直方图均衡化实验报告

合集下载

数字图像处理实验报告直方图均衡化

数字图像处理实验报告直方图均衡化

数字图像处理实验报告直⽅图均衡化课程设计课程名称数字图像处理题⽬名称直⽅图均衡化学⽣学院信息⼯程学院专业班级 08级电信2班学号 3208002664 学⽣姓名陈慕仪指导教师曹江中2011年7 ⽉ 1 ⽇设计题⽬:直⽅图均衡化1、直⽅图的理论基础:(1)直⽅图概念:灰度直⽅图表⽰图像中每种灰度出现的频率。

(2)直⽅图的作⽤:反映⼀幅图像的灰度分布特性(3)直⽅图的计算:式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,⽽n k /n 即为频数。

2、设计⽬的:产⽣⼀幅灰度级分布具有均匀概率密度的图像,扩展像素取值的动态范围,达到了图象增强的⽬的。

3、直⽅图均衡化的效果:1)变换后直⽅图趋向平坦,灰级减少,灰度合并。

2)原始象含有象素数多的⼏个灰级间隔被拉⼤了,压缩的只是象素数少的⼏个灰度级,实际视觉能够接收的信息量⼤⼤地增强了,增加了图象的反差。

同时,也增加了图象的可视粒度。

4、离散情况下的直⽅图均衡化的算法:A 、列出原始图像的灰度级B 、统计各灰度级的像素数⽬C 、计算原始图像直⽅图各灰度级的频数D 、计算累积分布函数F 、应⽤以下公式计算映射后的输出图像的灰度级,P为输出图像灰度级的个数,其中INT 为取整符号:G 、⽤的映射关系修改原始图像的灰度级,从⽽获得直⽅图近似为均匀分布的输出图像。

