuur ,220DG DQ \⋅=-+=uuur uuur ,即DG DQ ^,\点G 到直线DQ 的距离1d DG ==uuur ,\截面圆的半径r ==\球被平面a截得的截面圆周长为2r π=,即平面a 截点P的轨迹所形成的图形的周长为.故答案为:.【点睛】关键点点睛:本题考查立体几何中的动点轨迹相关问题的求解,解题关键是能够利用空间向量法求得动点所满足的轨迹方程,从而确定动点轨迹为球,利用平面截球所得截面圆周长的求法可求得结果.6.A【分析】先分别取CD 、S C 的中点M 、N ,再证明面EMN ∥面SBD ,可知当P 在MN 上移动时,PE Ì面EMN ,能够保持PE ∥平面SBD ,进而得到选项A 符合题意.【详解】分别取CD 、S C 的中点M 、N ,连接MN ,ME ,NE ,又∵E 是BC 的中点,∴EM BD ∥,EN SB ∥,又∵,EM EN Ë面SBD ,,BD SB Ì面SBD , ∴EM ∥面SBD ,EN ∥面SBD ,又∵EM EN E =I , ,EM EN Ì平面EMN ,∴面EMN ∥面SBD ,∴当P 在MN 上移动时,PE Ì面EMN ,此时能够保持PE ∥平面SBD ,则动点P 的轨迹与SCD V 组成的相关图形是选项A故选:A .7.B【分析】取BC 的中点G ,连接11,,G D G AD A ,易证1//AD 平面BEF ,1//GD 平面BEF ,从而得到平面1//AD G 平面BEF ,即可得到P 的轨迹为线段AG ,再求其长度即可.【详解】取BC 的中点G ,连接11,,G D G AD A ,如图所示:E F 、分别是棱1AA 、11A D 的中点,所以1//EF AD ,又因为EF Ì平面BEF ,1AD Ë平面BEF ,所以1//AD 平面BEF .因为1//FD BG ,1=FD BG ,所以四边形1FBGD 为平行四边形,所以1//FB GD .又因为FB Ì平面BEF ,1GD Ë平面BEF ,所以1//GD 平面BEF .因为111GD AD D =I ,所以平面1//AD G 平面BEF .因为点P 为底面四边形ABCD 内(包括边界)的一动点,直线1D P 与平面BEF 无公共点,所以P 的轨迹为线段AG =故选:B8.①②④【分析】取11B C 的中点G ,1BB 的中点H ,连接1A G ,1A H ,GH ,由面面平行的性质可判断①③④,由线面垂直的性质可判断②,【详解】如图,取11B C 的中点G ,1BB 的中点H ,连接1A G ,1A H ,GH ,则平面1//AGH 平面1AD E ,所以点F 在线段GH 上运动,即点F 的轨迹是线段GH ,故③错误.当点F 位于点H 时,11//A F D E ,故①正确.取AD 的中点N ,BC 的中点M ,连接1A N ,MN ,1B M ,则BE ^平面11A B MN ,设11GH B M F Ç=,则11A F BE ^,所以存在一点F 使得1A F BE ^,故②正确.平面1//AGH 平面1AD E ,所以点F 到平面1AD E 的距离是定值,所以三棱锥1F AD E -的体积是定值,故④正确.故答案为:①②④9.942π【分析】结合图像,根据正方形的性质即可求出点到平面的距离,再利用直径所对圆周角为直角的性质,将其迁移到空间中,得到P 点轨迹,即为以OP 的长为半径的球与平面ABCD 相交所截得的圆,再根据勾股定理,即可求解.【详解】解:由点O 为1A M 的中点可得,点O 到平面1111D C B A 的距离是点M 到平面1111D C B A 距离的一半,则点O 到平面1111D C B A 的距离为34,故点O 到平面ABCD 的距离为39344-=;1A P PM ^Q ,点O 为1A M 的中点,111524OP A M \===,设以O 为球心,OP 的长为半径的球与平面ABCD 所截得的圆的半径为r ,则3r ==,则动点P 的轨迹即为以正方形ABCD 的中心为圆心,3ABCD 内的圆弧,如图,R 为QP 中点,所以HR QP ^,所以cos RH QHR QH Ð===,所以23QHP QHR πÐ=Ð=,P 点轨迹所形成的圆弧长为32423πππæö´-´=ç÷èø.故答案为:94;2π.10.【分析】取AC 中点M ,由题可得AC ^平面SMB ,进而可得三棱锥S ABC -的高3sin 2h SBM SB Ð=⋅=,利用锥体体积公式可得三棱锥的体积,设点F 轨迹所在平面为a ,则F 轨迹为平面a 截三棱锥的外接球的截面圆,利用球的截面性质求截面圆半径即得.【详解】取AC 中点M ,则,,AC BM AC SM BM SM M ^^=I ,∴AC ^平面SMB ,SM MB ==,又3SB =,∴30SBM MSB ÐÐ==o ,则三棱锥S ABC -的高3sin 2h SBM SB Ð=⋅=,三棱锥S ABC -体积为213232V =´=作EH AC H ^于,设点F 轨迹所在平面为a ,则平面a 经过点H 且AC a ^,设三棱锥S ABC -外接球的球心为,,O SAC BAC V V 的中心分别为12,O O ,易知1OO ^平面2,SAC OO ^平面BAC ,且12,,,O O O M 四点共面,由题可得1121602OMO O MO ÐÐ==o,113O M SM =解Rt 1OO M △,得11OO M =,则三棱锥S ABC -外接球半径r =,易知O 到平面a 的距离12d MH ==,故平面a 截外接球所得截面圆的半径为1r ==∴截面圆的周长为12l r π=,即点F ..11【分析】分别取1DD 、1CC 的中点G 、H ,连接BH 、AG 、GH ,证明A 、B 、G 、H 四点共面,并计算出球心到平面ABGH 的距离,可计算得出截面圆的半径,利用圆的周长公式可求得结果.