高等数学(同济版)第三章ppt 3-5
合集下载
同济高数第3章课件第5节

同济高数第3章课件第5节
CATALOGUE
目录
引言 知识点一:函数的概念与性质 知识点二:函数的极限 知识点三:函数的导数 知识点四:微分概念与运算 知识点五:习题解析与解答
01
引言
极限是微积分中的基本概念之一,对于理解函数的变化趋势和导数、积分等概念具有重要意义。
本节内容分为三个部分:函数极限的定义、极限的性质和求极限的方法。
公式法
利用微分近似计算公式,如泰勒级数展开式进行近似计算。
近似计算
微分是积分的基础,通过微分可以计算定积分和不定积分。
微分与积分的关系
微分的计算
极值问题
利用微分确定函数的极值点,从而解决最优化问题。
导数的几何意义
利用微分计算切线斜率,从而确定函数图像的增减性。
近似计算
利用微分进行近似计算,如求曲线上某一点的切线斜率、求解函数的近似值等。
函数的单调性
如果对于定义域内的任意两个数x1<x2,都有f(x1)<f(x2),则称f(x)在其定义域上单调递增;反之,如果对于定义域内的任意两个数x1<x2,都有f(x1)>f(x2),则称f(x)在其定义域上单调递减。
函数的性质
根据函数值是否有限,可以将函数分为有界函数和无界函数。
有界函数与无界函数
导数的定义与性质
掌握一些常用的基本初等函数的导数公式,如常数函数、幂函数、指数函数、三角函数等。
基础导数公式
导数的四则运算
复合函数的导数
掌握导数的四则运算规则,包括加法、减法、乘法和除法运算的导数法则。
掌握复合函数的导数计算方法,能够利用链式法则求得复合函数的导数。
03
02
01
导数的计算
同济版高数课件PPT课件

1
e . 试证 limn f 1 f 2 f n n n n n
ln f ( x )dx
0
证明 利用对数的性质得
lim n f 1 f 2 f n n n n n
eln lim n n
f
1 n
f
2 n
f
n n
19
极限运算与对数运算换序得
三、利用定积分的定义计算积分 b xdx ,( a b ) . a
25
四、利用定积分的几何意义,说明下列等式:
1
1、
1 x2dx ;
0
4
2、
2
cos
xdx
2
2 cos xdx
0
;
2
五、水利工程中要计算拦水闸门所受的水压力,已知 闸门上水的压强 P 是水深 h 的 函数,且有
p 9.8h(千米 米2 ),若闸门高H 3米 ,宽 L 2米 ,求水面与闸门顶相齐时闸门所受的水
b
f ( x)dx 0.
a
48
例 1 比较积分值 2 e xdx 和 2 xdx 的大小.
0
0
解 令 f ( x) e x x, x [2, 0]
f ( x) 0,
0 (e x x)dx 0, 2
0 e xdx
0
xdx,
2
2
于是
2 e xdx
2
xdx.
0
0
49
性质5的推论:
51
性质6 设M 及m 分别是函数
补充:不论 a,b,c的相对位置如何, 上式总成立.
例 若 a b c,
c
a
f ( x)dx
b
a f ( x)dx
同济第五版高数3-5极值最值.ppt

• 对于应用问题 有时可根据实际意义判别 对于应用问题,有时可根据实际意义判别 求出的可疑点是否为最大值点或最小值点. 求出的可疑点是否为最大值点或最小值点
例4 求函数 上的最大值和最小值 . 解
在闭区间
′( x) =6x2 − 18x + 12 f = 6( x − 1)( x − 2), 0 < x < 5 2
极 大 值
极大值 f ( −1) = 10, 极小值 f (3) = −22.
图形如下: f ( x ) = x − 3 x − 9 x + 5 图形如下:3 2来自yf ( −1)
−1 o
3
f ( 3)
x
定理3 第二充分条件 第二充分条件) 定理 (第二充分条件 处具有二阶导数,且 设 f (x)在 x0 处具有二阶导数 且 f ′( x0 ) = 0,
思考题
1.下列命题正确吗? 1.下列命题正确吗? 下列命题正确吗
的极小值点, 如果 x 0 为 f ( x ) 的极小值点,那么必存在 的某邻域,在此邻域内, x0 的某邻域,在此邻域内, f ( x ) 在 x0 的左侧 下降, 的右侧上升. 下降,而在 x 0 的右侧上升.
例3 求出函数 f ( x ) = 1 − ( x − 2) 的极值 .