3、源程序代码// cqxhistView.cpp : implementation of the CCqxhistView class #include "stdafx.h" #include "cqxhist.h"#include "cqxhistDoc.h" #include "cqxhistView.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__; #endif///////////////////////////////////////////////////////////////////////////// // CCqxhistViewIMPLEMENT_DYNCREATE(CCqxhistView, CView)BEGIN_MESSAGE_MAP(CCqxhistView, CView)1,,1,0,-=L j f j 1,,1,0,-=L j n j 1,,1,0,/)(-==L j n n f P j j f 1,,,1,0,)()(0-==∑=L k j f P f C k j jf]5.0)()[(min min max ++-=g f C g g INT g i nn r p kk =)(1,,2,1,010-=≤≤l k r k//{{AFX_MSG_MAP(CCqxhistView)ON_COMMAND(ID_OPEN_IMAGE, OnOpenImage)ON_COMMAND(ID_HIST_IMAGE, OnHistImage)//}}AFX_MSG_MAP// Standard printing commandsON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)END_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CCqxhistView construction/destruction CCqxhistView::CCqxhistView(){// TODO: add construction code here}CCqxhistView::~CCqxhistView(){}BOOL CCqxhistView::PreCreateWindow(CREATESTRUCT& cs){// TODO: Modify the Window class or styles here by modifying// the CREATESTRUCT csreturn CView::PreCreateWindow(cs);}///////////////////////////////////////////////////////////////////////////// // CCqxhistView drawingvoid CCqxhistView::OnDraw(CDC* pDC){CCqxhistDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereif(m_dib.m_bLoaded==true) //判断是否加载图像{//获取图像宽和⾼int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();// 显⽰图像(具体的参数见CDIB类的该函数说明)m_dib.ShowDIB(pDC,10,10,nw,nh,m_dib.m_pDIBData,m_dib.m_pBMI);m_dib.ShowDIB(pDC,400,10,nw,nh,m_dib.m_pDumpDIBData,m_dib.m_pBMI); } if(m_bHist==true){//绘制原图像的直⽅图CString str;int nh=m_dib.GetDIBHeight();int i;// 画坐标轴// 绘制坐标轴pDC->MoveTo(410,nh+20); //(410,nh+20 )是直⽅图的左上⾓坐标// 垂直轴pDC->LineTo(410,nh+200);//(410,nh+200 )是直⽅图的左下⾓坐标// ⽔平轴pDC->LineTo(710,nh+200);//(710,nh+200 )是直⽅图的右下⾓坐标// 写X轴刻度值str.Format("0");pDC->TextOut(410, nh+200+10, str);str.Format("50");pDC->TextOut(460, nh+200+10, str); str.Format("100");pDC->TextOut(510, nh+200+10, str); str.Format("150");pDC->TextOut(560, nh+200+10, str); str.Format("200");pDC->TextOut(610, nh+200+10, str); str.Format("255");pDC->TextOut(665, nh+200+10, str); // 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 10, nh+200-2); pDC->LineTo(i + 10, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 10, nh+200-2); pDC->LineTo(i + 10, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(705,nh+200-5); pDC->LineTo(710,nh+200);pDC->LineTo(705,nh+200+5);// 绘制y轴箭头pDC->MoveTo(410,nh+20);pDC->LineTo(405,nh+20+5);pDC->MoveTo(410,nh+20);pDC->LineTo(415,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_yuan[i]>max)max=m_yuan[i];for(i=0;i<256;i++){pDC->MoveTo(410+i,nh+200);pDC->LineTo(410+i,nh+200-(m_yuan[i]*160/max));}}if(m_bHist==true){//绘画直⽅图CString str;int nh=m_dib.GetDIBHeight();int i;// 画坐标轴// 绘制坐标轴pDC->MoveTo(10,nh+20); //(10,nh+20 )是直⽅图的左上⾓坐标// 垂直轴pDC->LineTo(10,nh+200);//(10,nh+200 )是直⽅图的左下⾓坐标// ⽔平轴pDC->LineTo(310,nh+200);//(310,nh+200 )是直⽅图的右下⾓坐标// 写X轴刻度值str.Format("0");pDC->TextOut(10, nh+200+10, str);str.Format("50");pDC->TextOut(60, nh+200+10, str);str.Format("100");pDC->TextOut(110, nh+200+10, str);str.Format("150");pDC->TextOut(160, nh+200+10, str);str.Format("200");pDC->TextOut(210, nh+200+10, str);str.Format("255");pDC->TextOut(265, nh+200+10, str);// 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(305,nh+200-5);pDC->LineTo(310,nh+200);pDC->LineTo(305,nh+200+5);// 绘制y轴箭头pDC->MoveTo(10,nh+20);pDC->LineTo(5,nh+20+5);pDC->MoveTo(10,nh+20);pDC->LineTo(15,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_hist[i]>max)max=m_hist[i];for(i=0;i<256;i++){pDC->MoveTo(10+i,nh+200);pDC->LineTo(10+i,nh+200-(m_hist[i]*160/max));}}}///////////////////////////////////////////////////////////////////////////// // CCqxhistView printing BOOL CCqxhistView::OnPreparePrinting(CPrintInfo* pInfo){// default preparationreturn DoPreparePrinting(pInfo);}void CCqxhistView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add extra initialization before printing}void CCqxhistView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add cleanup after printing}///////////////////////////////////////////////////////////////////////////// // CCqxhistView diagnostics#ifdef _DEBUGvoid CCqxhistView::AssertValid() const{CView::AssertValid();}void CCqxhistView::Dump(CDumpContext& dc) const{CView::Dump(dc);}CCqxhistDoc* CCqxhistView::GetDocument() // non-debug version is inline{ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CCqxhistDoc)));return (CCqxhistDoc*)m_pDocument;}#endif //_DEBUG///////////////////////////////////////////////////////////////////////////// // CCqxhistView message handlersvoid CCqxhistView::OnOpenImage(){// TODO: Add your command handler code here// TODO: Add your command handler code herestatic char szFilter[]="BMP⽂件(*.bmp)|*.bmp||"; //定义过滤⽂件的类型 CFileDialog dlg(TRUE,"bmp",NULL, OFN_HIDEREADONLY|OFN_OVERWRITEPROMPT,szFilter);//定义⽂件对话框对象 CString filename;int ret=dlg.DoModal(); //运⾏打开⽂件对⽅框if(ret==IDOK){filename=dlg.GetFileName(); //获取所选择图像的路径 m_dib.LoadFromFile(filename); //加载图像if(!m_dib.m_bLoaded) //判断是否加载图像成功{AfxMessageBox("图像打不开");return;}for(int i=0;i<256;i++) //初始化直⽅图数组{ m_hist[i]=0;m_yuan[i]=0;}m_bHist=false;}{int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();for(int j=0;jfor(int i=0;i{BYTE temp=m_dib.m_pdata[j*nw+i];m_yuan[temp]++;}}Invalidate(1); //刷新屏幕}void CCqxhistView::OnHistImage(){// TODO: Add your command handler code here//功能:实现直⽅图均衡化////////////////////////////判断图像是否打开,没打开,则弹出提⽰框并退出函数if(!m_dib.m_bLoaded){AfxMessageBox("图像还打开,请先打开图像!");return;}//获取图像宽和⾼int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();int i,j,k;int count[256]={0};//定义⼀个数组,⽤于存放灰度级个数float p[256];//定义⼀个数组,⽤于存放灰度级出现频率//对图像进⾏直⽅图均衡化处理for(i=0;ifor(j=0;j{k=m_dib.m_pdata[i*nw+j];//计算灰度级个数count[k]++;}for(k=0;k<256;k++)p[k]=count[k]/(nw*nh*1.0f);float c[256]={0};float sum=0.0;int ngray[256];//新的灰度级for(k=0;k<256;k++)//计算累积频率{sum+=p[k];c[k]=sum;ngray[k]=(int)(255.0*c[k]+0.5);}for(i=0;ifor(j=0;j{k=m_dib.m_pdata[i*nw+j];m_dib.m_pdata[i*nw+j]=ngray[k];}{int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();for(int j=0;jfor(int i=0;i{BYTE temp=m_dib.m_pdata[j*nw+i];m_hist[temp]++;}}//将修改的m_pdata的数据赋值给m_pDIBData,以显⽰修改的结果m_dib.UpdateData();m_bHist=true;//将修改的m_pdata的数据赋值给m_pDIBData,以显⽰修改的结果 m_dib.UpdateData(); //刷新屏幕Invalidate();}4、实验结果C++编程结果:。