【详解】如图,正方体1111ABCD A B C D -的内切球O 的半径1R =,由题意,分别取1DD 、1CC 的中点G 、H ,连接BH 、AG 、GH ,在正方体1111ABCD A B C D -中,四边形ABHG 为平行四边形,所以A 、B 、G 、H 四点共面,则CH BN =,1BC BB =,1190C CB B BN Ð=Ð=o,所以,1BCH B BN @△△,所以,1BNB BHC Ð=Ð,1B N BH \^,AB ^Q 平面11BB C C ,1B N Ì平面11BB C C ,1AB B N \^,AB BH B =Q I ,1B N \^平面BAGH ,所以,动点M 的轨迹就是平面BAGH 截内切球O 的交线, 取1BB 的中点E ,连接,EG BD ,则四边形BEGD 为平行四边形,易知点O 为EG 的中点,过点E 在平面11BB C C 内作EF BH ^,AB ^Q 平面11BB C C ,EF Ì平面11BB C C ,则EF AB ^,AB BH B =Q I ,EF \^平面BAGH ,sin sin EBF BHC Ð=Ð=,所以,sin EF BE EBF =Ð=因为点O 为EG 的中点,则O 到平面BAGH 的距离为d =,截面圆的半径r ==所以动点M 的轨迹的长度为截面圆的周长2r π=【点睛】关键点点睛:本题解题关键是确定出M 的轨迹是平面BAGH 截内切球O 的交线,在利用球中的勾股定理即可解决.12.ACD【分析】结合选项逐个求解,体积问题利用锥体体积公式可得,垂直问题利用向量求解,截面周长根据截面形状可求.【详解】对于A ,P 为正方形底面ABCD 时,三棱锥111P A B D -的高不变,底面积也不变,所以体积为定值,所以A 正确;对于B ,以D 为坐标原点,建立如图所示的空间直角坐标系,设(),,0P x y ,则()()10,0,1,1,0,0D A ,()1,,1D P x y =-uuuu r ,()11,0,1AD =-uuuu r;若11D P AD ^,则110D P AD ⋅=uuuu r uuuu r,即1x =-,与题意矛盾,所以B 不正确;对于C ,()11,1,1DB =uuuu r,由11D P B D ^得1x y +=,所以P 的轨迹就是线段AC ,所以C 正确;对于D ,因为1,BD AC BD AA ^^,所以BD ^平面11ACC A ;因为平面a ^平面11ACC A ,所以//BD 平面a ;以BD 为参照线作出平面a 与正方体各个侧面的交线,如图,易知每个侧面的交线均相等,,所以截面周长为D 正确.故选:ACD.【点睛】正方体中的动点问题,可以借助空间向量来处理,把位置关系,角度关系转化为向量运算.13.ACD【分析】首先根据动点P 满足的条件及正方体的结构特征得到动点P 的轨迹,然后利用轨迹的特征判断选项A ,B ,C ,对于选项D ,将线线角转化为线面角,运用线面角的定义找出线面角进行求解.【详解】如图,过点M 作1//MF AA ,在AD 上取一点N ,使MN MC ^,连接,NC EC FC ,,过点N 作1//NE AA ,连接EF ,易知//MF NE ,\ ,,,E F M N 四点共面;又MF MC ^Q ,MN MF M =I ,MC \^面MNEF ,即点P 的轨迹为矩形MNEF (不含点M ),设AN x =,则MN =又5MC ==QNC ==222MN MC NC \+= 解得 34x =,即34AN =54MN \=, NC =对于A ,矩形MNEF 的面积为:5454S MN MF =⋅=´=,A 正确;对于B ,134A E AN ==,B 错误;对于C ,CF ==在Rt CMN V 中,C 到MN 的距离范围是:5æççèMN \上存在一点到点C 的距离为6;在Rt CMF V 中,C 到MF 的距离范围是:(MF \上存在一点到点C 的距离为6;但在Rt CNE V 、Rt CEF V 中不存在到点C 的距离为6的点,C 正确;对于D ,直线11B C 与直线MP 所成的最小角就是直线11B C 与平面MNEF 所成的角,11//B C BC Q \直线11B C 与平面MNEF 所成的即是直线BC 与平面MNEF 所成的角,延长,NM CB 交于点G ,则MGB Ð即是直线BC 与平面MNEF 所成的角,//AN GB Q AN AMGB MB \= 94GB \= 在Rt MGC V 中,4sin 5MC MGC GC Ð== 3cos 5MGC \Ð=,D 正确;故选:ACD.【点睛】本题考查动点轨迹,点、线、面位置关系,线线角、线面角以及几何体中一些线段的最值,考查了空间想象能力、逻辑思维能力、运算求解能力,属于难题.14.A【分析】1BD ^平面1ACB ,又点P 在侧面11BCC B 及其边界上运动,故点P 的轨迹为面1ACB 与面11BCC B 的交线1CB .