2 解 f ′( x ) = − ( x − 2 ) ( x ≠ 2) 3 当x = 2时 , f ′( x )不存在 . y
− 1 3
2 3
但 函 数 f ( x )在 该 点 连 续 . 当x < 2时, f ′( x ) > 0; 当x > 2时,f ′( x ) < 0. o ∴ f (2) = 1为f ( x )的极大值 .
55同济大学第六版高数第3章1PPT课件

C
Y f (x)
M
B
KAB f(b)f(a) F(b)FF(x)
D
X F(2)F(b)
弦 A:Y B f(a )f(b ) f(a )[X F (a )] F (b ) F (a )
一个小于1 的正实根 证 设 f(x ) x 5 5 x 1 ,则f(x)在 [0,1]连,续
且 f(0 ) 1 ,f( 1 ) 3 .
x0(0,1)使 , f(x0)0即为方程的小于1的正实根. 设x 1 另 (0 ,1 )x 有 1 , x 0 ,使 f(x1)0. 0x 0x 1 1 f(x)在x0,x1之间满足罗尔定 件, 理的条 至少存 (在 x 在 0,x1之 一 )使 间 ,个 f得 ()0.
第三章 中值定理与导数的应用
第一节 中值定理
预备知识
y
① f( )lim f( x )f( )
x 0
x
②f()表示曲y线 f(x)
在x处 切 线 的 斜 率o
y=f(x)
x
1
一、罗尔(Rolle)定理
罗尔定理
若函数 f(x)满足
y
C
1 在闭 [a ,b 区 ]上间 连续
A
yf(x)
B
2在开 (a,b 区 )内间 可导
D
3 f(a )f(b )
oa
2 b x
则在 (a,b)内至少有一点(几何解释) 使f()0
2
证:f(x)在 [a,b]连,续 必有最 M大 和值 最m 小 . 值
(1)若 Mm. 则f(x)M. 由此 f(x得 )0.
(a,b), 都f有 ()0. (2)若 Mm . f(a)f(b), 最值不可能同时在取端得点 . 设 Mf(a), 则(在 a,b)内至少存 使 f(在 )M 一 . 点 f( x ) f( ) 0,
同济版高数PPT课件

上的一个积分和. 分割是将[0,1]n 等分
分点为 xi
i ,(i n
1,2,, n )
第19页/共178页
因为 f ( x)在区间[0,1]上连续,且 f ( x) 0 所以ln f ( x)在[0,1]上有意义且可积 ,
n
lim ln
n i1
f
i n
1 n
1
0 ln
f ( x)dx
故
limn
1
1、
1 x2dx
;
0
4
2、
2
cos
xdx
2
2 cos xdx
0
;
2
五、水利工程中要计算拦水闸门所受的水压力,已知 闸门上水的压强 P 是水深 h 的 函数,且有 p 9.8h(千米 米2 ) ,若闸门高H 3米 ,宽 L 2米 ,求水面与闸门顶相齐时闸门所受的水
压力P (见教材图 5-3).
第25页/共178页
练习题答案
n
一、1、lim 0
i 1
f ( i )xi ;
2、被积函数,积分区间,积分变量;
3、介于曲线y f ( x) ,x 轴 ,直线x a , x b 之间
各部分面积的代数和;
4、 b dx . a
二、1 (b3 a 3 ) b a . 3
三、1 (b2 a 2 ). 2
练习题
一、填空题:
1、函数 f ( x) 在 a , b 上的定积分是积分和的极限,
即 b f ( x)dx _________________ . a
2、定 积 分 的 值 只 与 ______ 及 _______ 有 关 , 而 与 _________的记法无关 .
同济大学线性代数课件__第三章[1]
![同济大学线性代数课件__第三章[1]](https://img.taocdn.com/s3/m/6462c629a55177232f60ddccda38376baf1fe0db.png)
矩阵的等价关系满足:
(i) 反身性 A ~ A ; (ii) 对称性 若A ~ B ,则B ~ A ; (iii) 传递性 若A ~ B , B ~ C ,则A ~ C 。
2021/10/10
9
线性方程组 2x1 x2 x3 x4 2, ①
x1
4 x1
x2 6x2
2 x3 2 x3
0
00
0
0
00 4
∴ R(B) = 3
2021/10/10
36
定理 3 若A ~ B, 则 R(A) = R(B) .