实验三 直方图均衡化及空域滤波增强

实验三  直方图均衡化及空域滤波增强

实验三直方图均衡化及空域滤波一、实验目的1.掌握灰度直方图的概念及直力图均衡化过程;2.掌握空域滤波的基本原理及方法;3.掌握用MATLAB语言进行图像的空域滤波的方法。

二、实验原理1、直方图均衡化图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。

其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。

本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法同学们可以在课后自行联系。

直方图是多种空间城处理技术的基础。

直方图操作能有效地用于图像增强。

除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。

直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为了实时图像处理的一个流行工具。

直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。

直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。

灰度直方图是图像预处理中涉及最广泛的基本概念之一。

图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。

直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。

直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。

下面给出直方图均衡化增强图像对比度的MATLAB程序:I=imread('pout.tif'); % 读入原图像J=histeq(I); %对原图像进行直方图均衡化处理%对直方图均衡化后图像进行屏幕控制;作一幅子图,并排两幅图的第1幅subplot(2,2,1);imshow(I); %显示原图像title('原图像'); %给原图像加标题名subplot(2,2,2);imshow(J);title('直方图均衡化后的图像') ;subplot(2,2,3);imhist(I,64); %将原图像直方图显示为64级灰度title('原图像直方图') ; %给原图像直方图加标题名subplot(2,2,4);imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度title('均衡变换后的直方图') ; %给均衡化后图像直方图加标题名处理后的图像直方图分布更均匀了,图像在每个灰度级上都有像素点。