【详解】连接111,,,,AC BD B C BA AB ,因为1,^^DD AC AC BD ,且1DD BD D =I ,所以AC ^平面1BDD ,1BD Ì平面1BDD ,所以1AC BD ^,因为11111,A D AB A B B A ^^,且1111A D A B A =I ,所以1AB ^平面11BA D ,1BD Ì平面11BA D ,所以11^AB BD ,且1AB AC A =I ,所以1BD ^平面1ACB ,AP Ì平面1ACB ,所以1BD AP ^,点P 的轨迹为面1ACB 与面11BCC B 的交线1CB ,故选:A.15.A【分析】根据题意可知,点M 的轨迹为Rt ABC △斜边上的高线,即可根据等面积法以及基本不等式求出点M 的轨迹长度的最大值.【详解】如图所示: ,因为PA ,PB ,PC 两两垂直,所以AP ^平面PCB ,即有^AP BC ,而AM BC ^,所以^BC 平面APM ,即BC PM ^,故点M 的轨迹为Rt ABC △斜边上的高线PD .因为三棱锥P-ABC 的体积为3,所以111332PB PC ´´´´=,即18PB PC ´=,由等积法可得,3PD ==£=,当且仅当PB PC ==故选:A .16.B【分析】根据条件先判断出点O 的轨迹为圆的一部分,再由弧长公式求解即可.【详解】取AB 中点P ,连接PC ,C 1N ,如图,因为PC ⊥AB ,PN ⊥AB ,且PN ∩PC =P ,所以AB ⊥平面1PCC N ,AB Ì平面ABM ,所以平面ABM ⊥平面1PCC N ,平面ABM ∩平面1PCC N = PM ,过N 作NO ⊥PM ,NO Ì平面1PCC N ,所以NO ⊥平面ABM ,当点M 从点C 运动到点C 1时,O 点是以PN 为直径的圆Q (部分),如图,当M 运动到点1C 时,O 点到最高点,此时11π3,3PC CC CPC ==Ð=,所以π6OPQ Ð=,从而2π3OQP Ð=,所以弧长2π3π32l =⋅=,即点O 的轨迹长度为π.故选: B 17.B【分析】取,,SC CD OC 的中点分别为,,G F H ,利用线面垂直的判定定理可得AC ^平面EFG ,进而可得点P 轨迹为折线,EG GF ,结合条件即得.【详解】取,,SC CD OC 的中点分别为,,G F H ,连接,,,EF EG FG GH ,则GH SO ,EF BD ∥,又SO ^平面ABCD ,BD AC ^,∴GH ^平面ABCD ,EF AC ^,∴GH AC ^,又EF GH H Ç=,∴AC ^平面EFG ,因为动点P 在该棱锥的侧面上运动,并且PE AC ^,故点P 轨迹为折线,EG GF ,由题可知1SO =,1,OB SB SA ===∴EG GF ==,故点P 故选:B.18【分析】取BD 中点O ,易知AOC Ð是二面角A BD C --的平面角,由线面垂直的判定可得BD ^平面AOC ,即有AOC Ð是二面角A BD C --的平面角,取CD ,OD 中点M ,N ,利用线面平行、面面平行的判定有面//AOC 面EMN ,进而有BD ^平面EMN ,即可知F 轨迹.【详解】取BD 中点O ,易得BD AO ^,BD CO ^,AO CO O =I ,所以BD ^平面AOC ,则AOC Ð是二面角A BD C --的平面角,即60AOC Ð=°,又AO CO ==AC =CD ,OD 中点M ,N ,所以//EM AO ,AO Ì面AOC ,EM Ë面AOC ,故//EM 面AOC ,又//MN CO ,同理://MN 面AOC ,而EM MN M Ç=,,EM MN Ì面EMN ,所以面//AOC 面EMN ,则BD ^平面EMN ,因为F 为四面体ABCD 表面上一动点,且总满足BD EF ^,所以点F 轨迹是△EMN19【分析】利用空间直角坐标系可知,平面A ′C ′D 内的P 满足0x y z +-=, PM =PD 的P 满足23x y z ++=,则可得32333x y x z -ì=ïïí+ï=ïî,P 是△A ′C ′D 内(包括边界),则302x ££,点P 的轨迹线段12PP .【详解】如图建立空间直角坐标系,则()()()()0,0,0,2,0,2,0,2,2,1,2,1D A C M ¢¢()()2,0,2,0,2,2DA DC ¢¢==uuur uuuu r设平面DA C ¢¢的法向量(),,n x y z =r则有220220x z y z +=ìí+=î,令1x =,则1,1y z ==-则()1,1,1n r=-设(),,P x y z ,则(),,DP x y z =uuu r∵n DP ^r uuu r,则0x y z +-=又∵PM =PD=整理得:23x y z ++=联立方程230x y z x y z ++=ìí+-=î,则32333x y x z -ì=ïïí+ï=ïî可得023********x x x ìï-íï+ïî,可得302x ££当0x =时,()10,1,1P ,当32x =时,233,0,22P æöç÷èø在空间中,满足PM =PD 的P 为过MD 的中点且与MD 垂直的平面a两个平面的公共部分为直线,即点P 的轨迹为a I 平面A ′C ′D 12PP =.20.ACD【分析】当M 为1AA 中点,P 为1CC 中点时,即可判断A 选项;由二面角--M DC P 的平面角为1ÐMDD 即可判断B 选项;取1DD 中点E ,先求出点M 在侧面11AA D D 内运动轨迹为以E 为圆心半径为2的劣弧,即可判断C 选项;先求出四棱锥M ABCD -外接球的半径,再将外接球的内接正四面体补成正方体即可判断D 选项.