事实上,若 A 经过一次初等变换变为 B,A的 k 阶子式全等于零, 则 B的 k 阶子式也全等于零。
(1) A ri rj B
(2) A r i k B (3) A ri krj B
2 3 4
5 1 3
1
r2 2r1 r3 3r1
0 0
2 2 2
3 5 6
2 1 2
5 9 12
1
r1 r2 r3 r2
0 0
0 2 0
2 5 1
1 1 1
4 9 3
r12r3 r2 5r3
1 0 0
0 2 0
0 0 1
3 4 1
2 6 3
2021/10/10
第i行
1
E(i, j)
1 10
第
j
行
1
1
2021/10/10
17
1
1
E(i(k))
k
第i 行
1
1
2021/10/10
18
1
E(i, j(k))
1 k
第i行
1
(i) 反身性 A ~ A ; (ii) 对称性 若A ~ B ,则B ~ A ; (iii) 传递性 若A ~ B , B ~ C ,则A ~ C 。
2021/10/10
9
线性方程组 2x1 x2 x3 x4 2, ①
x1
4 x1
x2 6x2
2 x3 2 x3
0
00
0
0
00 4
∴ R(B) = 3
2021/10/10
36
定理 3 若A ~ B, 则 R(A) = R(B) .
事实上,若 A 经过一次初等变换变为 B,A的 k 阶子式全等于零, 则 B的 k 阶子式也全等于零。
(1) A ri rj B
(2) A r i k B (3) A ri krj B
2 3 4
5 1 3
1
r2 2r1 r3 3r1
0 0
2 2 2
3 5 6
2 1 2
5 9 12
1
r1 r2 r3 r2
0 0
0 2 0
2 5 1
1 1 1
4 9 3
r12r3 r2 5r3
1 0 0
0 2 0
0 0 1
3 4 1
2 6 3
2021/10/10
第i行
1
E(i, j)
1 10
第
j
行
1
1
2021/10/10
17
1
1
E(i(k))
k
第i 行
1
1
2021/10/10
18
1
E(i, j(k))
1 k
第i行
1
同济版 高等数学(上册) 第三章课件1
f x dx F x C .
式, x 称为积分变量, F x 是 f x 的一个原函数.
不定积分的概念
其中 , 符号 称为 积分号 , 称 f x 为 被积函数 , f x dx 称为 被积表达
6
二、不定积分
第三章 一元函数积分学及其应用
由定义知, 求函数 f ( x) 的不定积分, 就是求 f ( x) 的全体原函数.在 f ( x )dx 中, 积分号 表示对函数 f ( x) 施行求原函数的运算, 故求
x4 dx ; 例6 求不定积分: (6) 2 1 x
分子部分加一项减一项后, 分解被积表达式
4 x4 x 2 1 x 2 1 1 x 1 1 1 2 d x = d x dx dx x 1 1 x2 2 1 x2 2 1 x 1 x x3 x arctanx C . = 3
9
二、不定积分
1 例3 求 dx ( x 1dx ). x 1 解 当 x 0 时, (ln x) ; x
第三章 一元函数积分学及其应用
1 1 (1) . 当 x 0 时, 即 x 0 时, [ln( x)] x x 1 1 故 ln x 为 在 (0, ) 上的一个原函数 , ln( x) 为 在 (, 0) 上的一个原函 x x 数. 故当 x 0 时, ln x 为 1 的一个原函数, 从而 x 1 x dx ln x C ( x 0) .
不定积分的运算实质上就是求导(求微分)函数积分学及其应用
按照定义, 一个函数的原函数或不定积分都有相应的定义区间. 为了简便起 见, 如无特别的说明, 今后就不再注明.
《高等数学》(同济六版)教学课件★第3章.微分中值定理与导数的应用(2)
第六节
第三章
函数图形的描绘
一、 曲线的渐近线 二、 函数图形的描绘
目录 上页 下页 返回 结束
一、 曲线的渐近线
定义 . 若曲线 C上的点M 沿着曲线无限地远离原点
时, 点 M 与某一直线 L 的距离趋于 0, 则称直线 L 为
曲线C 的渐近线 .
y
y f (x)
或为“纵坐标差” C M
y kxb
1)
y
(
x
2 1)3
目录 上页 下页 返回 结束
6)绘图
x (,1) 1 (1,1)
y
2
(极大)
铅直渐近线 x 1
斜渐近线
y1x5 44
特殊点
x0 y 9
2 1
44
1 (1,3) 3 (3, )
无 定 义
0
(极小)
y
y (x 3)2
4(x 1)
2 1
O1 2 3 5 x
y
1 4
x
5 4
x 1
x0
1 1
e e
x2 x2
目录 上页 下页 返回 结束
2. 曲线 y 1 ex2 的凹区间是
(
1 2
,
1 2
)
,
凸区间是
( ,
1 2
)
及
(
1 2
,
)
,
拐点为
(
1
1
,1e 2 )
2
,
渐近线
y 1
.