直方图均衡化实验报告

直方图均衡化实验报告

多媒体技术实验报告项目名称: bmp文件直方图均衡
提交文档学生姓名:
提交文档学生学号:
教师评阅成绩:
教师评阅意见:
......................... .........................
1.提交报告时间: 2013年 11月16日
2.实验题目: bmp文件直方图均衡
3.实验要求:
1)读入给定BMP格式图像,
2)求输入图像的直方图, 并以文本文件形式输出
3)完成直方图均衡,
4)将直方图均衡后图像以BMP格式输出
5)计算均衡后图像的直方图, 并以文本文件形式输出
6)观察比较均衡前后图像及直方图的不同
4.实验环境: windows 7 操作系统、vc6.0
5.算法描述:
●程序流程图
●测试程序说明
1.用户需将欲测试文件放在该程序目录下
2.启动程序并输入bmp文件名即可,在该目录下的”resource”文件夹下可以看到运
行后的bmp图像以及在bmp图像均衡前后的直方图输出。

6.源程序清单:
●添加必要的注释
7.运行结果:
测试数据选择
测试结果分析
直方图均衡化前的直方图
直方图均衡化后的脂肪图
8.实验运行情况分析(包括算法、运行结果、运行环境等问题的总体讨论)。

●收获
掌握了bmp文件的一些基本特性以及其存储结构, 此外还掌握了直方图均衡的作用与实现。

●特色
●操作简单, 效果良好
●不足
当测试的bmp图片数据很大时, 可能存在内存溢出的现象。

直方图均衡化算法实现实验报告

直方图均衡化算法实现实验报告

南京信息工程大学实验(实习)报告
实验(实习)名称直方图均衡化算法实现实验(实习)日期得分指导教师专业年级班次姓名学号
一、实验目的:
理解直方图均衡化算法的原理,掌握算法的实现
二、实验内容:
在Matlab中编程实现直方图均衡化算法。

三、实验要求:
1. 读入一幅图像()
提示:使用imread
2. 直方图均衡化
算法处理过程请参看第四章ppt
3. 显示处理前和处理后的灰度图像
提示:subplot,imshow
4. 撰写实验报告并附上所用程序和结果。

三.实验步骤:
在matlab命令窗口执行:
>> f=imread('');
>> g=histeq(f);
>> subplot(1,2,1);
>> imshow(f);
>> subplot(1,2,2);
>> imshow(g);
运行结果(截图)
同一个图像窗口左右显示处理前后的图像。

数字图像处理实验报告直方图均衡化

数字图像处理实验报告直方图均衡化

数字图像处理实验报告实验名称:直方图均衡化姓名:班级:学号:专业:电子信息工程(2+2)指导教师:陈华华实验日期:2012年5月24日直方图均衡化图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。

直方图均衡化是最常见的间接对比度增强方法。

直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。

直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。

缺点:1)变换后图像的灰度级减少,某些细节消失;2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。

直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过这种方法,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。

设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。

在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。

这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。

(2)对于0≤f≤L-1有0≤g≤L-1,这个条件保证了变换前后灰度值动态范围的一致性。

直方图均衡化和匹配报告

直方图均衡化和匹配报告

直方图均衡化和匹配报告一.实验目的:加强直方图均衡化和直方图匹配的图像增强技术的认识和了解; 学会用Matlab 中的下列函数对输入图像进行上述2类运算; 感受各种不同的直方图图像增强处理方法对最终图像效果的影响; 二.实验内容:1.熟悉Matlab 文件中有关Imhist 和histeq 函数的使用说明,充分理解其使用方法并能运用它们完成实验内容。

2.将mountain.jpg 图像文件读入Matlab ,对其作直方图均衡化。

显示运算前后该图像的直方图,处理后的图像。

3.对mountain.jpg 图像做直方图匹配运算,显示运算前后该图像的直方图,处理后的图像和灰度变换函数。

直方图反映灰度等级的分布情况,本实验指定的直方图如下:1400×rr ≤5 7000-310×r 5<r ≤20 900-5×r 20<r ≤180 -1440+8×r 180<r ≤225 3060-12×r225<r ≤2554.利用mountain.jpg 图像的直方图(imhist 函数可生成),编写直方图均衡化函数,显示灰度变换函数。