【详解】对于A 选项,当M 为1AA 中点,P 为1CC 中点时,易得11//BD B D ,又BD Ì平面PBD ,11B D Ë平面PBD ,则11//B D 平面PBD ,同理可得1//MB 平面PBD ,又1111MB B D B Ç=,则平面11B D M 与平面PBD 平行,故A 正确;对于B 选项,因为CD ^平面11ADD A ,DM Ì平面11ADD A ,则CD DM ^,又1CD DD ^,可知二面角--M DC P 的平面角为1ÐMDD ,显然其范围为0,2π⎡⎤⎢⎥⎣⎦,故B 错误;对于C 选项,取1DD 中点E ,连接,,PE ME PM ,则PE ^平面11,^AA D D PE ME ,则2===ME ,则点M 在侧面11AA D D 内运动轨迹为以E 为圆心半径为2的劣弧,分别交AD 、11A D 于2M 、1M ,则1123Ð=Ð=M ED M ED π,则123Ð=M EM π,劣弧21M M 的长为2233ππ´=.故C 正确;对于D 选项,当M 为1A D 中点时,易知AMD V 为等腰直角三角形,AM DM ^,又AB ^平面11ADD A ,则AB DM ^,又,AB AM Ì平面ABM ,AB AM A =I ,则DM ^平面ABM ,则DM BM ^,又DC BC ^,可知四棱锥M ABCD-外接球的球心即为BD 的中点,所以四棱锥M ABCD -,设四棱锥M ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体的面对角线,故正,正方体的体对角线为外接球的直径,所以223ö⋅=÷÷ø,得2163x =,所以正四面体的表面积为2142x ´⋅=D 正确.故选:ACD.21.BCD【分析】对于A ,取BC 的中点N ,连接AN ,1B N ,根据面面平行的判定可证得平面1//ANB 平面1DMC ,从而得点P 的轨迹为线段AN ,解三角形计算可判断;对于B ,连接DQ ,由勾股定理得12DQ =,从而有点Q 的轨迹是以点D 为圆心,以12为半径的14圆,由圆的周长计算可判断;对于C ,过点D 作'DP AN ^于'P ,交点Q 的轨迹于'Q ,此时''P Q 的长度就是PQ 长度的最小值,由三角形相似计算得'DP ,由此可判断;对于D ,由已知得点R 到直线AB 的距离等于它到点D 的距离,根据抛物线的定义知点R 的轨迹是以点D 为焦点,以AB 为准线的抛物线,以AD 的中点为坐标原点O ,过点O 且垂直于AD 的直线为x 轴建立平面直角坐标系,则抛物线的方程为22x y =,设与直线AN 平行且与抛物线相切的直线l 的方程为:2+0x y n -=, 联立22+02x y n x y -=ìí=î,整理得()2244+2+0y n y n -=,由0D =,解得14n =-,再根据平行线间的距离可求得PR 长度的最小值.【详解】解:对于A ,取BC 的中点N ,连接AN ,1B N ,则1//AN MC ,11//AB DC ,所以//AN平面1DMC ,1//AB 平面1DMC ,又//AN 平面1DMC ,1//AB 平面1DMC ,1AN AB A =I ,所以平面1//ANB 平面1DMC ,又点P 在底面四边形ABCD 内(包括边界),1PB ∥平面1MC D ,所以点P 的轨迹为线段AN ,因为AN ===,所以点PA 不正确;对于B ,连接DQ ,因为Q 在底面ABCD上,1D Q =2==,解得12DQ =,所以点Q 的轨迹是以点D 为圆心,以12为半径的14圆,如下图所示,所以点Q 的轨迹的长度为112424ππ´´´=,故B 正确;对于C ,过点D 作'DP AN ^于'P ,交点Q 的轨迹于'Q ,此时''P Q 的长度就是PQ 长度的最小值,而'',B AP D BAN ADP Ð=ÐÐ=Ð,所以'ABN DP A V :V ,所以'AD DPAN AB='1DP =,解得'DP =,所以''''12P Q DP DQ =-=,所以PQ12,故C 正确;对于D ,因为点R 到平面11ABB A 的距离等于它到点D 的距离,由正方体的特点得点R 到直线AB 的距离等于点R 到平面11ABB A 的距离,所以点R 到直线AB 的距离等于它到点D 的距离,根据抛物线的定义知点R 的轨迹是以点D 为焦点,以AB 为准线的抛物线,以AD 的中点为坐标原点O ,过点O 且垂直于AD 的直线为x 轴建立平面直角坐标系,如下图所示,则102D æöç÷èø,,102A æö-ç÷èø,,()10N ,,直线AB 的方程为12y =-,直线AN 的方程为210x y --=,则抛物线的方程为22x y =,设与直线AN 平行且与抛物线相切的直线l 的方程为:2+0x y n -=,联立22+02x y n x y -=ìí=î,整理得()2244+2+0y n y n -=,()22Δ4+2160n n =-=,解得14n =-,所以直线l 的方程为:1204x y --=,则直线AN 与直线l 的距离为:d ==,所以PR,故D 正确,故选:BCD.。