提示:
y 2ex2 (1 2 x2 )
y
1
(
1
,1
e
1 2
)
2
O
(
第三章
函数图形的描绘
一、 曲线的渐近线 二、 函数图形的描绘
目录 上页 下页 返回 结束
一、 曲线的渐近线
定义 . 若曲线 C上的点M 沿着曲线无限地远离原点
时, 点 M 与某一直线 L 的距离趋于 0, 则称直线 L 为
曲线C 的渐近线 .
y
y f (x)
或为“纵坐标差” C M
y kxb
1)
y
(
x
2 1)3
目录 上页 下页 返回 结束
6)绘图
x (,1) 1 (1,1)
y
2
(极大)
铅直渐近线 x 1
斜渐近线
y1x5 44
特殊点
x0 y 9
2 1
44
1 (1,3) 3 (3, )
无 定 义
0
(极小)
y
y (x 3)2
4(x 1)
2 1
O1 2 3 5 x
y
1 4
x
5 4
x 1
x0
1 1
e e
x2 x2
目录 上页 下页 返回 结束
2. 曲线 y 1 ex2 的凹区间是
(
1 2
,
1 2
)
,
凸区间是
( ,
1 2
)
及
(
1 2
,
)
,
拐点为
(
1
1
,1e 2 )
2
,
渐近线
y 1
.
提示:
y 2ex2 (1 2 x2 )
y
1
(
1
,1
e
1 2
)
2
O
(
同济高等数学第三章第一节课件
即 设
f ( x ) sin x x=x
F ( x ) = f ( x ) sin x
=0
验证 F ( x ) 在 [ 0 , ] 上满足罗尔定理条件.
首页
上页
返回
下页
结束
铃
2. 若 f ( x )可导, 试证在其两个零点间一定有
f ( x ) f ( x ) 的零点.
提示: 设 f ( x1 ) = f ( x2 ) = 0 , x1 < x2 ,
直线AB的斜率
f (b) f (a) k= ba f (b) f (a) f (x)= ba
首页 上页 返回 下页 结束 铃
拉格朗日中值定理 如果函数f(x)在闭区间[a b]上连续 在开区间(a b)内 可导 那么在(a b)内至少有一点x 使得 f(b)f(a)=f (x)(ba) 简要证明 令j(x)=f (x)f (a) f (b) f (a) (xa) ba 则函数j(x)在区间[a b]上满足罗尔定理的条件 于是至少存在一点x(a b) 使j (x)=0 即
1 由于 f (0)=0 f (x) = 因此上式即为 1 x ln(1 x) = x 1x 又由0<x<x 有 x < ln(1 x) < x 1 x
首页
上页
返回
下页
结束
铃
例4. (p132 6)证明等式
证: 设
由推论可知 令x=0,得
(常数)
又
故所证等式在定义域
上成立.
由此得
f (b) f (a) =0 j (x)=f (x) ba f(b)f(a)=f (x)(ba)
首页
上页
同济大学《高等数学》(第四版)3-5节 函数的极值
f ′( x ) = 3 x 2 + 6 x − 24 = 3( x + 4)( x − 2)
x 2 = 2.
令 f ′( x ) = 0, 得驻点 x1 = −4,
∵ f ′′( x ) = 6 x + 6,
∵ f ′′( −4) = − 18 < 0,
f ′′( 2) = 18 > 0,
故极大值 f (−4) = 60, − 故极小值 f ( 2) = −48.
(4) 求极值 .
上页 下页 返回
例1 求出函数 f ( x ) = x 3 − 3 x 2 − 9 x + 5 的极值 . 解
f ′( x ) = 3 x 2 − 6 x − 9 = 3( x + 1)( x − 3)
令 f ′( x ) = 0, 得驻点 x1 = −1, x2 = 3. 列表讨论
1 1 f ′( x ) = 2 x ( 2 + sin ) − cos x x 当 x → 0 时,
1 1 2 x ( 2 + sin ) → 0, cos 在–1和1之间振荡 和 之间振荡 x x
的两侧都不单调. 因而 f ( x ) 在 x = 0 的两侧都不单调
故命题不成立. 故命题不成立.
x
( −∞ ,−1) − 1
+
(−1,3) −
−
3 0
极 小 值
( 3,+∞ )
+
f ′( x ) f ( x)
0
极 大 值
↑
↓
↑
极 值 f (−1) = 10, −
极 值 f ( 3) = −22.