三.实验结果与分析:1.图像均衡化处理前后的直方图和图像对比原图像 均衡化后的图像n =原图像直方图均衡化后的直方图由处理后的图像可以看出,图像的灰度值减少,图像对比度明显增强,但是导致很多地方的细节模糊,看不清楚;而且有些地方过分增强,严重干扰清晰度。

2.直方图匹配处理前后图像对比原图像处理后图像原图像直方图直方图匹配运算后的直方图直方图匹配运算函数采用直方图匹配运算后,发现效果明显比直接均衡化的效果好的多,将一些重要的细节突出来了,对比度明显增强,但是有些地方色彩过于暗淡,灰度值过高,影响了图像的美观,但用于进行图像对比分析还是比较实用的。

3.编写的直方图均衡化函数,进行灰度变换原图处理后图像原图直方图处理后直方图最后一步通过自己编写的程序,对直方图进行均衡化,效果与第一步所取得的效果差不多是一致的。

直方图均衡化实验报告

直方图均衡化实验报告

医学图像处理实验报告实验名称:直方图均衡化实验姓名:gao jun qiang 学号:20105405班级:生医1001指导教师:……2013年6月5日一、 实验目的1、编程实现下列功能:读出存储的黑白灰度图象并显示,显示灰度直方图,对图象进行直方图均衡化处理,显示处理后图象及直方图,画出灰度变换曲线,并存储处理后图象。

二、 实验原理直方图均衡化处理的中心思想是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

直方图均衡化是一种自动调节图象对比度质量的算法,使用的方法是灰度级变换:s = T(r) 。

它的基本思想是通过灰度级r 的概率密度函数p(rk ),求出灰度级变换T(r).灰度直方图的计算十分简单,依据定义在离散形式下有下面的公式成立:()1,1,0,-==L k n n k p k Λ (1) 公式中:k n 为图像中出现k s 级灰度的像素数,n 是图像像素总数,而n nk 即为频数。

计算累积直方图各项:()1,1,0,00-===∑∑==L k i p n n t k i ki i k Λ (2) 取整扩展:]5.0)1int[(+-=k k t L t (3)映射对应关系 :k t k ⇒三、实验代码及结果直方图均衡化实验代码:clc;close all;clear all;Imag = imread('lena.tiff');figure()imshow(Imag),title('原图像');ImagGray = rgb2gray(Imag);figure()imshow(ImagGray),title('灰度图像');[r,c] = size(ImagGray);%统计灰度直方图GrayPixNum = zeros(1,255);for i = 1:rfor j = 1:cGrayPixNum(1,ImagGray(i,j)) = GrayPixNum(1,ImagGray(i,j))+1;endend%对灰度直方图进行归一化GrayPixPro = GrayPixNum./(r*c);figure()plot(GrayPixPro),title('图像直方图');%-----------------------------------------------------------% -----------------------直方图均衡化------------------------%-----------------------------------------------------------%直方图累加GrayAdd = zeros(1,255);GrayAdd(1,1) = GrayPixPro(1,1);for i = 2:255GrayAdd(1,i) = GrayAdd(1,i-1)+GrayPixPro(1,i);endNewGray = round(GrayAdd.*254.+0.5);NewGrayPro = zeros(1,255);for i = 1:255GrayTemp = NewGray(1,i);NewGrayPro(1,GrayTemp) = NewGrayPro(1,GrayTemp)+GrayPixPro(1,i); endfigure()plot(NewGrayPro.*(r*c)),title('均衡化直方图');%有均衡化直方图和映射关系得到均衡化的图像NewImag = zeros(r,c);for i =1:rfor j = 1:cNewImag(i,j) = NewGray(1,ImagGray(i,j));endendNewImag = uint8(NewImag);figure()imshow(NewImag),title('均衡化的图像');figure()plot(NewGray),title('灰度变换曲线');实验结果:图1 原灰度图像图2 原图像的灰度直方图图3 经过直方图均衡化后的灰度图片图4 均衡化后的直方图图5 灰度变化曲线三、实验思考从上述实验结果可以看出,经过直方图均衡化后的图片的对比度更高,且边缘效果更高。