立体几何中的轨迹问题答案

立体几何中的轨迹问题答案

立体几何中的轨迹问题【判断轨迹】一、点线面中的轨迹问题1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是一条直线解:设l 与l '是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A .2.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是(除去两点的圆)3.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是四个点 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .二、柱体中的轨迹问题1.正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是线段B 1C .2.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).3.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能圆或圆的一部分lABCα4.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是轨迹的图形是一个平行四边形 .三、锥体中的轨迹问题1.若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )2.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.答案 线段MN (M 、N 分别为SC 、CD 的中点)3..如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.5.四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )【轨迹中计算问题】1.A C PABP A BPA B CPABCD P A BC D.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是,它的长度为. 3 —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6.4。

立体几何动点轨迹问题

立体几何动点轨迹问题

立体几何动点轨迹问题立体几何里的动点轨迹问题啊,就像一场在三维空间里的神秘舞蹈,那些动点就像舞者,它们的轨迹让人捉摸不透,可一旦搞清楚了,又觉得特别有趣。

我记得在高中上立体几何课的时候,老师在黑板上画了一个复杂的立体图形,然后说有个动点在这个图形里按照一定规则运动,让我们找出它的轨迹。

当时我就懵了,感觉像是在看一场没有头绪的魔术表演。

老师在讲台上滔滔不绝地讲着各种定理和方法,我却在下面听得云里雾里。

有一次考试就碰到了一道动点轨迹的难题。

那是一个正方体,在它的棱上有一个动点,规定这个动点到正方体某个面的距离始终保持不变。

我看着题目,脑海里就像一团乱麻。

我先试着在草稿纸上把正方体画出来,可是怎么画都觉得不太对劲,那线条歪歪扭扭的,就像喝醉了酒的蚯蚓。

我想象着那个动点在正方体的棱上慢慢移动,可就是想不出它到底会画出什么样的轨迹。

我旁边的同桌倒是很淡定,他拿着铅笔在纸上比划着。

我凑过去看,他一边画一边说:“你看,这个动点到那个面的距离不变,就相当于它在和这个面平行的一个平面上运动。

”我似懂非懂地点点头,可还是不太明白。

他无奈地看了我一眼,然后拿了一个橡皮擦,放在正方体的模型上,说:“你把这个橡皮擦当成动点,现在你看,它沿着棱移动的时候,是不是始终在一个平面内?”我仔细一看,好像有点明白了。

就像一个小蚂蚁在正方体的框架上爬行,但是只能在一个特定高度的平面上爬,这样它的轨迹就不是随意的了。

还有一道题是关于圆锥里的动点。

一个动点在圆锥的母线和底面圆周之间运动,并且它到圆锥顶点的距离和到底面圆心的距离有一定的比例关系。

这可把我难住了,我看着圆锥的图形,想象着那个动点像个调皮的小精灵在圆锥里穿梭。

我尝试着建立空间直角坐标系,想用坐标来表示动点的位置,可是那些坐标值就像调皮的数字,在我脑袋里跳来跳去,怎么都理不顺。

我叹了口气,觉得自己像是迷失在立体几何的迷宫里,找不到出口。

不过,经过不断地练习和老师的耐心讲解,我慢慢地开始掌握了一些门道。

立体几何中的动点轨迹问题

立体几何中的动点轨迹问题

同理,在平面 AA1D1D 内满足条件的点的轨迹长度为52π.在平面 A1B1C1D1 内满足条件 的点的轨迹为以 A1 为圆心,A1F 为半径的14圆弧,长度为 2π×4×14=2π.同理,在平 面 ABCD 内满足条件的点的轨迹为以 A 为圆心,AE 为半径的圆弧,长度为 2π×3×14 =32π.故轨迹的总长度为52π+52π+2π+32π=172π.
的长度最小.因为 B1N1=D1N1= 5,B1D1=2 2,所以△B1N1D1 的边 B1D1 上的高为
52- 22= 3,则 S△B1N1D1=12×2 2× 3= 6,则当 B1N⊥D1N1 时,B1N 最
小,即 B1Nmin=2S△DB1N1N1 1D1=2
6=2 5
530.
总结 提炼
与平行有关的轨迹问题的解题策略 (1)线面平行转化为面面平行得轨迹; (2)平行时可利用法向量垂直关系求轨迹.
模型 3 动点保持等距关系
3 (2023·湖北联考节选)已知正方体 ABCD-A1B1C1D1 的棱长为 3,P 为正方体表 53
面上的一个动点,A1P=2 3,则点 P 的轨迹长度为___2__π__.
【解析】 如图,点 P 的轨迹一部分是在平面 ABB1A1,A1B1C1D1, ADD1A1 三个面内以 2 3为半径,圆心角为π6的三段圆弧,另一部分是 在平面 BCC1B1,CDD1C1,ABCD 三个面内以 3为半径,圆心角为π2 的三段圆弧.故点 P 的轨迹的长度为112×2π×2 3×3+14×2π× 3×3=523π.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9
配套精练
2 . 如 图 , 正 方 体 ABCD - A1B1C1D1 的 棱 长 为 2 , E , F 分 别 为