上页 下页 返回
f ( x ) = x 3 − 3 x 2 − 9 x + 5图形如下
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以, 处取得极大值.同理可证(2). 所以,函数 f ( x )在 x0 处取得极大值.同理可证
例2 求出函数 f ( x ) = x 3 + 3 x 2 − 24 x − 20 的极值 . 解
f ′( x ) = 3 x 2 + 6 x − 24 = 3( x + 4)( x − 2)
x 2 = 2.
点击图片任意处播放\暂停 点击图片任意处播放 暂停
建立敌我相距函数关系 解 (1)建立敌我相距函数关系
设 t 为我军从 B处发起 追击至射击的时间 (分). 分 敌我相距函数 s(t)
0.5公 里
s(t)
⋅A
s(t) = (0.5+ t)2 + (4− 2t)2
B
⋅
4公 里
( 2) 求s = s( t )的最小值点. 5t − 7.5 . 令 s′ ( t ) = 0 , s′(t ) = 2 2 ( 0.5 + t ) + (4 − 2t )
得唯一驻点 t = 1.5. 故得我军从B 故得我军从 处发起追击后 1.5 分钟射击最好 .
实际问题求最值应注意: 实际问题求最值应注意:
(1)建立目标函数 建立目标函数; 建立目标函数 (2)求最值 求最值; 求最值
若目标函数只有唯一驻 点,则该点的函数 值即为所求的最( 值即为所求的最(或最 小)值.
y
y
+ − o
x0
−
x
+
x0
o
x
(是极值点情形 是极值点情形) 是极值点情形
y
+ +
y
− −
o
x0
x
o
x0
求极值的步骤: 求极值的步骤:
x (不是极值点情形 不是极值点情形) 不是极值点情形
(1) 求导数 f ′( x );
( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号 , 判断极值点;
第五节 函数的极值与最大值最小值 一、函数的极值及其求法 二、最大值最小值问题
一、函数极值
1.函数极值的定义 函数极值的定义
y
y = f (x)
ax
y
1
o
x2
x3
x4
x5
x6
b
x
y
o
x0
x
o
x0
x
定义 设 数 (x)在 间a,b) 有 义 x0是 函 f 区 ( 内 定 , (a,b) 的 个 , 内 一 点 如 存 着 x0的 个 域对 这 域 的 果 在 点 一 邻 , 于 邻 内
b x
o
a
b x
步骤: 步骤:
1.求驻点和不可导点 求驻点和不可导点; 求驻点和不可导点 2.求区间端点及驻点和不可导点的函数值 比 求区间端点及驻点和不可导点的函数值,比 求区间端点及驻点和不可导点的函数值 较大小,那个大那个就是最大值 那个小那个就 较大小 那个大那个就是最大值,那个小那个就 那个大那个就是最大值 是最小值; 是最小值 注意:如果区间内只有一个极值 则这个极值就 注意:如果区间内只有一个极值,则这个极值就 是最值.(最大值或最小值 最大值或最小值) 是最值 最大值或最小值
令 f ′( x ) = 0, 得驻点 x1 = −4,
∵ f ′′( x ) = 6 x + 6,
∵ f ′′( −4) = − 18 < 0,
f ′′( 2) = 18 > 0,
故极大值 f (−4) = 60, − 故极小值 f ( 2) = −48.
f ( x ) = x 3 + 3 x 2 − 24 x − 20 图形如下
+
(−1,3) −
−
3 0
极 小 值
( 3,+∞ )
+
f ′( x ) f ( x)
0
极 大 值
↑
↓
↑
极 值 f (−1) = 10, −
极 值 f ( 3) = −22.
f ( x ) = x 3 − 3 x 2 − 9 x + 5图形如下
M
m
定理3(第二充分条件) 定理3(第二充分条件)设f (x)在 0 处 有 阶 数 3(第二充分条件 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 (1)当 , 数 '' x 取 极 值 (2)当 (2)当f (x0 ) > 0时 函 f (x)在 0 处 得 小 . , 数
R′( x ) = 0
⇒
唯一驻点) x = 350 (唯一驻点)
故每月每套租金为350元时收入最高 故每月每套租金为 元时收入最高. 元时收入最高
350 最大收入为 R( x ) = ( 350 − 20) 68 − 10 = 10890 (元 )
例7 由直线 y = 0,x = 8 及抛物线 y = x 2 围
成一个曲边三角形, 上求一点, 成一个曲边三角形,在 曲边 y = x 2 上求一点, 使曲线在该点 处的切线与直 线 y=0及 x=8 所围成的三角 形面积最大. 形面积最大.