matlab 直方图均衡实验报告

matlab 直方图均衡实验报告

基于直方图的灰度级修正班级:电子信息科学与技术0901班姓名:学号:设计时间: 2012年5月24日一 设计课题:基于直方图的灰度级修正二 设计内容及要求:实验原理: 1.直方图均衡化处理技术是用累积分布函数作变换函数的直方图修正方法;2.用累积分布函数作为变换函数可产生一幅灰度级分布具有均匀概率密度的图像。

均衡步骤:1、统计原始图像的直方图,求出)(k r r P ;2、用累积分布函数作变换∑==kj j r k r P s 0)( ,求变换后的新灰度;3、用新灰度代替旧灰度,求出)(k s s P ,这一步是近似的,力求合理,同时把灰度相等的或相近的合在一起。

设计要求:1. 利用fopen 等函数打开*.dat 文件,采用for 循环统计图像里各灰度级的个数,并用换图函数表示出来。

2. 将打开的图像,采用直方图均衡对原始图像进行灰度级转换,并绘出其灰度直方图。

三 程序设计及其说明:本程序采用matlab GUI 绘图来实现,操作界面、菜单内容如下:图1 操作界面图2 菜单内容程序特色:1.原始图像灰度直方图统计算法一for l=0:255for i=1:rowif fid(i,1)==lh(l+1)=h(l+1)+1;endendend2. 原始图像灰度直方图统计算法二for i=1:rowh(fid(i)+1)=h(fid(i)+1)+1;end由主要代码部分可以看出:算法二算法复杂度很小,这是利用fopen打开文件的特色来决定的,它读入数组时是m行1列。

四实验结果及分析:灰度直方图统计:原始图像与均衡后图像灰度直方图(以LENA女孩图像为例)不同亮度图像直方图均衡效果显示1. LENA 图像 (1)正常图5 LENA 正常 原始及均衡后图像显示(2)高亮度图3 原始图像直方图图4 图像均衡后直方图图6 LENA高光原始及均衡后图像显示(3)偏暗图7 LENA偏暗原始及均衡后图像显示2.couple图像(1)正常图8 couple正常原始及均衡后图像显示图9 couple高亮原始及均衡后图像显示(3)偏暗图10 couple偏暗原始及均衡后图像显示3.NBA图像(1)正常图11 NBA正常原始及均衡后图像显示(3)偏暗图13 NBA偏暗原始及均衡后图像显示不同亮度的原始图像与均衡后图像灰度直方图1. LENA图像(1)正常(2)高亮度(3)偏暗图16 原始图像直方图图17 图像均衡后直方图图14 原始图像直方图图15 图像均衡后直方图2. couple 图像 (1)正常(2)高亮度图20 原始图像直方图图21 图像均衡后直方图图18 原始图像直方图图19 图像均衡后直方图(3)偏暗3. NBA 图像 (1)正常图24 原始图像直方图图25 图像均衡后直方图图22 原始图像直方图图23 图像均衡后直方图(2)高亮度(3)偏暗图28 原始图像直方图图29 图像均衡后直方图图26 原始图像直方图图27 图像均衡后直方图结果分析:通过几个图像显示结果可以看出:直方图均衡结果使图像亮度有所提高,所以它对比较暗的图像显示的更加清晰,而太亮的图像或曝光过度的图像,经过直方图均衡,效果不是很好,但是轮廓勾画的会明显些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医学图像处理实验报告
实验名称:直方图均衡化实验
姓名:gao jun qiang 学号:20105405
班级:生医1001
指导教师:……
2013年6月5日
一、 实验目的
1、编程实现下列功能:读出存储的黑白灰度图象并显示,显示灰度直方图,对
图象进行直方图均衡化处理,显示处理后图象及直方图,画出灰度变换曲线,并存储处理后图象。