立体几何中轨迹问题

立体几何中轨迹问题

立体几何中的轨迹问题立体几何是考查学生空间想象能力和转化能力,在立体几何中出现了一些轨迹问题,本人将这些问题作了如下归类,以供参考。

一、轨迹是抛物线例1.2004年高考北京卷(文),如图,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc与直线c1d1的距离相等,则动点p的轨迹所在的曲线是()a.直线b.圆c.双曲线d.抛物线解:连接pc1,∵d1c1⊥面bb1c1c,又pc?奂面bb1c1c,∴d1c1⊥pc1,即可得线段pc1长为点p到c1d1的距离,原题意可转化为:在平面bb1c1c中,动点p到定点c1的距离与点p到定直线bc(点c1不在直线bc上)的距离相等.由抛物线定义可知:点p的轨迹所在的曲线是抛物线.例2.2004年高考北京卷(理),正方体abcd-a1b1c1d1的棱长为1,点m在棱ab上,且am=,点p是平面abcd上的动点,且点p到直线a1d1的距离与到点m的距离的平方差为1,则点p的轨迹是()a.抛物线b.双曲线c.直线d.以上都不对解:在正方形add1a1中过点e作ef⊥a1d1交ad于f,连接pf,pe,pm. ∵pe为点p到a1d1的距离∴pe⊥a1d1∴a1d1⊥efp面,又ad∥a1d1∴pf⊥ad即pf为点p到直线ad的距离.由条件和所作不难知ef⊥fp.pe2-pm2=ef2+pf2-pm2=1+pf2-pm2=1即:pf=pm,同样由抛物线定义可知:点p的轨迹所在的曲线是抛物线.二、轨迹是椭圆例3.由2004年高考北京卷,(文4)得变题1,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc的距离是点p到直线c1d1的距离2倍,则动点p的轨迹是()a.线段b.椭圆的一部分c.双曲线的一部分d.抛物线的一部分解:变为在平面bb1c1c中,动点p到定点c1的距离与点p到定直线bc(点c1不在直线bc上)的距离之比为1∶2.由椭圆第二定义可知:点p的轨迹所在的曲线是椭圆(在正方形bb1c1c内),且离心率为.故本题选b.三、轨迹是双曲线例4.变题2,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc的距离是点p到直线c1d1的距离一半,则动点p的轨迹是双曲线的一部分,且离心率为2.四、轨迹是线段例5.变题3,如图,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c 内一动点,且始终满足ap⊥d1b,则动点p的轨迹所在的曲线是() a.线段 b.椭圆的一部分c.双曲线的一部分d.抛物线的一部分解:连接ac,ab1,b1c,易证bd1⊥面ab1c,∴点p在线段b1c动,才能满足ap⊥d1b.故本题选a.例6.(2005年5月苏州市高三教学调研测试)如图,△adp为正三角形,四边形abcd为正方形,平面pad⊥平面abcd.m为平面abcd内的一动点,且满足mp=mc.点m在正方形abcd内的轨迹为(o为正方形abcd的中心)()解:空间中到p、c两点距离相等的点应在过线段pc中点且垂直于此线段pc的平面α上。

立体几何中的轨迹问题(总结+讲义+练习)

立体几何中的轨迹问题(总结+讲义+练习)