做函数 f ( x ) 的驻点.
注意: 注意 可导函数 f ( x ) 的极值点必定是它的驻 点,
但函数的驻点却不一定 是极值点.
y = x 3 , y ′ x = 0 = 0, 例如, 例如
但x = 0不是极值点. 不是极值点
定理2(第一充分条件) 定理2(第一充分条件) 2(第一充分条件
' (1)如果 (1) 如果 x ∈ ( x0 − δ , x0 ), 有 f ( x ) > 0;而 x ∈ ( x0 , x0 + δ ) , f ' ( x ) < 0 ,则 f ( x )在 x0处取得极大值 有 . x ∈ ( x0 − δ , x0 ), 有 f ' ( x ) < 0;而 x ∈ ( x0 , x0 + δ ) (2)如果 (2) 如果 ' 处取得极小值. 有 f ( x ) > 0 ,则 f ( x )在 x0 处取得极小值. x ∈ ( x0 − δ , x0 ) 及 x ∈ ( x0 , x0 + δ )时, f ' ( x ) (3)如果当 (3) 如果当 符号相同, 处无极值. 符号相同,则 f ( x )在 x0 处无极值.
f ′( x 0 + ∆ x ) − f ′( x 0 ) 证 (1) ∵ f ′′( x0 ) = lim < 0,
∆x → 0
∆x
异号, 故f ′( x0 + ∆x ) − f ′( x0 )与∆x异号,
当∆x < 0时, 有f ′( x0 + ∆x ) > f ′( x0 ) = 0, 当∆x > 0时, 有f ′( x0 + ∆x ) < f ′( x0 ) = 0,
M
m
注意: f ′′( x0 ) = 0时, f ( x )在点x0处不一定取极值 , 注意:
仍用定理 2.
注意:函数的不可导点 也可能是函数的极值点 也可能是函数的极值点. 注意:函数的不可导点,也可能是函数的极值点 例3 解
求出函数 f ( x ) = 1 − ( x − 2) 的极值 .
− 2 f ′( x ) = − ( x − 2 ) 3 3 1
函数的极大值与极小值统称为极值 使函数取得 函数的极大值与极小值统称为极值,使函数取得 极值 极值的点称为极值点 极值点. 极值的点称为极值点
2.函数极值的求法 函数极值的求法
定理1 必要条件) 定理1(必要条件) 设f (x)在 x0 处 有 数 且 点 具 导 , 在x0处 得 值 那 必 f '(x0 ) = 0. 取 极 , 末 定 定义 使导数为零的点 (即方程 f ′( x ) = 0 的实根 )叫
于是 x = 0为 f ( x ) 的极小值点
当 x ≠ 0时,
1 1 f ′( x ) = 2 x ( 2 + sin ) − cos x x 当 x → 0 时,
1 1 2 x ( 2 + sin ) → 0, cos 在–1和1之间振荡 和 之间振荡 x x
的两侧都不单调. 因而 f ( x ) 在 x = 0 的两侧都不单调
思考题
下命题正确吗? 下命题正确吗?
的极小值点, 如果 x 0 为 f ( x ) 的极小值点,那么必存在 的某邻域,在此邻域内, x 0 的某邻域,在此邻域内, f ( x ) 在 x 0 的左侧 下降, 的右侧上升. 下降,而在 x 0 的右侧上升
思考题解答
不正确. 不正确.
1 2 2 + x ( 2 + sin ), x ≠ 0 例 f ( x) = x 2, x=0 1 2 当 x ≠ 0时, f ( x ) − f ( 0) = x ( 2 + sin ) > 0 x
x − 180 套, 租出去的房子有 50 − 10
每月总收入为
x −180 R(x) = (x − 20) 50− 10
x R( x ) = ( x − 20) 68 − 10 x 1 = 70 − x R′( x ) = 68 − + ( x − 20) − 5 10 10
2 3
( x ≠ 2)
当x = 2时, f ′( x )不存在 . 但函数 f ( x )在该点连续 .