二、 实验原理
直方图均衡化处理的中心思想是把原始图像的灰度直方图从比较集中
的某个灰度区间变成在全部灰度范围内的均匀分布。

直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

直方图均衡化是一种自动调节图象对比度质量的算法,使用的方法是灰度级变换:s = T(r) 。

它的基本思想是通过灰度级r 的概率密度函数p(rk ),求出灰度级变换T(r).
灰度直方图的计算十分简单,依据定义在离散形式下有下面的公式成
立:
()1,1,0,-==L k n n k p k Λ (1) 公式中:k n 为图像中出现k s 级灰度的像素数,n 是图像像素总数,而n n
k 即为频数。

计算累积直方图各项:
()1
,1,0,00-===∑∑==L k i p n n t k i k
i i k Λ (2) 取整扩展:
]5.0)1int[(+-=k k t L t (3)
映射对应关系 :k t k ⇒
三、实验代码及结果
直方图均衡化实验代码:
clc;
close all;
clear all;
Imag = imread('lena.tiff');
figure()
imshow(Imag),title('原图像');
ImagGray = rgb2gray(Imag);
figure()
imshow(ImagGray),title('灰度图像');
[r,c] = size(ImagGray);
%统计灰度直方图
GrayPixNum = zeros(1,255);
for i = 1:r
for j = 1:c
GrayPixNum(1,ImagGray(i,j)) = GrayPixNum(1,ImagGray(i,j))+1;
end
end
%对灰度直方图进行归一化
GrayPixPro = GrayPixNum./(r*c);
figure()
plot(GrayPixPro),title('图像直方图');
%-----------------------------------------------------------
% -----------------------直方图均衡化------------------------
%-----------------------------------------------------------
%直方图累加
GrayAdd = zeros(1,255);
GrayAdd(1,1) = GrayPixPro(1,1);
for i = 2:255
GrayAdd(1,i) = GrayAdd(1,i-1)+GrayPixPro(1,i);
end
NewGray = round(GrayAdd.*254.+0.5);
NewGrayPro = zeros(1,255);
for i = 1:255
GrayTemp = NewGray(1,i);
NewGrayPro(1,GrayTemp) = NewGrayPro(1,GrayTemp)+GrayPixPro(1,i); end
figure()
plot(NewGrayPro.*(r*c)),title('均衡化直方图');
%有均衡化直方图和映射关系得到均衡化的图像
NewImag = zeros(r,c);
for i =1:r
for j = 1:c
NewImag(i,j) = NewGray(1,ImagGray(i,j));
end
end
NewImag = uint8(NewImag);
figure()
imshow(NewImag),title('均衡化的图像');
figure()
plot(NewGray),title('灰度变换曲线');
实验结果:
图1 原灰度图像图2 原图像的灰度直方图
图3 经过直方图均衡化后的灰度图片图4 均衡化后的直方图
图5 灰度变化曲线
三、实验思考
从上述实验结果可以看出,经过直方图均衡化后的图片的对比度更高,且边缘效果更高。

这些图片非常有利于人眼的观看识别。

直方图均衡化可以达到增强图像的显示效果的作用。

通过原图像的直方图可以观察出,图像中各种亮度所占的比例大都分布不均匀,直方图增强的方法就是压缩直方图中比例少的像素所占用的灰度范围,多出来的灰度空间按照统计比例分配给直方图中比例高的像素使用。

这种方法主要是针对人眼对灰度差别越大的图像更容易分辨的特点而做的增强。

直方图均衡化由于可能会丢失一些灰度级,所以造成图片信息在一定程度上的损失。

变换后图像的灰度级减少也会使某些细节消失。

并且某些图像经均衡化处理后的对比度不自然的过分增强。

相关文档
最新文档