立体几何中的轨迹问题(总结+讲义+练习)1、几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;ABCDEFGPOMNS2、代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值、轨迹问题【例1】如图,在正四棱锥S-ABCD中,E是BC的中点,P点在侧面△SCD内及其边界上运动,并且总是保持PEAC、则动点P的轨迹与△SCD组成的相关图形最有可能的是( )PPPPSCDSCDSCDSCDA、B、C、D、解析:如图,分别取CD、SC的中点F、G,连结EF、EG、FG、BD、设AC与BD的交点为O,连结SO,则动点P的轨迹是△SCD的中位线FG、由正四棱锥可得SB⊥AC,EF⊥AC、又∵EG∥SB∴EG⊥AC∴AC⊥平面EFG,∵P∈FG,E∈平面EFG,∴AC⊥PE、另解:本题可用排除法快速求解、B中P在D点这个特殊位置,显然不满足PEAC;C中P点所在的轨迹与CD平行,它与CF成角,显然不满足PEAC;D于中P点所在的轨迹与CD 平行,它与CF所成的角为锐角,显然也不满足PEAC、评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形、不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型、这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹、【例2】(1)如图,在正四棱柱ABCD A1B1C1D1中,P在侧面BCC1B1及其边界上运动,且总保持AP⊥BD1,则动点P的轨迹是线段B1C 、(3)正方体ABCD A1B1C1D1的棱长为1,在正方体的侧面BCC1B1上到点A距离为的点的集合形成一条曲线,那么这条曲线的形状是,它的长度是、ABCDD1C1B1A1PNABCDD1C1B1A1MGEHFABCDD1C1B1A1PABCDD1C1B1A1E FP(1)(2)(3)(4)若将“在正方体的侧面BCC1B1上到点A距离为的点的集合”改为“在正方体表面上与点A距离为的点的集合” 那么这条曲线的形状又是,它的长度又是、ABCDD1C1B1A1P 【例3】(1)(04北京)在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C 内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是 ( D )A、 A直线B、圆C、双曲线D、抛物线lABCα变式:若将“P到直线BC与直线C1D1的距离相等”改为“P到直线BC与直线C1D1的距离之比为1:2(或2:1)”,则动点P的轨迹所在的曲线是椭圆 (双曲线)、(2)(06北京)平面α的斜线AB交α于点B,过定点A的动直线l 与AB垂直,且交α于点C,则动点C的轨迹是 (A )A、一条直线B、一个圆C、一个椭圆D、双曲线的一支ABCDD1C1B1A1MP解:设l与l是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A与AB垂直所有直线都在这个平面内,故动点C都在这个平面与平面α的交线上,故选A、(3)已知正方体ABCD A1B1C1D1的棱长为3,长为2的线段MN点一个端点M在DD1上运动,另一个端点N在底面ABCD上运动,则MN的中点P的轨迹与正方体的面所围成的几何体的体积为、【例4】(04重庆)若三棱锥A-BCD的侧面ABC内一动点P到底面BCD 的距离与到棱AB的距离相等,则动点P的轨迹与△ABC组成图形可能是:( D )ABCPABCPABCPABCPABCD【例5】四棱锥P-ABCD,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是()A、圆B、不完整的圆C、抛物线D、抛物线的一部分PABCD分析:∵AD⊥面PAB,BC⊥平面PAB∴AD∥BC且AD⊥PA,CB⊥PB∵∠APD=∠CPB∴tanAPD=tanCPB∴=∴PB=2PA在平面APB 内,以AB的中点为原点,AB所在直线为x轴建立平面直角坐标系,则A(-3,0)、B(3,0),设P(x,y)(y≠0),则(x-3)2+y2=4[(x+3)2+y2](y≠0)即(x+5)2+y2=16(y≠0)∴P的轨迹是(B)立体几何中的轨迹问题(教师版)1、在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB 与到直线B1C1的距离相等,则动点P所在曲线的形状为(D)、A、线段B、一段椭圆弧C、双曲线的一部分D、抛物线的一部分简析本题主要考查点到直线距离的概念,线面垂直及抛物线的定义、因为B1C1面AB1,所以PB1就是P到直线B1C1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D、2、在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为2:1,则动点P所在曲线的形状为(B)、A、线段B、一段椭圆弧C、双曲线的一部分D、抛物线的一部分3、在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB 的距离与到直线B1C1的距离之比为1:2,则动点P所在曲线的形状为(C)、A、线段B、一段椭圆弧C、双曲线的一部分D、抛物线的一部分4、在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是(A)、A、圆或圆的一部分B、抛物线或其一部分C、双曲线或其一部分D、椭圆或其一部分简析由条件易知:AC是平面BB1D1D的法向量,所以EP与直线AC成等角,得到EP与平面BB1D1D所成的角都相等,故点P的轨迹有可能是圆或圆的一部分、5、已知正方体的棱长为a,定点M在棱AB上(但不在端点A,B上),点P是平面ABCD内的动点,且点P到直线的距离与点P到点M的距离的平方差为a2,则点P的轨迹所在曲线为(A)、A、抛物线B、双曲线C、直线D、圆简析在正方体中,过P作PFAD,过F作FEA1D1,垂足分别为F、E,连结PE、则PE2=a2+PF2,又PE2-PM2=a2,所以PM2=PF2,从而PM=PF,故点P到直线AD与到点M的距离相等,故点P的轨迹是以M为焦点,AD为准线的抛物线、6、在正方体中,点P在侧面BCC1B1及其边界上运动,总有APBD1,则动点P 的轨迹为__________、简析在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面、易证BD1面ACB1,所以满足BD1AP的所有点P都在一个平面ACB1上、而已知条件中的点P是在侧面BCC1B1及其边界上运动,因此,符合条件的点P在平面ACB1与平面BCC1B1交线上,故所求的轨迹为线段B1C、本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹、7、在正四棱锥S-ABCD中,E是BC的中点,点P在侧面SCD内及其边界上运动,总有PEAC,则动点P的轨迹为_______________、答案线段MN(M、N分别为SC、CD的中点)8、若A、B为平面的两个定点,点P在外,PB,动点C(不同于A、B)在内,且PCAC,则动点C在平面内的轨迹是________、(除去两点的圆)9、若三棱锥ABCD的侧面ABC内一动点P到底面BCD的距离与到棱AB的距离相等,则动点P的轨迹与ABC组成的图形可能是()A B C D7、已知P是正四面体S-ABC的面SBC上一点,P到面ABC的距离与到点S的距离相等,则动点P的轨迹所在的曲线是()A、圆B、椭圆C、双曲线D、抛物线8、已知平面平面,直线,点,平面、间的距离为4,则在内到点P的距离为5且到直线的距离为的点的轨迹是()A、一个圆B、两条平行直线C、四个点D、两个点9、在四棱锥中,面PAB,面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,,满足上述条件的四棱锥的顶点P的轨迹是()A、圆B、不完整的圆C、抛物线D、抛物线的一部分10、如图,定点A和B都在平面内,定点PC是内异于A和B 的动点、且,那么动点C在平面内的轨迹是()A、一条线段,但要去掉两个点B、一个圆,但要去掉两个点C、一个椭圆,但要去掉两个点D、半圆,但要去掉两个点11、已知正方体的棱长为1,点P是平面AC内的动点,若点P到直线的距离等于点P到直线CD的距离,则动点P的轨迹所在的曲线是()A、抛物线B、双曲线C、椭圆D、直线12、如图,AB是平面的斜线段,A为斜足,若点P在平面内运动,使得△ABP的面积为定值,则动点P的轨迹是()A、圆B、椭圆C、一条直线D、两条平行直线13、如图,动点在正方体的对角线上、过点作垂直于平面的直线,与正方体表面相交于、设,,则函数的图象大致是()ABCDMNPA1B1C1D1yxA、OyxB、OyxC、OyxD、O14、在正方体中,点P在侧面BCC1B1及其边界上运动,总有APBD1,则动点P的轨迹为________、15、在正四棱锥S-ABCD中,E是BC的中点,点P在侧面SCD 内及其边界上运动,总有PEAC,则动点P的轨迹为_______________、16、若A、B为平面的两个定点,点P在外,PB,动点C(不同于A、B)在内,且PCAC,则动点C在平面内的轨迹是________、17、已知正方体的棱长为1,在正方体的侧面上到点A距离为的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________、18、已知长方体中,,在线段BD、上各有一点P、Q,PQ上有一点M,且,则M点轨迹图形的面积是、19、已知棱长为3的正方体中,长为2的线段MN的一个端点在上运动,另一个端点N在底面ABCD上运动,则MN中点P的轨迹与正方体的面所围成的几何体的体积是、20、已知异面直线a,b成角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程、。

立体几何中的轨迹问题汇总

立体几何中的轨迹问题汇总

例析空间中点的轨迹问题的转化求空间图形中点的轨迹既是中学数学学习中的一个难点,又是近几年高考的一个热点,这是一类立体几何与解析几何的交汇题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面的轨迹问题来处理的基本思想。

一.轨迹为点例1已知平面βα||,直线α⊂l ,点P l ∈,平面βα,之间的距离为8,则在β内到P 点的距离为10且到直线l 的距离为9的点的轨迹是 ( )A .一个圆 B.两条直线 C.两个点 D.四个点解析:设Q 为β内一动点,点P 在β内射影为O ,过O, l 的平面与β的交线为l ', PQ=10,∴OQ==-228106点Q 在以O 为圆心6为半径圆上,过Q 作QM l '⊥于M ,又 点Q 到直线l 的距离为9∴QM=178922=-则点Q 在以l '平行距离为17的两条平行线上 两条平行线与圆有四个交点∴这样的点Q 有四个,故答案选D 。

点评:本题以空间图形为背景,把立体几何问题转化到平面上,再用平面几何知识解决,要熟记一些平面几何点的轨迹。

二. 轨迹为线段例2. 如图,正方体1111ABCD A BC D -中,点P 在侧面11BCC B 及其边界上运动,并且总保持1AP BD ⊥,则动点P 的轨迹是( )。

βαlMOQPA. 线段1B CB.线段1BCC. 1BB 中点与1CC 中点连成的线段D. BC 中点与11B C 中点连成的线段解:连结11,,AB AC B C ,易知111BD A AB ⊥所以11111,,AB BD AC BD B C BD ⊥⊥⊥,所以1BD ⊥面1ABC ,若P ∈1B C ,则AP ⊂平面1ABC ,于是1BD AP ⊥,因此动点P 的轨迹是线段1B C 。

评注:本题是由线面垂直的性质从而求出点P 的轨迹。

例3 已知圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周),若MP AM ⊥,则点P 的轨迹是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDA3P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为(D ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分 简析 本题主要考查点到直线距离的概念,线面垂直及抛物线的定义.因为B 1C 1⊥面AB 1,所以PB 1就是P 到直线B 1C 1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D .2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为(B ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为(C ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是(A ).A .圆或圆的一部分B .抛物线或其一部分C .双曲线或其一部分D .椭圆或其一部分 简析 由条件易知:AC 是平面BB 1D 1D 的法向量,所以EP 与直线AC 成等角,得到EP 与平面BB 1D 1D 所成的角都相等,故点P 的轨迹有可能是圆或圆的一部分.5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为(A ). A .抛物线B .双曲线C .直线D .圆简析在正方体ABCD A B C D -1111中,过P 作PF ⊥AD ,过F 作FE ⊥A 1D 1,垂足分别为F 、E ,连结PE .则PE 2=a 2+PF 2,又PE 2-PM 2=a 2,所以PM 2=PF 2,从而PM =PF ,故点P 到直线AD 与到点M 的距离相等,故点P 的轨迹是以M 为焦点,AD 为准线的抛物线.6.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为__________. 简析 在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面.易证BD 1⊥面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1交线上,故所求的轨迹为线段B 1C .本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹.7.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.答案 线段MN (M 、N 分别为SC 、CD 的中点)8.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.(除去两点的圆) 9.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是:(D )A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ. 14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=, 即|1y |1x 2-=+,化简得0y 2y x 22=+- 故动点P 的轨迹为双曲线,选B .20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB 的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分 5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线B .双曲线C .直线D .圆6.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是 ( ) A A AP PP PB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分 10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.ABC D MNP A 1B 1C 1D 1 yxOyxOyxOyx O。

相关文档
最新文档